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ABSTRACT
Aliasing occurs in Web transactions when requests containing dif-
ferent URLs elicit replies containing identical data payloads. Con-
ventional caches associate stored data with URLs and can therefore
suffer redundant payload transfers due to aliasing and other causes.
Existing research literature, however, says little about the preva-
lence of aliasing in user-initiated transactions, or about redundant
payload transfers in conventional Web cache hierarchies.

This paper quantifies the extent of aliasing and the performance
impact of URL-indexed cache management using a large client
trace from WebTV Networks. Fewer than 5% of reply payloads
are aliased (referenced via multiple URLs) but over 54% of suc-
cessful transactions involve aliased payloads. Aliased payloads
account for under 3.1% of the trace’s “working set size” (sum of
payload sizes) but over 36% of bytes transferred. For the WebTV
workload, roughly 10% of payload transfers to browser caches and
23% of payload transfers to a shared proxy are redundant, assum-
ing infinite-capacity conventional caches. Our analysis of a large
proxy trace from Compaq Corporation yields similar results.

URL-indexed caching does not entirely explain the large num-
ber of redundant proxy-to-browser payload transfers previously re-
ported in the WebTV system. We consider other possible causes of
redundant transfers (e.g., reply metadata and browser cache man-
agement policies) and discuss a simple hop-by-hop protocol exten-
sion that completely eliminates all redundant transfers, regardless
of cause.
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1. INTRODUCTION
Aliasing occurs in Web transactions when different request URLs

yield replies containing identical data payloads. Existing browsers
and proxies perform cache lookups using URLs, and aliasing can
cause redundant payload transfers when the reply payload that sat-
isfies the current request has been previously received but is cached
under a different URL. Awareness of this problem is slowly grow-
ing in the commercial world: A major cache appliance vendor
now encourages site designers to make Web pages cache-friendly
by avoiding aliasing [13, page 9]. Within well-administered sites,
aliasing might decrease when such advice is heeded. Other trends,
however, are moving the Web in the opposite direction and are be-
yond the control of individual sites. For example, commercial Web
design tools typically include many small images, and a particu-
lar image bundled with such a tool is available through a different
URL at each site that uses it.

Given the proliferation of technologies that create aliases and the
potential for aliasing to cause redundant transfers, it is surprising
that relatively little is known about the scale and consequences of
this phenomenon. Only a few previous studies have considered
the prevalence of aliasing in Web transactions, the performance
penalty of conventional URL-indexed cache management in large
multi-level cache hierarchies, or ways to eliminate redundant pay-
load transfers [36, 50]. Few of the Web workload traces that re-
searchers have collected can illuminate the relationship between
request URLs and reply payloads, because they do not describe
payloads in sufficient detail.

In this paper we quantify aliasing and the impact of URL-indexed
cache management on browser and proxy cache miss rates by ex-
amining large anonymized client and proxy traces collected, re-
spectively, at WebTV Networks in September 2000 and at Com-
paq Corporation in early 1999. The traces include message di-
gests of reply payloads, allowing us to detect aliasing. We inves-
tigate whether conventional URL-indexed caching is primarily re-
sponsible for the high rate of redundant proxy-to-browser payload
transfers previously reported in the WebTV system, consider other
causes of redundant payload transfers, and discuss a simple way to
eliminate all redundant transfers, regardless of cause.

1.1 Terminology
In this paper, we use several terms that require precise definition:

Payload: The data carried in the body of an HTTP response. We
consider only full-body responses (status code 200); partial-body
(status code 206) responses are extremely rare, and would compli-
cate the discussion.
Payload hit: A cache reference that returns, from cache storage,
exactly the payload the origin server would return at the time of ac-
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cess, whether or not messages are exchanged with the origin server.
A revalidation request followed by a “Not Modified” response is a
payload hit, because it averts the payload transfer.
Payload miss:A reference for which the correct payload is not ob-
tained from cache but rather from elsewhere (e.g., the origin server
or from a remote intermediate cache).
Aliased payload: In the context of a given trace of Web transac-
tions, a payload is aliased if it is accessed via more than one URL
in the entire trace.

In our trace-driven simulations we do not consider caches that
violate semantic transparency in the sense of RFC 2616 [23], i.e.,
we consider caches that either suffer payload misses or return ex-
actly the same payload that the origin server would return at the
moment of access.

Certain terms related to aliasing, such as “duplication,” lack clear,
widely-accepted definitions in the literature, and we will avoid them
when discussing our own work.

2. RELATED WORK
While few studies have directly addressed our central topic, many

have investigated aspects of the HTTP namespace and their impact
on cache performance. In this section we review literature on the
relationship between URLs and reply payloads.

2.1 Resource Modification
“Resource modification” is the complement of aliasing: requests

containing identical URLs yield different reply bodies. Because it
has direct implications for cache consistency and object “cachabil-
ity,” resource modification has been extensively studied. In Sec-
tion 4 we compare the prevalence of aliasing and resource modifi-
cation and report that more transactions are affected by the former.

Douglis et al. report that rates of resource modification in a trace
from a corporate environment are high enough to substantially re-
duce the hit rates of conventional URL-indexed caches [20]. More
recently, Brewington & Cybenko consider the burden that modifi-
cation rates place on search engines [9]. After fitting a combina-
tion of exponential and Weibull models to their data, they report
that roughly 10% of inter-modification intervals are 10 days or less
and roughly 72% are 100 days or less. Brewington’s doctoral the-
sis considers the problem of monitoring changing information re-
sources in greater theoretical and empirical depth [8]. This research
is based on polling URLs obtained from users who have requested
notification when specified resources change, and might therefore
reflect a sample of resources with atypical rates of change. Pad-
manabhan & Qiu analyze the dynamics of content creation, mod-
ification and deletion at the MSNBC Web site [43]. They report
a median inter-modification interval of approximately 10,000 sec-
onds and note that most alterations to files are relatively minor.

Resources expected to change frequently are often called “dy-
namic,” although this poorly-defined term blurs the distinction be-
tween the process by which a response is generated, and whether
it is “cachable.” In practice, cache implementors and researchers
employ heuristics to identify uncachable responses by looking ei-
ther for signs of dynamic generation (such as “cgi” in a URL) or
for metadata, such as cookies, implying that a resource gives a dif-
ferent response to every request. Wolman et al. report that Squid
deems uncachable 40% of replies in a large trace collected at the
University of Washington in May 1999; Zhang reports that cus-
tomized and dynamic content together render roughly 7.1% of the
objects in his trace uncachable [59].

