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Abstract. The problem of allocating discrete computational resources motivates
interest in general multi-unit combinatorial exchanges. This paper considers the
problem of computing optimal (surplus-maximizing) allocations, assuming unre-
stricted quasi-linear preferences. We present a solver whose pseudo-polynomial
time and memory requirements are linear in three of four natural measures of
problem size: number of agents, length of bids, and units of each resource. In
applications where the number of resource types is inherently a small constant,
e.g., computational resource allocation, such a solver offers advantages over more
elaborate approaches developed for high-dimensional problems.

We also describe the deep connection between auction winner determination
problems and generalized knapsack problems, which has received remarkably lit-
tle attention in the literature. This connection leads directly to pseudo-polynomial
solvers, informs solver benchmarking by exploiting extensive research on hard
knapsack problems, and allows E-Commerce research to leverage a large and
mature body of literature.

1 Introduction

Recent years have witnessed an explosion of interest in combinatorial auctions (CAs),
which permit agents to define utility over bundles of different types of goods. Although
CAs are applicable to a wide range of allocation problems, the U.S. Federal Communi-
cations Commission’s spectrum allocation problem largely motivated the 1990s surge
of CA research [1,2]. Special properties of spectrum auctions—particularly the restric-
tion that only a single unit of each type of good is available—received much attention in
E-commerce research literature. An important measure of problem size in a single-unit
CA is the number of good types, and for this measure the winner determination problem
(WDP) is NP-hard by reduction from the weighted set packing problem [3].

An unfortunate consequence of excessive attention to single-unit CAs has been ex-
cessive pessimism regarding efficient and exact winner determination in more general
problems. The few papers that have considered multi-unit CAs (MUCAs) report that
the WDP is NP hard when problem size is measured by number of good types [1, 4, 5].
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Other natural measures, e.g., number of available units of each good, number of agents,
and the length of bids, receive far less attention.

This paper follows a very different trajectory from practical motivation to conclu-
sions regarding the computational complexity of CA WDPs. We begin with the problem
of allocating resources in large computing centers. The number of resource types in this
problem is a small constant, whereas the number of units of each resource is large and
variable. The optimal allocation problem is a generalized multi-dimensional knapsack
problem (MDKP): allocating a bundle of goods to an agent reduces the pool of avail-
able goods, just as placing an item in a container with multiple capacity constraints
(e.g., weight, volume) reduces its remaining capacity along each dimension.

The deep connection between WDPs and KPs leads to pseudo-polynomial exact al-
gorithms for problems of fixed dimensionality. Very simple exact solvers exist whose
time and memory requirements are linear in the number of agents, length of bids,
and number of units of each resource. Such solvers are entirely practical for low-
dimensional problem instances (i.e., few resource types) and are an attractive default
solution method whenever their computational costs are not prohibitive. In all cases
they provide a well-understood baseline for comparison with more elaborate methods.

Straightforward MUCA WDP solvers inspired by the auction-knapsack connec-
tion invite more detailed, more balanced, and more nuanced analyses than are typ-
ically performed on complex heuristic solvers designed for high-dimensional prob-
lems. Knapsack-based WDP solvers furthermore support very general combinatorial
exchanges with essentially no restrictions on the expression of agent utility functions.
The connection between CA WDPs and generalized KPs allows us to retain much of
the flexibility and generality of integer programming [6] while exploiting the special
structure of KPs to obtain simple and efficient exact solvers. In special cases such as
single-good multi-unit auctions, textbook uni-dimensional KP solvers compare rather
well with specialized WDP algorithms. Finally, WDP benchmarks can draw upon ex-
tensive Operations Research literature on hard KP instances.

The boundaries of the present investigation are as follows: We consider only one-
shot sealed-bid auctions, an important subset of auction types in a comprehensive tax-
onomy [7]. We consider only discrete allocation (integral quantities of goods). Our
results apply to the allocator of proper economic mechanisms such as the Generalized
Vickrey Auction (GVA) [8] or Vickrey-Clarke-Groves (VCG) mechanisms [9], but we
do not consider incentive issues surrounding auctions. Finally, although a wide range
of approximation schemes for KPs have been proposed, we restrict attention to exact
methods. This is appropriate in light of recent results on the necessity of exact solvers
for incentive-compatible mechanisms [10–13]. A longer version of this paper [14] in-
cludes material omitted due to space limitations.