Work by Wills & Mikhailov, however, casts doubt on the as-
sumption that it is pointless to cache seemingly “dynamic” or “cus-
tomized” content. They report that even if a previous access to a

URL had returned a “Set-Cookie” header, in most cases the ab-
sence of a request cookie, or the presence of a different cookie,
does not affect the reply payload returned for a subsequent ac-
cess [54]. Repeated accesses to query resources at E-commerce
sites sometimes return identical payloads [56]. Iyengar & Chal-
lenger exploited the cachability of dynamic replies at a large, busy
Web server and report impressive performance gains [26]. Smith
et al. report dynamic reply cache hit rates of 13.6% and 38.6% for
two workloads [48].

Wolman et al. incorporate observed resource popularity and mod-
ification rates into an analytic model of hierarchical caching [58].
Their model illustrates the impact of resource modification rates on
cache hit rates and suggests that cooperative caching schemes yield
diminishing returns as client populations increase.

2.2 Mirroring
“Mirroring” typically refers to a special case of aliasing in which

replicas of pages or entire sites are deliberately made available
through different URLs. Shivakumar & Garcia-Molina investigate
mirroring in a large crawler data set [47]. They report far more
aliasing than appears in the WebTV client trace: 36% of reply bod-
ies are accessible through more than one URL. Bharat et al. survey
techniques for identifying mirrors on the Internet [6]. Bharat &
Broder investigate mirroring in a large crawler data set and report
that roughly 10% of popular hosts are mirrored to some extent [5].

Broder et al. consider approximate mirroring or “syntactic sim-
ilarity” [10]. Although they introduce sophisticated measures of
document similarity, they report that most “clusters” of similar doc-
uments in a large crawler data set contain onlyidenticaldocuments.
In other words, simple aliasing is the dominant form of similarity
in their workload.

2.3 Duplicate Suppression
Douglis et al. report that 18% of the full-body responses recorded

at a corporate firewall that resulted in a new instance of a particular
resource were identical to at least one other instance of a different
resource [20].

Several “duplicate suppression” proposals address performance
problems caused by duplication. The HTTP Distribution and Repli-
cation Protocol (DRP) employs payload digests to avoid unneces-
sary data transmission in deliberate replication over HTTP [52]. A
DRP client obtains “index files” containing digests indicating the
current state of resources, and the client can then request precisely
those resources for which its copies are obsolete.

Mogul reviewed a variety of end-to-end duplicate-suppression
schemes involving “hints” supplied by origin servers to clients, and
by clients to caches. These proposals do not entirely eliminate the
problem of redundant payload transfers, and a trace-driven simu-
lation demonstrates that one such scheme yields 5.4% and 6.2%
improvements in hit rates and byte hit rates, respectively. Even
these modest gains areupper bounds, because they assume the full
participation of all origin servers [35, 36].

Santos & Wetherall [46] and Spring & Wetherall [50] describe
a general protocol-independent network-layer technique for elimi-
nating redundant traffic by cachingpacketpayloads and transmit-
ting digests thereof to avoid redundant transfers. Muthitacharoen et
al. designed a network file system for low-bandwidth environments
that performs similar operations on chunks of files [40].

Inktomi’s Traffic Server proxy cache product has included a tech-
nique called “content fingerprinting,” which uses payload digests
to avoid storing multiple copies of identical payloads [32]. Con-
tent fingerprinting suppresses duplicates in storage, but not on the
network. Bahn et al. describe a similar scheme [3].
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2.4 Data-Collection Methodology
In order to evaluate the performance impact of aliasing on large-

scale browser-proxy cache hierarchies, we require a detailed record
of (request, reply) transactions from a large client population. (Ex-
isting synthetic workload generators such as SURGE [4], WebPoly-
graph [53], and SPECweb [49] were not designed to mimic alias-
ing “in the wild,” and are therefore inappropriate for our purposes.)
The logs from a server might reflect large numbers of users, but
they do not record all of the users’ requests, and so are of little use
in evaluating client or proxy caching.

In order to record transactions involving large numbers of both
users and servers, researchers typically employ packet sniffers [21,
22] or proxy logs [19]. However, the use of caching proxies can
complicate either approach. If a sniffer is located between a caching
proxy and the Internet, it will fail to record requests served from
the proxy cache. The logs of a caching proxy will not suffer from
this problem, but such logs do not necessarily reflect the payloads
that origin servers would provide: proxies might serve stale con-
tent unless they revalidate payloads with the origin server upon ev-
ery cache hit. Moreover, a trace collected at a proxy normally fails
to capture any user requests that hit in the client (browser) caches.
Other problems with conventional proxy logs include inadequate
detail, low-resolution timestamps, and poor clock synchronization
in multiple-host proxy arrays [12, 15, 17, 28].

In principle, one could avoid such problems by collecting traces
using an instrumented client; this could capture every user refer-
ence. Instrumented browsers have been used to collect traces from
small user populations [14, 16]. It is difficult to instrument popu-
lar browsers today because source code is unavailable, but a client
proxy such as Medusa [29] can collect much of the same data. The
main problem with client-end data collection is the difficulty of de-
ployment across a large client sample.

In collecting the anonymized traces we analyze, WebTV em-
ployed anon-caching, cache-bustingproxy. Acache-bustingproxy
marks as uncachable all of the replies it sends to clients, effectively
disabling browser caches. And because the proxy itself maintains
no cache, it never suffers from the stale-response problem. Since
the source code for the proxy was available, WebTV could instru-
ment it to collect data not ordinarily logged (e.g., payload digests,
which have on rare occasions been logged by modified proxies in
the past [35, 36]). For more discussion of WebTV’s trace collection
methodology, see Reference [28].

A cache-busting proxy allowed WebTV to collect a very large
trace from a large user population at reasonable cost. The WebTV
trace is comparable in size to the largest traces used in HTTP name-
space investigations. Unlike these proxy, sniffer, server, and crawler
traces, however, the WebTV client trace can support trace-driven
simulation of browser-proxy cache hierarchies.