The remainder of this paper is structured as follows: Section 2 motivates interest in
low-dimensional MUCAs with a discussion of resource allocation in large computing
centers. Section 3 formulates our general allocation problem and explains its relation
to auction winner determination. Section 4 presents a general solver for multi-unit CAs
with unrestricted preference expression and analyzes its computational complexity. Sec-
tion 4.2 discusses hard KP instances, Section 5 reviews related work, and Section 6
concludes with a discussion.



2 Motivation: Data Center Allocation

Large tightly-coupled computers remain popular for enterprise computing, and today
entire data centers comprising large numbers of loosely-coupled hosts are offered as
commercial products [15]. Resource allocation in both contexts has several properties
that recommend auction-mediated negotiation, and knapsack-based optimal allocators
are ideal WDP solvers for these contexts.

The number of abstract resource types in computational allocation problems is in-
herently a small constant, because only a few fundamental operations can be performed
on data: data can be manipulated, stored, and transported. Corresponding resource
types—processing, storage, and bandwidth—often suffice in models of computational
resource allocation [16]. For reasons of fault isolation, security, and performance iso-
lation, most computing resources are allocated in integral quantities; examples include
CPUs, switch ports, and logical devices (LDEVs) in consolidated storage arrays. By
contrast, the number of units of each resource is large and expands with user needs.

Data centers are partitioned so that an application’s performance depends only upon
the resources it receives; in auction contexts this property is sometimes called “no exter-
nalities” [17]. Multi-tiered applications for large computing environments are horizon-
tally scalable by design, i.e., they exploit variable quantities of resources at each tier.
Application performance exhibits both complementarities and substitutabilities across
resource types. For example, one application may require minimal quantities of both
memory and bandwidth in order to perform acceptably; another may compensate for
lack of bandwidth by exploiting an additional CPU for data compression. The utility
that accrues to an application is a complex function of the bundle of resources it re-
ceives; this property recommends combinatorial auctions.

While the number of applications simultaneously sharing an enterprise computing
center may be large, the number of self-interested agents among whom resources are al-
located may be small. Agents might correspond to departments or projects within a firm,
or to firms within a consortium that jointly owns a data center. If the number of agents
is so large that each agent’s potential influence on allocative outcomes is negligible,
competitive (i.e., non-strategic) behavior may be a reasonable normative assumption.
However strategic behavior is to be expected if few agents are involved. Incentive-
compatible mechanisms (in which truth-telling is a dominant strategy for agents) are
therefore desirable, even for allocation within a hierarchical organization [18]. Given
that the incentive properties of GVA/VCG mechanisms sometimes require exact WDP
solvers [10–13], we prefer exact solvers to approximate ones where possible.

Computational resource allocation can be formalized as a generalized knapsack
problem [19]; Section 3 describes a suitable formulation. Our straightforward solver,
presented in Section 4, is appropriate to the special properties of data-center allocation.
Its computational complexity is exponential in the number of resource types but is lin-
ear in the number of available units of each resource and in all other natural measures
of problem size. A simple implementation of the solver produces, as a side effect, a
table describing the aggregate utility of any subset of the data center’s resource pool,
thereby providing a wealth of information about the marginal value of various resource
types. This information might be useful for purposes other than allocation, e.g., capacity
planning.
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Fig. 1. 2-D MDMCK. Left: resource bundle. Center: utility functions. Right: optimal allocation.

3 Problem Formulation

We are given R resource types and T agents. At most Nr indivisible units of resource
type r are available, r � 1 ��������� R. Each agent’s utility function is represented by defining
utility over a list of resource bundles; the list may be arbitrarily long, and may therefore
may represent any utility function. If agent utility naturally takes a more compact form
than a list of (bundle, utility) pairs, the former may easily be translated into the latter.
The length of utility functions when defined explicitly over bundles is not prohibitive in
low-dimensional cases (i.e., where the number of resource types R is a small constant).

Our goal is to maximize aggregate utility by choosing exactly one bundle from each
list, subject to resource scarcity. Let Bt denote the number of bundles in agent t’s util-
ity function, and let qtb � �

q1tb ��������� qRtb � and utb respectively denote the quantities of
resources in bundles and the utility of bundles, b � 1 ��������� Bt . Binary decision variable
xtb � 1 if agent t receives the bth resource bundle on its list, zero otherwise. Formally,
our “multi-dimensional multiple-choice knapsack problem” (MDMCK) is the follow-
ing integer program:

maximize ∑T
t � 1 ∑Bt

b � 1 xtbutb (1)

subject to ∑Bt
b � 1 xtb � 1 t � 1 ��������� T (2)

∑T
t � 1 ∑Bt

b � 1 xtbqrtb 	 Nr r � 1 ��������� R (3)

The inequality in Equation 3 permits unallocated goods; to forbid them we simply re-
place it with equality. In the latter case we can express arbitrary disposal costs of un-
allocated goods via an additional agent utility function. The solver of Section 4 takes a
different approach: it accepts an explicit disposal cost function as an input.

MDMCK includes classic knapsack problems as special cases [19]. Extensive liter-
ature exists on these special cases, but relatively little on MDMCK itself. Kellerer et al.
devote roughly three pages to MDMCK and identify approximate heuristic algorithms
dating back to 1997 [20]. They report that to the best of their knowledge no exact al-
gorithm for MDMCK has ever been published. In fact, Tennenholtz briefly sketched
an exact solver suitable for low-dimensional MDMCK instances, without analyzing its
complexity or connecting the WDP to generalized KPs [21].

Two-resource MDMCK admits simple graphical illustration (Figure 1). A bun-
dle/utility pair in a utility function is represented as a rectangle labeled with agent
ID (left). Utility functions are collections of such rectangles (center). The solution is
illustrated at right: a bundle is chosen from each utility function such that utility is
maximized while total resource usage does not exceed any capacity dimension.



3.1 Application to Auctions

In an auction setting, we refer to an agent’s list of
�
qtb � utb � pairs as its bid. We shall

ignore the relationship between an agent’s reported and true utility functions except to
note that they may differ and that our allocator receives the former. The constraint of
Equation 3 ensures that each agent receives exactly one bundle defined by its bid. In
other words, we permit “XOR bids,” which in turn permit the expression of arbitrary
preferences [17].

The MDMCK formulation requires that each agent’s utility depends only on the
bundle of resources the agent itself receives (“no externalities” [17]). No other restric-
tions on agent preferences are inherent. For example, MDMCK allows goods to be
“bads,” i.e., free disposal is not required. Furthermore agent utility need not be “nor-
malized” in the sense that no change in goods owned implies no change in utility.

Some prior work on single-good-type/multi-unit auctions has restricted the form of
bids, e.g., demand must be monotonic in per-unit price [22] or atomic bids are forbid-
den [23]; monotonicity restrictions have also appeared in multi-good CA analyses [24].
In the single-good-type case, divisibility is required for existence of a uniform price that
maximizes surplus according to restricted-form bids (which might not represent actual
agent preferences). Uniform prices are sometimes desirable, e.g., for reasons of per-
ceived fairness. The real motivation for bid restrictions, however, has sometimes been
to facilitate efficient WDP algorithms [25].

Computational issues aside, the greater generality and flexibility of a MDMCK for-
mulation makes it attractive if uniform prices are not required. The components of re-
source vectors q and utilities u may assume both negative and positive values, allowing
agents to express willingness to engage in complex atomic (all-or-nothing) transac-
tions. Thus the MDMCK formulation supports very general combinatorial exchanges,
e.g., the dozen CA variants considered in Ref. [26].