2.5 Harmful Practices
The HTTP/1.1 specification is long and complex [23]. Not all

servers are fully compliant, and the compliance of products does
not always improve over time [30]. Non-compliance can clearly
cause redundant payload transfers and other kinds of waste. How-
ever, redundant transfers can also occur if mechanisms introduced
into HTTP/1.1 to improve cache correctness are used in strange but
compliantways. For instance, identical payloads served by a single
site are sometimes accompanied bydifferententity tags [55], caus-
ing new-style “If-None-Match ” revalidation attempts to fail
where old-fashioned “If-Modified-Since ” requests might
succeed. In this case, the server is compliant with the specifica-
tion, but not with the most efficient possible implementation.

full trace reduced trace
Clients 37,201 37,165
Server IP addresses 267,595 252,835
Server hostnames 536,451 412,509
URLs 40,756,045 32,541,361
Unique payloads 38,754,890 36,573,310
(URL, payload) pairs 54,910,572 44,785,808
Transactions 347,460,865 326,060,677
Bytes transferred

Total 1,973,999,619,772
Unique payloads 639,563,546,204

Table 1: WebTV trace summary statistics.

Furthermore, several common practices that do not violate the
protocol complicate the HTTP namespace in harmful ways. Mik-
hailov & Wills report, for instance, that content providers some-
times embed session identifiers in dynamically-written URLs rather
than cookies [33]. Ad rotation often creates many minor variants
of the HTML for a Web page, inflating resource modification rates.
Padmanabhan & Qiu document other types of minor changes that
occur frequently at the MSNBC site [43].

2.6 Summary
Existing literature touches on a number of issues surrounding

aliasing on the Web, but the prevalence of this phenomenon across
user-initiated transactions and the impact of URL-indexed cache or-
ganization on miss rates in multi-level cache hierarchies is poorly
understood. Most proxy traces employed in empirical Web caching
research shed no light on aliasing because they do not record data
payloads or digests thereof. Data sets collected by Web crawlers
often include payload digests but cannot support trace-driven sim-
ulations of cache hierarchies; they illuminate aliasing acrossavail-
able resources rather thanaccessedresources. The WebTV trace
described in Section 3 is well suited to our investigation because
it reflects all client requests and corresponding server replies in a
large, cacheless production environment.

3. TRACES
We analyze aliasing in an anonymized Web client trace collected

at WebTV Networks in September 2000, summarized in Table 1.
The trace spans sixteen days and reflects over 347 million refer-
ences to over 40 million resources by over 37,000 clients. It was
collected using a specially instrumented “cache-busting proxy,” as
described in Section 2.4 and in Reference [28]. This allowed the
proxy to record requests that would otherwise be served silently
from browser caches.

In this paper we consider only successful (status code 200) trans-
actions in the WebTV trace. We furthermore exclude transactions
involving seventeen payloads for which accurate sizes are not avail-
able; these account for slightly over 100,000 transactions. Our re-
duced trace is summarized in the right-hand column of Table 1.
Due to differences in trace-reduction procedures used in the two in-
vestigations, the summary statistics in Table 1 differ from those in
Table 3 of Reference [28]. As in the earlier paper we associate with
each payload a single size that includes protocol overhead (HTTP
headers). In the present study we add to each payload’s Content-
Length a median header size of 247 bytes, whereas the earlier paper
used the maximum size-related field observed in any transaction in-
volving a payload.

WebTV clients are inexpensive devices that enable Web surfing
on conventional television sets. Most are used in homes, and all
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Clients at least 21,806
Server hostnames at most 454,424
URLs 19,644,961
Unique payloads 30,591,044
(URL, payload) pairs 34,848,044
Transactions 78,913,349
Bytes transferred

Total 902,792,408,397
Unique payloads 537,460,558,056

Table 2: Compaq reduced trace summary statistics.

rely on telephone modems operating at roughly 33.6 Kbps. For our
purposes the most important features of the WebTV trace are:

� it reflects activity in acachelesssystem, i.e., both browser
and proxy caches were disabled during data collection;

� the clients never used HTTP features such as Ranges or Delta
encoding [38], so every reply body is self-contained; and

� it contains anonymized message digests of every reply body.

The last feature is crucial to the present investigation, for it illumi-
nates the relationship between a URL and the data payload returned
as a result of a specific access to that URL at a given instant. The
first feature ensures that the payloads recorded in every transac-
tion are those returned directly from the origin server; there is no
chance that the WebTV proxy served (and logged) a stale payload
from its cache. Another nice feature of the WebTV trace is that it
contains no “robots,” which can only be identified with complex
and unreliable heuristics [1].

While data collected via polling or crawling would shed light
on aliasing acrossavailableresources, we must focus on arequest
streamin order to evaluate the cache performance impact of alias-
ing. Furthermore aclient trace is essential in order to evaluate
the impact of aliasing on browser/proxy cachehierarchies. The
WebTV client trace is particularly attractive because it reflects work-
load in a well-integrated production environment controlled by a
single organization; performance enhancements suggested by work-
load analysis are far easier to implement in such environments than
in the overall Web.

The WebTV system is a somewhat peculiar environment, and
it is reasonable to suspect that thin-client surfing might differ sys-
tematically from browsing with conventional rich clients. We there-
fore repeated our performance evaluations using a large proxy trace
recorded on the Compaq corporate network. This trace, described
in detail in Reference [35], is summarized in Table 2.1 Like the
WebTV trace, the Compaq trace contains payload digests, but be-
cause browser caches were enabled it reflects only browser cache
misses. Therefore the Compaq trace cannot be used to evaluate
browser cache performance. As with the WebTV data, we use a
reduced Compaq trace containing only status-200 transactions; a
small number of erroneous transactions are also excluded.

3.1 Trace Characteristics
The WebTV trace is large not merely in terms of number of

clients and transactions but also in terms of its “working set.” The
sum of distinct payload sizes in the WebTV trace is roughly 600 GB.
At the time the WebTV trace was collected, thirty-one production-
grade cache products competed in a “Cache-Off” benchmark exer-
cise [45]. The mean capacity of these caches was 83.5 GB and the
median size was 42 GB. The WebTV workload could fill the largest

1The number of client hosts in Table 2 is an underestimate, due to
lost backup tapes.
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Figure 1: Zipf-like reference counts of URLs and reply bodies.

URLs Unique payloads
Count 32,541,361 36,573,310
Zipf α 1.0341� 0.000032 0.9376� 0.000043
Zipf β 7.6313� 0.000227 6.9112� 0.000308
R2 0.969766 0.928005

Table 3: WebTV trace Zipf parameters.

entrant’s cache (315 GB) nearly twice. However the trace’s work-
ing set is not impossibly large by the standards of September 2000;
the bank of modified WebTV proxies that collected the trace had
a total capacity of roughly 600 GB. Similarly, the sum of distinct
payload sizes requested by typical clients in the trace is moderately
large for a set-top device, but not excessively so. The median client
receives under 20 MB of distinct payloads, and over 26% of the
client devices that generated the WebTV trace had larger browser
caches [28]. In Section 5 we consider browser and proxy caches
sufficiently large that they suffer no capacity misses.

The popularity distributions of URLs and reply bodies affect
cache performance, and these are shown in Figure 1. As in most
Web workloads studied to date the popularity distribution of URLs
is Zipf-like, as is that of distinct data payloads. Table 3 reports Zipf
parameters for the popularity distribution of both URLs and reply
bodies, obtained by fitting to the WebTV data linear least-squares
models of the form

log10(reference count) =�α log10(popularity rank)+β

using the algorithms described in References [27, 44]. The Zipf
α parameters in the WebTV client trace are remarkably close to
unity. Cunha et al. report similar findings on the Boston University
client trace [16]. By contrast, the Zipf parameter is often higher at
servers [43] and lower at proxies [7]. For an interesting analysis of
why the Zipf α varies at different levels in a cache hierarchy, see
Padmanabhan & Qiu [43]. Breslau et al. discuss the implications
of Zipf-like popularity distributions for caching [7].

We furthermore compute the Zipfα parameter of the payload
popularity distribution foreach clientin the WebTV trace. Fig-
ure 2 shows the distributions ofα across three subsets of the client
population: 1) all clients that request more than thirty distinct pay-
loads (this excludes only a handful of clients), 2) clients whose
number of distinct referenced payloads is between the 25th and
75th percentiles, and 3) clients whose model fit is particularly good
(R2 > 0:95). The figure displays separately the distributions ofR2

for the first two groups. Three remarkable features are apparent
in Figure 2: For most clients a Zipf model describes the popu-
larity of accessed payloads reasonably well (R2 > 0:9). Further-
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Figure 2: Top: CDF of Zipf α across client sub-populations.
Bottom: CDF of R2.

more, whereasα for the overall trace (shared proxy serving cache-
less clients) is roughly 0.938, it islower in over 87% of individual
client reference streams. At present we have no theoretical expla-
nation for whyα should be higher at a shared proxy than at clients.
Finally, α is noticeably higher in clients for which the Zipf model
fit is close.

Figure 3 shows the cumulative concentration of references across
URLs and payloads sorted in descending order of popularity. The
top one percent of payloads account for over two thirds of all trans-
actions and the top ten percent account for nearly 85%; for URLs
the figures are respectively 62.2% and 82.4%. Concentration of ref-
erences in the WebTV client trace is much stronger than in proxy
traces (e.g., Figure 5a of Arlitt et al. [2]). Browser caches filter ref-
erence concentration, as well as reference locality, from the original
client reference streams, so that both locality and concentration are
markedly lower in the reference stream that reaches proxies. See
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Figure 3: Concentration of references.

Response content-length
Trace set mean median
WebTV (includes HTTP headers) 6,054 1,821
Compaq 11,192 2,894
Berkeley Home IP [25] 7,964 2,239
ATT-delta [37] 7,881 3,210
HP cable modem [2] 21,568 4,346
Washington [58] 7.7KB not avail.

Table 4: Response sizes in various traces.

Transactions Payloads
MIME type % by % by % by % by

count bytes count bytes
image/gif 68.389 34.391 17.247 5.727

image/jp[e]g 18.627 25.843 24.854 18.441
text/html 10.255 22.391 54.212 43.902

app’n/[x-]javascript 1.169 0.625 1.142 0.088
audio/(midi,x-midi,mid) 0.253 1.171 0.089 0.159

video/mpeg 0.077 9.808 0.291 20.843
app’n/octet-stream 0.034 0.716 0.038 1.390

video/quicktime 0.002 0.400 0.010 1.143
video/x-msvideo 0.001 0.547 0.009 1.440

all other 1.192 4.106 2.107 6.867

Table 5: MIME type distribution of WebTV trace.

Figure 10 of Reference [43] forservervs. proxy reference concen-
tration.

3.2 Trace Representativeness
Any study that generalizes from one or two traces must consider

whether they are representative of Web use in general. We com-
pared our data sets with traces used in prior literature in terms of
Zipf parameters (Section 3.1), response sizes, and MIME type dis-
tributions.

Table 4 shows mean and median response body sizes from sev-
eral relatively large, recent trace sets. Our WebTV and Compaq
traces roughly span the range of means and medians, except for
those of the HP cable modem trace. The WebTV sizes are similar
to (but slightly smaller than) the Berkeley sizes, consistent with the
use of slow final hops in both environments. The Compaq sizes are
not inconsistent with those from the AT&T and Washington broad-
band environments. We do not know why the cable modem sizes
are so large.

Table 5 shows the fraction of transactions, bytes transferred, pay-
loads, and working set associated with popular MIME types; all
types that account for 1% or more in any category are shown. In
terms of transactions and bytes transferred, the WebTV trace is
roughly similar to other workloads reported in the literature, e.g.,
the AT&T trace described in Table 1 of Douglis et al. [20]. JPEG
files are more prominent in WebTV’s client trace, probably be-
cause client caches handled many JPEG accesses in the AT&T
trace. In terms of distinct payloads, HTML is far more prevalent
in the WebTV trace (54% vs. 24%). The practice of decompos-
ing logical pages into multiple HTML frames, more common in
September 2000 than in November 1996, might partly explain the
difference.

Wolman et al. collected a large Web trace at the University of
Washington using a packet sniffer in May 1999. Figure 1 of Ref-
erence [57] reports the distribution of MIME types in this trace.
Image files account for more transactions and more bytes trans-
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URLs 32,541,361
Modified URLs 1,859,929

Unique payloads 36,573,310
Aliased payloads 1,821,182

(URL, payload) pairs 44,785,808
Transactions 326,060,677

w/ modified URLs 32,277,753
w/ aliased payloads 176,595,754

Payload sizes
Range (min–max) 40–91,397,479
Median 5,487
Mean 17,487
Sum 639,563,546,204
Sum of aliased 19,726,808,472

Transfer sizes
Median 1,821
Mean 6,054
Sum 1,973,999,619,772
Sum of aliased 711,717,843,218

Table 6: WebTV reduced trace aliasing statistics.

ferred in the WebTV trace, probably due to client caching on the
University of Washington campus.