3.2 Auction and KP Taxonomies

CA WDPs are often linked to set packing, even in the multi-unit case [5]. Connec-
tions with generalized knapsack problems, however, seem more natural and more use-
ful for several reasons. First, KPs are more widely known among nonspecialists, e.g.,
implementors in industry; they are intuitive, memorable, and invite graphical interpre-
tation (Figure 1). KPs are also far more widely studied. Most importantly, KPs admit
pseudo-polynomial solution under restrictions that are sometimes acceptable in prac-
tice. Whereas connections with set packing have led to the pessimistic view that “CA
WDPs are NP hard,” the knapsack connection encourages cautious optimism.

Consider three aspects of sealed-bid auctions and their knapsack counterparts:

1. number of types of goods in an auction / dimensionality of a KP;
2. number of units of each good / capacity of KP container in each dimension; and
3. number of bundles in bids / the “multiple-choice” aspect of KP.

In each case the characteristic may be single or multiple, e.g., an auction may involve
multiple units of a single good type, or single units of multiple good types. Table 1
summarizes the seven meaningful combinations of these possibilities. When KP items



go
od

typ
es

un
its

bu
nd

les

common name / examples winner-determination problem

S S S first price find max
S M S double auctions, single-quantity bids 0-1 KP; subset-sum if #units ∝ utility
S M M double auctions, XOR bids multiple-choice KP (MCKP)
M S S “combinatorial auctions” weighted set packing (WSP) [3]
M S M single-unit CA, XOR bids convert to WSP via “dummy goods”
M M S multi-unit CA, single-bundle bids multi-dimensional KP (MDKP)
M M M multi-unit CA, XOR bids [4] MDMCK [19]

Table 1. Auction types and winner-determination problems (S=single, M=multiple).

are partitioned into disjoint sets and we must choose exactly one item from each set, we
say that a “multiple-choice” constraint applies; this corresponds to an XOR constraint
across elements of a compound bid. The most general KP shown is MDMCK, which
corresponds to multi-unit CAs with arbitrary XOR bids (MMM in Table 1).

It is straightforward to convert an instance of the MSM problem to an MSS instance
by adding “dummy goods” to enforce multiple-choice/XOR constraints: introduce an
extra good type for each agent, one unit of which is included in each of the agent’s
bundles and of which exactly one unit is available [4]. MMM instances can be converted
to MMS instances in the same way. This transformation increases the dimensionality of
problem instances, which may increase computational burdens for some solvers.

Several of the correspondences in Table 1 have been noted previously. Kothari et al.
mention in a footnote that their single-good multi-unit WDP is similar “in spirit” to
MCKP, citing a 1970s reference [22]. However they quickly dismiss the connection on
grounds that MCKP leads to an infeasible formulation. In fact, simple MCKP solvers
in modern texts scale rather well with problem size (see Section 5.2), and efficient spe-
cialized solvers are the subject of sophisticated recent research [27]. Holte observes that
Operations Researchers have long investigated MDKPs that are substantively identical
to multi-unit CA WDPs [28], contrary to claims in recent E-commerce literature that
MUCA WDPs were never before studied [4]. Years later, however, MUCA WDP re-
search that cites Holte does not mention the connection he made [29]. A very recent
text on KPs discusses Holte’s insight in considerable detail but does not make the con-
nection between MDMCK and multi-unit CAs with XOR bids; instead it suggests the
use of dummy goods to enforce XOR constraints for a MDKP solver [20]. Overall,
we find remarkably few references to knapsack problems in recent literature on auction
WDPs, and nothing approaching a comprehensive treatment of the relationship between
the two in the E-commerce literature. Section 5 considers in greater detail the state of
the E-commerce literature in this regard.

4 Dynamic Programming Solver

This section presents a simple dynamic programming (DP) algorithm for MDMCK; it
generalizes multi-dimensional and multiple-choice KP solvers [20, 30].



Let N � �
N1 ��������� NR � denote the multi-dimensional “size” of our resource pool,

and let 0 denote the R-vector consisting entirely of zeros. We say that a � b if every
component of vector a is not less than the corresponding component of b.