On the basis of the available quantitative evidence, therefore, the
WebTV and Compaq traces used in this paper appear consistent
with other recent traces.

4. PREVALENCE OF ALIASING
For the purposes of this section, a transaction record is a pair

(U;P) whereU is a request URL andP is a reply data payload.
We say that a reply payloadP is aliasedif there exist two or more
records(U;P);(U 0;P) containing the same reply payloadP but dif-
ferent URLsU andU 0. Similarly, we say that a URLU is modified
if there exist two or more transactions containingU as the URL
and different reply payloadsP and P0. The degreeof a payload
is the number of distinct URLs that appear with it in transaction
records, and the degree of a URL is the number of distinct reply
payloads that appear with it in the trace. Aliased payloads and
modified URLs each have degree two or greater.

Table 6 shows that aliased payloads account for over 54% of
transactions and 36% of bytes transferred in the WebTV trace, sug-
gesting that conventional URL-indexed caching might lead to many
redundant transfers and much redundant network traffic. We ad-
dress these issues in Section 5. The table also shows that under 5%
of payloads are aliased, and aliased payloads constitute only 3% of
the working set.

Note that because the WebTV trace was made with all caching
disabled, many of the aliased-payload transactions in Table 6 would
not have been seen in a more typical environment; they would
have been avoided by traditional client caches. However, caching
would also reduce the total number of transactions, so the fraction
of aliased payloads in a cache-filtered reference stream depends (in
part) on whether aliased payloads experience more or less locality
than others, as well as on the specific cache configuration. We do
not investigate this issue.

The distributions of the degrees of payloads and URLs in the
WebTV trace are shown on the left in Figure 4. Fewer than 5%
of payloads are aliased, but one is accessed via 348,491 different
URLs. Similarly only 5.7% of URLs are modified, but one yields
491,322 distinct payloads. This analysis downplays the prevalence
of aliasing and modification because it does not consider the num-
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Figure 5: CDFs of change and alias ratios.

ber of times that different (URL, payload) pairs occur in the trace.
The plot in the center shows the distributions of payload and URL
degrees weighted by reference count. Whereas only 10% of trans-
actions involve modified URLs, over 54% involve aliased payloads;
reply-payload aliasing affects more transactions than resource mod-
ification. The plot on the right shows the distribution of bytes trans-
ferred by the degree of the payload involved; 36% of the bytes
transferred in the WebTV workload involve aliased payloads.

In over 41 million successful transactions (12.72%) a payload
is accessed through a different URL than in the previous access
to the same payload. By contrast, under 14.3 million transactions
(4.37%) involve a different payload than the previous transaction
with the same URL. Here again the prevalence of aliasing exceeds
that of resource modification. Note that this does not imply that
aliasing causes more cache misses than resource modification; in
fact, the reverse might be true. Our simulations do not address this
question.

Following Douglis et al. [20] we compute for each multiply-
referenced URL its “change ratio,” the fraction of its accesses that
return a different data payload than its previous access. We further-
more compute for each multiply-referencedpayloadan analogous
metric, the “alias ratio,” defined as the fraction of its accesses made
through a different URL than its previous access. The distributions
of change ratios and alias ratios across multiply-referenced URLs
and payloads, respectively, are shown in Figure 5. The figure shows
that 15.3% of multiply-referenced payloads are aliased and 12.4%
of multiply-referenced URLs are modified. However the figure also
shows that alias ratios are generally lower than change ratios. For
example, only 2% of multiply-referenced payloads have alias ratios
above 0.5 whereas 4.7% of multiply-referenced URLs have change
ratios over 0.5.

4.1 Aliasing and Response Attributes
Techniques meant to eliminate redundant transfers usually im-

pose some costs. If we could impose those costs only on those
subsets of responses that are most likely to benefit from an alias
elimination technique, we could (in principle) reduce overall costs
without similarly reducing overall benefits.

Table 7 shows the prevalence of aliasing among popular MIME
types in the WebTV trace. The table uses the same sort order as
Table 5. Roughly 4.3% of payloads are served (at different times)
with more than one MIME type; in such cases we define the pay-
load’s type to be the most common type.

Aliasing is most common among MIDI payloads: 35% of MIDI
payloads are accessed via two or more different URLs, and over
80% of MIDI transactions involve aliased payloads. However Ta-
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Figure 4: Left: CDF of payload and URL degrees. Center: CDF of transactions by degree of URL & payload involved. Right: CDF
of bytes transferred by degree of payload involved.

Transactions w/ Aliased
Aliased Payloads Payloads

MIME type % by % by % by % by
count bytes count bytes

image/gif 66.113 62.608 13.016 11.901
image/jp[e]g 30.655 30.748 6.976 6.472

text/html 15.993 12.729 1.577 1.172
app’n/[x-]javascript 66.564 67.410 1.863 4.370

audio/(midi,x-midi,mid) 82.854 81.833 35.157 32.052
video/mpeg 32.472 13.284 6.422 1.932

app’n/octet-stream 63.557 19.26310.563 3.886
video/quicktime 7.583 1.205 1.515 0.488
video/x-msvideo 8.882 5.574 2.125 1.472

all other 47.089 21.200 3.324 2.275

Table 7: Prevalence of aliasing by MIME type in WebTV trace.

ble 5 shows that MIDI accounts for under 2% of all traffic and under
1% of all transactions.

GIF files account for over two thirds of transactions and over one
third of bytes transferred in the WebTV trace (Table 5), and roughly
two thirds of GIF transactions involve aliased payloads (Table 7).
Taken together, these facts imply thatnearly half of all transactions
involve aliased GIF payloads(0:66113�0:68389= 0:45214). By
contrast, aliasing is far less prevalent among HTML and JPEG
payloads, which together account for roughly 29% of transactions
and 48% of bytes transferred; fewer than 7.5% of transactions in-
volve aliased HTML or JPEG payloads. Our findings are consis-
tent with the hypothesis that Web authoring tools account for much
of the aliasing in Web transactions; unfortunately our traces are
anonymized in such a way as to prevent more detailed investiga-
tion of the issue.