Given an integer t̂ and a resource pool size n, we define Ft̂
�
n � to be the optimal

value of our objective function (Equation 1) for the sub-instance of MDMCK involving
only agents 1 ��������� t̂ and a resource pool of size n. F0

�
n � defines the utility of unallo-

cated resources for feasible “leftovers” n � 0 and defines utility as � ∞ for infeasible
allocations. Similarly we define At̂

�
n � as the bundle assigned to agent t̂ by the optimal

assignment for the sub-instance defined by t̂ and n. F and A may be defined recursively:

Ft̂
�
n � �

��� �� � ∞ t̂ � 0 ��� �
n � 0 �

D
�
n � t̂ � 0 � n � 0

max
b � Bt̂ 	 Ft̂ 
 1

�
n � qt̂b ��� ut̂b  1 	 t̂ 	 T

(4)

At̂
�
n � � arg max

b � Bt̂ 	 Ft̂ 
 1
�
n � qt̂b ��� ut̂b  1 	 t̂ 	 T (5)

where Bt̂ � 	 1 ��������� Bt̂  and D expresses the (dis)utility of unallocated resources. To
permit unallocated goods at no cost we simply set D � 0; to forbid unallocated goods we
set D ��� ∞. FT

�
N � is the value of an optimal solution, and the corresponding choices

of bundles may be recovered as AT
�
N � , AT 
 1

�
N � qTAT � N � � , etc.; conversion to decision

variables xtb of Equations 1 through 3 is trivial.
We may evaluate the dynamic program in at least two ways: by constructing tables

corresponding to F
��� � and A

��� � in bottom-up fashion, or by recursively evaluating FT
�
N �

and AT
�
N � . The former strategy yields a full FT

�
n � table containing information about

the marginal utilities of every resource type for every resource pool size n : 0 	 n 	
N; this may be useful for purposes other than allocation, e.g., capacity planning. A
disadvantage of the bottom-up approach is that it achieves worst-case performance on
all inputs. Top-down evaluation may save time on some inputs by evaluating F

��� � and
A
��� � for fewer

�
t̂ � n � pairs, and may permit more space-efficient representation of the

tables than naı̈ve arrays. Top-down evaluation admits a variety of optimizations and
elaborations, including lower-bound heuristics and pruning via upper bounds; with such
embellishments it resembles branch-and-bound (B&B) search. A no-frills top-down C
implementation of our solver runs to several dozen lines of code, comparable to succinct
uni-dimensional KP solvers [31].

4.1 Computational Complexity

The worst-case time and memory complexity of a straightforward implementation of
the the dynamic program are easy to analyze. We assume a bottom-up implementation
that stores F

��� � and A
��� � values in ordinary arrays. We assume that the coefficients

describing a problem instance are integers from a bounded range, and without loss
of generality we assume that all coefficients are non-negative. (A natural expression
of a fully general two-sided exchange WDP might be an instance of MDMCK with
negative coefficients, but such an instance can be efficiently transformed to one with
non-negative coefficients in a simple pre-processing step without altering the optimal
values of decision variables.)
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The dynamic program requires storage proportional to T ∏R
r � 1 Nr. Evaluating Equa-

tions 4 and 5 requires time proportional to R ∑T
t � 1

�
Bt ∏R

r � 1 Nr � where the R term is due
to the R-dimensional vector subtraction in the recursive calls to F . If Nr � N for each
resource, and if each agent defines utility over B resource bundles, then the storage re-
quirement is O

�
T NR � and the time requirement is O

�
RT BNR � . If each agent defines

utility over all NR possible resource bundles (the case of rational preferences) then the
time requirement becomes O

�
RTN2R � .

The classic 0-1 and integer knapsack problems are NP-hard [32, 33]. MDMCK in-
cludes these as special cases, and therefore it too is NP-hard. However knapsack prob-
lems are not NP-hard in the strong sense, i.e., they admit pseudo-polynomial solution if
dimensionality is fixed. See Papadimitriou & Steiglitz for a good discussion of pseudo-
polynomial complexity analysis applied to classic KPs [33]. If we need not support
problem instances with enormous coefficients, pseudo-polynomial bounds are the most
natural and insightful description of algorithmic complexity. Restricting utb, qrtb, and
Nr to the length of modern machine words, e.g., 64 bits, is unlikely to be problematic
in practical allocation problems.

For classic uni-dimensional problems, branch-and-bound algorithms are often fa-
vored over DP except for hard problem instances, where DP usually performs bet-
ter [30, page 36]. For high-dimensional problems the computational costs of DP are
prohibitive and the best method may be general integer programming (IP). Modern IP
solvers support convenient and rapid solution of a wide range of WDPs [6] and compute
approximate solutions to large MDMCK instances very rapidly [19].

4.2 Hard Knapsack Problems

Real-world CA WDP instances are not available for solver benchmarking, so we must
rely on synthetic benchmarks. A thorough evaluation of any WDP solver should include
instances intended to mimic typical inputs, such as those generated by CATS [34], as
well as hard instances to expose worst-case behavior. The connection between WDPs
and KPs allows us to exploit many years of research on hard KP instances for WDP
solver evaluation.

There are two ways to construct hard instances of classic uni-dimensional knapsack
problems. The first is to make the coefficients enormous; Chvátal describes how large
they must be in order to foil a range of common solution methods [35]. We shall con-
tinue to assume that coefficients are bounded and therefore focus on the second method,
which involves the relationship between bundle size and utility.

The size/utility relationship is easy to visualize in the uni-dimensional case. Fig-
ure 2, after Pisinger [36], illustrates four possibilities; Martello et al. and Kellerer et al.



describe others [20,37]. Strongly-correlated instances are among the hardest for today’s
best KP solvers and are the subject of ongoing research [37,38]. An extended version of
this paper describes how to construct generalized multi-dimensional strongly-correlated
instances [14].

It is interesting to note that early empirical evaluations of KP solvers focused exces-
sively on “easy” problem instances, specifically the uncorrelated and weakly-correlated
cases of Figure 2; only later did attention within the OR literature shift to characterizing
hard instances and using them in solver benchmarks [37]. A similar pattern is evident
in evaluations of WDP solvers many years later, as Andersson et al. have noted [6];
see also Section 5.2. It is reasonable to speculate that mis-steps in WDP benchmark-
ing might have been avoided if connections between WDPs and KPs had been more
prominent in E-commerce research.

5 Related Work

(This section has been reduced due to space limitations; see [14] for the full version.)
The literature on knapsack problems is vast and growing. An excellent text by Martello
& Toth [30] is now out of print, but a very recent book by Kellerer et al. provides
updated and expanded coverage, including multi-dimensional problems and MDMCK
itself [20]. Martello et al. review recent research on exact solutions for large hard in-
stances of 0-1 KP [37]. Pisinger summarizes the state of the art in uni-dimensional KP
research c. 1995 [36], much of which is directly applicable to subsequent research on
single-good-type/multi-unit WDPs [22, 23].

5.1 WDP-KP Connections

An extensive literature search revealed little mention of the connection between auction
WDPs and KPs and nothing approaching a comprehensive treatment. Recent surveys
on combinatorial auctions and auction theory [1–3, 26, 39, 40] do not discuss knapsack
problems. The string “knap” appears in exactly five papers among all past proceedings
of the ACM Conference on E-Commerce (EC). Two are unrelated to our interests, two
mention in passing a relationship between special cases of WDP and KPs [5, 22], and
one uses reduction from KP to prove NP-hardness [24]. Occasionally papers in other
fora note that single-good-type auction WDPs are KPs, usually to establish intractability
and sometimes to note the existence of pseudo-polynomial algorithms [41].

In several cases E-commerce research has missed opportunities to build upon rele-
vant prior work—and failed to acknowledge it—perhaps because the WDP-KP connec-
tion has been overlooked. For instance, the fact that multi-dimensional KPs do not ad-
mit fully-polynomial approximation, even in the two-dimensional case, has been known
since 1979 [20, p. 252]. Twenty years later, the question of whether CA WDPs admit
approximation was described as “open” [42, p. 10].