Techniques that attempt to eliminate redundant payload transfers
might be best applied to MIME types, such as images and audio,
subject to frequent aliasing. Frequently-used types that seldom suf-
fer aliasing, such as HTML, should perhaps not be burdened with
additional overheads.

We also examined the relationship between aliasing and payload
size. Figure 6 shows several distributions involving the sizes of
payloads in the WebTV trace. The top row of distributions shows
that aliased payloads, and the transactions and bytes transferred
due to them, tend to be smaller than their non-aliased counterparts.
However when we examine particular MIME types this generaliza-
tion does not always hold. For example, aliasing is associated with
slightly larger payload sizes in JPEG transactions and HTML traf-
fic. Techniques that attempt to eliminate redundant payload trans-
fers should add a minimal number of header bytes, since the bias

1 Mirrored http://mir1.bar.com/img.gif
content http://mir2.bar.com/img.gif

2 Within-site http://bar.com/image.gif
http://bar.com/i.gif

3 Different sites, http://bar.com/img.gif
sameabs path http://foo.com/img.gif

4 Everything http://bar.com/image.gif
different http://foo.com/i.gif

Table 8: Causes of aliasing.

towards aliasing of small payloads implies that potential benefits
can easily be squandered.

4.2 Causes of Aliasing
Aliasing can arise in several different ways, e.g., deliberate mir-

roring, aliasing within a single site, and identical content available
at different sites. We can further decompose the last cause into
cases where theabs path component of the URL is the same, or
different. Table 8 provides examples of the possibilities.

Knowing the cause of aliasing can help us decide where to focus
efforts at remediation. A site can replace an ad-hoc mirroring strat-
egy with a CDN, which does not introduce aliasing into the HTTP
namespace [18]. Site administrators can avoid type 2 aliasing, fol-
lowing the advice of a CacheFlow white paper on cache-friendly
site design [13]. Unfortunately the widespread use of Web author-
ing tools can cause type 3 aliasing, and this is beyond the control
of individual sites. Furthermore aliasing occurs evenwithin such
tools: DreamWeaver [31], for instance, contains 632 unique image
files under642different filenames.

The raw WebTV trace is anonymized in such a way that alias-
ing of types 1 and 3 cannot be distinguished. Furthermore the re-
duced trace that we use in our empirical work omits anonymized
abs path fields, preventing us from distinguishing between types
3 and 4. We can, however, identify cases where different URLs
contain identical versus different host components.

Payloads of degree 2, i.e., payloads accessed via exactly two
different URLs, fall into exactly one of the categories in Table 8.
Degree-2 payloads account for 70% of aliased payloads, 31% of
transactions involving aliased payloads, and 34.6% of aliased pay-
load bytes transferred. 80.56% of degree-2 payloads are accessed
via URLs with different host components; the remainder are cases
of within-site aliasing.

5. PERFORMANCE IMPLICATIONS
In any reference sequence, the first access to a given payload

cannot be served from cache; we refer to these as “new-payload”
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Figure 6: CDFs by payload size for all payloads (top row) and three popular MIME types. Solid lines indicate aliased payloads,
transactions involving aliased payloads, and aliased bytes transferred; dashed lines non-aliased. All horizontal scales are identical
and show payload size in bytes.

misses. In this section we compare the payload miss rates of con-
ventional URL-indexed caches with new-payload miss rates. The
use of URLs to organize and locate payloads in conventional caches
entirely accounts for the difference between the two, and as we ex-
plain below, new-payload miss rates represent anachievablebound
on the performance of a sufficiently large cache.

As explained in Section 1.1 we use the terms “payload hit” and
“payload miss” to mean respectively “required payload is obtained
from cache” and “payload must be fetched from elsewhere.” In this
section we assume infinite-capacity caches that require no removal
policy and suffer no capacity misses. We furthermore assume that
caches are semantically transparent, i.e., that a cache hit supplies
exactly the same payload as the origin server would. This can easily
be achieved in practice by revalidating every request, but for brevity
we do not discuss freshness checks and revalidations in this section.

5.1 Abstract Cache Models
A conventional “URL-indexed” cache stores the most recently

received data payload in association with each requested URL. In
addition to new-payload misses, an infinite-capacity URL-indexed
cache suffers a payload miss, and resulting redundant transfer, if
it has previously received the payload that satisfies the current re-
quest, but this payload is not currently cached in association with
the current request URL.

Just as it is possible to design a cache that wastes no storage on
multiple copies of payloads [3, 32], it is possible to design a cache
that suffersonly from new-payload misses (assuming infinite ca-
pacity). One can construct such a “frugal” cache by assuming that
the cache computes a message digest of every stored payload, that
the cache maintains an index mapping digest values to stored pay-
loads, and that every payload-bearing response message received
by the cache is preceded by a digest of that message’s payload,
computed by the message sender (i.e., proxy or origin server). This
allows the cache to avoid the payload transfer if it already stores
a copy of the payload. The strategy is very simple: “1) cache for-
ever every payload you receive, and 2) before receiving a payload,
verify via digest lookup that you don’t already have it.” This ap-
proach ensures that the current request is served from cache if the
required payload has ever been received before, and therefore only
new-payload misses occur; redundant transfers cannot.

Section 7 sketches a realizable protocol design that can avoid re-
dundant payload transfers in this manner. For the present we simply
note that new-payload miss rates represent anachievablebound on
the performance of infinite-capacity caches. Figure 7 describes, in
pseudocode, how our two cache models process requests. A “fru-
gal” cache conceptually maintainstwocaches of received payloads:
a “u cache” indexed by URLs and a “dcache” indexed by payload
digest. As noted above, we omit consistency checks from our pseu-
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Conventional URL-indexed cache

if cache[URL] == correct payload
conventionalpayloadhit++

else
new payloadmissor redundanttransfer++
send URL
receive payload
cache[URL] := payload

“Frugal” cache

if u cache[URL] == correct payload
conventionalpayloadhit++

else
send URL
receive payload digest
if d cache[digest] == correct payload

redundanttransferavoidedhit++
send “don’t bother”

else
new payloadmiss++
send “proceed”
receive payload
d cache[digest] := payload
u cache[URL] := payload

Figure 7: URL-indexed and “frugal” caches.

docode for brevity and clarity; such checks are necessary in order
to ensure semantic transparency.