Queries to six literature search engines for “auction,” “knapsack,” and “auction
AND knapsack” yielded results summarized in Table 2. In all cases the conjunctive
query yielded far fewer hits than the two basic queries; none of the “auction AND



Source Total docs “auction” “knapsack” both
Springer Link ? 152 103 zero
IEEE Xplore 990,765 313 150 zero
ACM Digital Library 125,779 802 427 10
CiteSeer ? 1,686 922 12
Science Citation Index 33,117,604 2,379 989 zero
Elsevier Science Direct “over 4M” 5,143 2,084 11

Table 2. Summary of keyword searches, December 2003 and January 2004.

knapsack” papers contained a detailed or systematic treatment of the WDP-KP connec-
tion. A few papers mention in passing a deep relationship between WDPs and KPs and
a handful casually state that the connection is well known, without saying by whom;
see [14] for citations. Somewhat ironically, the only detailed discussion of the connec-
tion between combinatorial auction WDPs and generalized KPs of which we are aware
occurs in a very recent text written primarily by Operations Researchers with little in-
terest in E-commerce [20, pp. 478–482].

In summary, the WDP-KP relationship is neither noted nor exploited widely in E-
commerce research at the intersection of computer science and auction theory. The re-
mainder of this section reviews selected literature on multi-unit auction WDPs, showing
how the KP literature can enhance several of these contributions.

5.2 Multi-Unit Auction WDPs

Kothari et al. consider single-good-type multi-unit auctions and introduce a fully-poly-
nomial algorithm to compute approximately surplus-maximizing allocations [22]. Bids
are restricted in several ways: they are divisible, the utility they express is monotonic in
per-unit price, and their length is bounded. This paper mentions in passing that its allo-
cation problem can be solved by a multiple-choice KP solver and that fully-polynomial
approximation algorithms exist for MCKP. However it offers no detailed comparison
with earlier approximate MCKP solvers or with simple exact algorithms.

A textbook DP algorithm for MCKP [30, page 78] applied to the single-good multi-
unit WDP supports a completely general two-sided exchange with unrestricted bids.
In the special case of a forward auction with N units for sale and T agents whose
bids define utility over all possible quantities 0 ��������� N, the (pseudo-polynomial) time
and memory requirements of this very simple exact method are respectively O

�
TN2 �

and O
�
T N � . Similar computational properties apply to the special case of a reverse

auction; more sophisticated algorithms with improved asymptotic bounds exist [20].
The algorithm of Kothari et al. computes a

�
1 � ε � approximation for the restricted-

bid problem and requires O
�
T 3 � ε � time. A detailed comparison with the textbook DP

solver would place the new contribution in better perspective and would illuminate
the tradeoffs between computational complexity and generality that are available to us.
Discussion of the need for fully-polynomial (vs. pseudo-polynomial) algorithms would
help to motivate the new method.



Bassamboo et al. consider online bid processing in single-good-type multi-unit auc-
tions with indivisible (all-or-nothing) single-quantity bids [43]. They describe a remark-
ably storage-efficient algorithm for maintaining a small set of potentially winning bids
prior to clearing; bids that cannot potentially win at the time they arrive are rejected,
permitting the bidder to adjust her bid if desired. These authors note that literature on
online knapsack problems exists, but does not precisely match the auction rules they
consider.

Tennenholtz notes that the multi-good-type/multi-unit WDP is “tractable” when the
number of types of goods is fixed, and describes a longest-paths dynamic programming
algorithm in the context of a two-good-type example [21]. It is not clear whether the
intended meaning is that polynomial or pseudo-polynomial solutions exist (the former
cannot be true, because this WDP includes NP-hard problems MCKP and 0-1 KP as
special cases). Neither knapsack problems nor their close relationship with longest-path
problems [44, p. 100] are mentioned, nor are time and memory complexity analyses
presented. A later version of the paper omits the DP algorithm entirely [45].

WDP solver research for multi-good-type/multi-unit CAs has emphasized heuristic
branch-and-bound algorithms [4, 5]. Such approaches are entirely reasonable, partic-
ularly for high-dimensional problems in which DP solvers are likely to be infeasible.
Comparisons with DP-based KP solvers could enhance B&B investigations by encour-
aging more detailed analyses of worst-case time and memory requirements in terms
of all measures of problem size. B&B research to date has emphasized the number
of good types, sometimes without detailed quantitative analysis of computational re-
quirements [4]. Furthermore, benchmarks for multi-unit CAs could draw upon exten-
sive research on hard KP instances. Empirical evaluations of MUCA WDP solvers to
date have employed similar input synthesis procedures [4, 5, 26], which produce multi-
dimensional variants of the uncorrelated and weakly correlated cases of Figure 2; for
uni-dimensional KPs, these are not hard instances.

Finally, awareness of the WDP-KP connection would support more succinct and
more precise descriptions of novel WDP algorithms. Leyton-Brown et al., for instance,
introduce a “polynomial” subroutine for pre-processing bids for a single good type
(“singletons”) [4,29]. In fact, this subroutine implements the classic pseudo-polynomial
DP algorithm for the NP-hard 0-1 knapsack problem.

6 Discussion

This paper has compared two very different trajectories of CA research, summarized
in Table 3. Motivated largely by FCC spectrum auctions, most CA research over the
past decade has taken the number of types of goods as a measure of problem size while
fixing the number of units of each good at 1. This paper begins with the problem of
computational resource allocation in modern data centers, which involves few types
of goods but many units of each. Whereas comparisons with set packing have led to
the conclusion that the WDP is intractable in the single-unit/high-dimensional case,
different natural measures of problem size lead us to conclude that the WDP admits
pseudo-polynomial solution in the multi-unit/low-dimensional case. Realization that



single-unit/high-dimensional multi-unit/low-dimensional

practical motivation spectrum auctions computational resource allocation

# good types variable, high low, fixed

# units/type fixed at 1 variable, high

WDP weighted set packing generalized knapsack problem

conventional wisdom “WDP is NP-hard,” rational linear solvers available,
preferences infeasible rational preferences okay

solver research heuristic B&B, restricted prefs exact DP, any preferences

OR leverage limited, late extensive, early

Table 3. Trajectories of CA research.

WDPs are special cases of MDMCK leads to a very general solver whose simplicity
invites thorough analysis.

By recognizing connections between knapsack problems and winner determination,
we bring a wealth of Operations Research knowledge to bear on problems central to
multi-agent resource allocation. This eliminates duplication of effort by allowing E-
commerce research to focus on typical WDP instances while leaving to the OR com-
munity the task of characterizing hard cases. It also allows WDP solver research to
focus on novel methods only when real-world instances offer optimization opportuni-
ties that are not exploited by general-purpose KP solvers.

Straightforward dynamic-programming KP solvers offer several attractive proper-
ties, including analytic tractability and simplicity of implementation. These in turn
reduce errors, which have been discovered in elaborate B&B solvers after publica-
tion [46]. If nothing else, DP provides a well-understood baseline for comparisons of
more sophisticated methods and highlights tradeoffs between algorithmic intricacy and
computational efficiency. Furthermore for hard instances of low-dimensional problems,
DP may simply outperform alternatives. In the special case of single-good/multi-unit
auctions, textbook KP solvers provide exact solutions for unrestricted inputs and scale
remarkably well with problem size; at the very least, they merit detailed comparison
with approximation algorithms for restricted problems.

We have shown that a practical multi-agent allocation problem involving computa-
tional resources lends itself readily to formulation as a generalized knapsack problem,
and that for this low-dimensional problem an extremely simple DP solver scales to in-
stances of non-trivial size. In future work we intend to compare the performance of DP,
B&B, and integer program solvers on a range of synthetic MDMCK instances and, if
possible, to characterize analytically the instances best suited to each solution method.
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