Our idealized cache models differ only in their susceptibility to
payload misses due to the way they associate stored payloads with
URLs. In other words, URL-indexed caching accounts for the dif-
ference between the payload miss rate of an infinite-capacity con-
ventional cache and the new-payload miss rate inherent in the ref-
erence sequence. By comparing the two we can quantify precisely
what fraction of URL-indexed cache payload transfers are redun-
dant.

Aliased payloads can cause redundant transfers for URL-indexed
caches, but are not the only cause. For example, a single resource
(URL) whose value alternates between two payloads can also cause
redundant transfers. Multiple causes may occur together, so a re-
dundant transfer could fall into several categories. The abstract
models in Figure 7, and our simulations in Section 5.2, do not iso-
late the contribution of aliasing to redundant transfers.

5.2 Simulation Results
We computed new-payload and URL-indexed payload miss rates

and byte-weighted payload miss rates for 1) the aggregate browser
cache population of over 37,000 clients, 2) a shared proxy cache
serving cacheless clients, 3) a proxy serving infinite URL-indexed
browser caches, and 4) a proxy serving infinite “frugal” browser
caches.2 Table 9 shows our results, including the percentage of re-
dundant payload retrievals made by an infinite URL-indexed cache.
The table separately reports cold and warm proxy simulation re-
sults; we used the first nine days of transactions in the sixteen-day
WebTV trace to warm the simulated proxy for the latter. We do not

2Our simulations ignore “no-store ” Cache-Control directives,
which forbid payloads from being cached (“no-cache ” merely
requires that the payload be re-validated on every access). Only
0.14% of WebTV replies carryno-store ; had our simulated
caches heeded these directives the impact on payload miss rates
would have been negligible.

report warm client results because at no time are all client caches
equally warm: At any given point in the overall trace, some clients
have issued many requests while others have issued few or none.

Our results show that conventional URL-indexed caching entails
large numbers of redundant transfers at both levels of the cache hi-
erarchy: nearly 10% of payload transfers to clients and over 20% of
payload transfers to a shared proxy are redundant. Even if redun-
dant proxy-to-browser payload transfers are eliminated by “frugal”
browser caches, nearly 12% of payload transfers to a URL-indexed
proxy would be redundant. Under 4% of the network traffic be-
tween the proxy and infinite-capacity conventional clients is redun-
dant, but over 13% of the traffic reaching a URL-indexed proxy
serving URL-indexed or cacheless clients is redundant.

The last two rows of Table 9 show simulated payload miss rates
and byte-weighted payload miss rates for an infinite-capacity shared
proxy serving the Compaq workload. For the warm-proxy results
we warm the simulated cache with the first 50 million transactions
and tabulate payload miss rates based only on subsequent trans-
actions. The Compaq results are roughly similar to the WebTV
results: Over 17% of a URL-indexed cache’s payload retrievals are
redundant, as is roughly 12% of origin-to-proxy traffic.

We have not yet extended our simulator to model finite caches
of various sizes. We expect, however, that the finite-cache results
would lie between our infinite-cache and cacheless results.

6. EXPLAINING REDUNDANT
TRANSFERS

The original motive for our investigation of aliasing was to ex-
plain the high rates of redundant proxy-to-browser payload trans-
fers previously reported in the WebTV system [28]. Actual client
payload miss rates are far higher than predicted by a simulated
client-cache model that included only new-payload misses and ca-
pacity payload misses.

Redundant transfers can result from at least three causes: 1) faulty
metadata supplied by origin servers or intermediaries, 2) inappro-
priate browser cache management, and 3) URL-indexed cache or-
ganization. It now appears that URL-indexed caching accounts
for a substantial fraction of redundant payload transfers to WebTV
clients, but not all of them. A thorough investigation of the remain-
ing possibilities is the subject of our ongoing research; we offer a
few tentative observations below.

Inappropriate metadata appears frequently in reply headers, and
sometimes takes surprising forms. For instance, in the WebTV
trace, different replies from the same server containing the same
payload sometimes containdifferententity tags. This curious phe-
nomenon can cause “If-None-Match ” revalidation attempts to
fail needlessly, resulting in redundant payload transfers. Other re-
searchers have explained this problem, which arises when large
server farms fail to harmonize entity tags across server replicas [55].

Mogul investigated erroneous HTTP timestamps in a large trace
and reported that 38% of responses contained impossibleDate
header values, and 0.3% had impossibleLast-Modified val-
ues [34]. Some timestamp errors might cause transparency fail-
ures; others might cause needless revalidations. Wills & Mikhailov
report a different kind of timestamp error: theLast-Modified
reply header of a resource sometimes changes even when the reply
body does not [55].

Anecdotal evidence suggests that Web design tools do not en-
courage content creators to associate reasonable expiration dates
with pages. This is unfortunate because many commercial sites
might incorporate business rules intoExpires headers, e.g., “re-
sources are only modified during business hours”; however, such
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Payload Miss Rates Byte-Weighted Payload Miss Rates
Simulated cache URL- new- % URL- new- %

indexed payload redundantindexed payload redundant
cold ∞-cache clients 29.45 26.57 9.78 54.02 52.00 3.75
cold proxy serving cacheless clients 14.35 11.22 21.8537.37 32.40 13.31

∞ URL-indexed clients 48.55 38.08 21.55 69.02 59.97 13.11
∞ frugal clients 47.83 42.21 11.75 69.27 62.30 10.06

warm proxy serving cacheless clients 12.93 9.93 23.1435.58 30.40 14.55
∞ URL-indexed clients 46.30 35.74 22.80 67.42 57.77 14.32
∞ frugal clients 45.48 40.09 11.85 67.79 60.24 11.14

cold Compaq proxy, caching clients 46.84 38.77 17.2467.49 59.53 11.79
warm Compaq proxy, caching clients 44.90 36.58 18.5465.50 56.56 13.65

Table 9: URL-indexed and new-payload miss rates and % of URL-indexed payload transfers that are redundant.

practices seem to be rare. Finally, origin servers are not the only
source of faulty metadata: for example, the popular Squid proxy
does not update cached object headers after revalidations [42].

The WebTV browser cache might go too far in its efforts to
avoid serving stale content to users. It truncates expiration dates
to a maximum of 24 hours, and itevictsexpired items rather than
re-validating them with conditional GET requests [11, 51]. The
Mozilla browser cache, by contrast, is designed to comply with the
letter and spirit of HTTP/1.1 [24, 39]. WebTV’s strategy prevents
transparency failures when expiration dates are overly optimistic
and might simplify implementation in memory-constrained client
devices, but it might also inflate client miss rates. In future work
we intend to quantify the relative contributions of faulty metadata
and browser caching policies to redundant transfers.

7. AVOIDING REDUNDANT TRANSFERS
In Section 5.1, we described an abstract model for a cache that

suffers only new-payload misses. Here we sketch how this could
be realized in a practical protocol design, as an extension to HTTP.
Our design avertsall redundant payload transfers, including but not
limited to those caused by aliasing. We call our design “Duplicate
Transfer Detection” (DTD). DTD can be applied both to client and
proxy caches.

First, consider the behavior of a traditional HTTP cache. Such a
cache is URL-indexed: if the cache finds that it does not currently
hold an entry for a requested URLU , this is a cache miss. On a
miss, the cache issues or forwards a request for the URL towards
the origin server, which would normally send a response contain-
ing payloadP. If the cache holds an expired entry forU, it may
send a “conditional” request, and if the server’s view of the re-
source has not changed, it may return a “Not Modified” response
without a payload. Real HTTP caches differ from the abstract
URL-indexed model defined in Section 5.1 because they implement
HTTP’s cache-consistency mechanisms, and so may suffer redun-
dant transfers resulting from inappropriate metadata (see Section 6)
as well as from aliasing.

Now consider an idealized, infinite cache that retains in storage
every payload it has ever received, even those that a traditional
HTTP cache would not treat as valid cache entries. A finite, URL-
indexed cache differs from this idealization because it implements
both an update policy (it only stores the most recent payload re-
ceived for any given URL), and a replacement policy (it only stores
a finite set of entries, selected for maximum expected value).

The concept behind Duplicate Transfer Detection is quite sim-
ple: If our idealized cache can determine, before receiving the
payload, whether it had ever previously receivedP, then we can
avoid transferring that payload. Such a cache would experience

only new-payload misses and would never suffer redundant pay-
load transfers. A finite-cache realization of DTD would, of course,
also suffer capacity misses.

How does the cache know whether it has received a payloadP
before the server sends the entire response? DTD follows the model
of the abstract “frugal” cache described in Section 5.1. The cache
maintains one set of cache entries but two lookup tables: one in-
dexed by URL, and one indexed by the digest of each stored pay-
load. If a DTD cache finds no fresh entry under the requested URL
U , it forwards a (possibly conditional) request to the origin server.
If the server replies with a payload, it first sends the digestD of
the payload, and the cache checks for a stored entry with a match-
ing digest value. Upon a digest match, the cache can signal the
server not to send the payload (although the server must still send
the HTTP message headers, which might be different). Thus, while
DTD does not avoid transferring the request and response message
headers, it can avoid any redundant payload transfer. We say that
a “DTD hit” occurs when DTD prevents a payload transfer that
would have occurred in a conventional URL-indexed cache.

An idealized, infinite DTD cache storesall payloads that it has
received. In particular, it does not delete a payloadP from stor-
age simply because it has received a different payloadP0 for the
same URLU . A realistic, finite DTD cache will eventually delete
payloads from its storage, based on some replacement policy. A
DTD cache might benefit from retaining old cache entries that other
cache replacement and update algorithms would discard, speculat-
ing that such an entry will yield a future DTD hit.

7.1 Practical Issues for DTD
Practical implementation of DTD requires the solution of sev-

eral problems. We mention a few of the problems here, but defer
their solutions, and discussion of how to define DTD as a simple,
compatible extension to HTTP, to a future paper.

When a client detects a DTD hit, how does it avoid the payload
transfer? In one approach, the server sends the response headers
(including the digest) but defers sending the payload until the client
sends an explicit “proceed” request. In an alternative approach, the
server sends the payload immediately, but stops if the client sends
an “abort” message. (Note that HTTP would have to be extended
to support either of these mechanisms.) The “proceed” model im-
poses an extra round-trip time (RTT) on every new-payload or ca-
pacity miss, but never sends any aliased payload bytes. (A more in-
tricate form of the “proceed” model could amortize this delay over
several misses.) The “abort” model does not impose additional de-
lays, but the abort message may fail to reach the server in time to
do any good. Choosing the right tradeoff will require experimental
work.
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The choice of digest algorithm also requires some tradeoffs. The
algorithm must resist accidental or malicious collisions, but it must
also not be expensive to compute, nor should the digest representa-
tion consume too many header bytes. A cryptographic hash algo-
rithm such as SHA-1 [41] might have the right properties.

7.2 Similar Proposals
DTD is an application-level analogue of the router-level approach

proposed by Santos & Wetherall [46] and Spring & Wetherall [50].
The two approaches are in some sense complementary, because
each can avoid some redundant data transfers eliminated by the
other. For example, the router-based approach can eliminate trans-
fers of common prefixes of slightly different payloads, while DTD
does not suffer from the re-packetization potentially caused by pipe-
lining in HTTP. The approaches also differ in adoption dynam-
ics: the router-level technique is easier to deploy for an organiza-
tion that controls network infrastructure, while the application-level
technique may be preferable for a single organization that controls
two levels of a cache hierarchy (e.g., the client and proxy caches of
AOL or WebTV).

8. SUMMARY
Our analysis of a large, detailed, recent Web client trace re-

veals that aliasing occurs frequently in Web transactions. Con-
ventional URL-indexed caches are susceptible to misses caused
by aliasing, and in our simulations such caches generate many re-
dundant payload transfers: roughly 10% of payload transfers to
infinite-capacity browser caches and over 20% of payload trans-
fers to an infinite shared proxy serving either cacheless or infinite
clients are redundant.

Aliasing is not the only cause of redundant payload transfers, so
we describe a simple and completely general way to eliminate all
redundant transfers, regardless of cause: Duplicate Transfer De-
tection. In future work we intend to quantify precisely the rela-
tive contributions of aliasing, faulty metadata, and inefficient cache
management to the problem of redundant payload transfers, and de-
scribe in greater detail the latency and bandwidth savings achiev-
able with DTD.
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