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Abstract

This paper describes two approaches to the problem of determining exact optimal storage capacity for Web caches based on expected
workload and the monetary costs of memory and bandwidth.

The first approach considers memory/bandwidth tradeoffs in an idealized model. It assumes that workload consists of independent
references drawn from a known distribution (e.g. Zipf) and caches employ a “Perfect LFU” removal policy. We derive conditions under
which a shared higher-level “parent” cache serving several lower-level “child” caches is economically viable. We also characterize
circumstances under which globally optimal storage capacities in such a hierarchy can be determined through adecentralizedcomputation
in which caches individually minimize local monetary expenditures.

The second approach is applicable if the workload at a single cache is represented by an explicit request sequence and the cache employs
any one of a large family of removal policies that includes LRU. The miss costs associated with individual requests may be completely
arbitrary, and the cost of cache storage need only be monotonic. We use an efficient single-pass simulation algorithm to compute aggregate
miss cost as a function of cache size inO(M log M) time andO(M) memory, whereM is the number of requests in the workload. Because it
allows us to compute arbitrarily weighted hit rates atall cache sizes with modest computational resources, this algorithm permits us to
measure cache performance with no loss of precision.

The same basic algorithm also permits us to computecompletestack distance transformations inO(M log N) time andO(N) memory,
whereN is the number of unique items referenced. Experiments on very large reference streams show that our algorithm computes stack
distances more quickly than several alternative approaches, demonstrating that it is a useful tool for measuring temporal locality in cache
workloads.q 2001 Elsevier Science B.V. All rights reserved.

Keywords: Web caches; Memory; Bandwidth; Capacity planning; LRV stack distance; Stack algorithms; Optimisation; Economic approaches; Decentralized
algorithms

1. Introduction

In the Internet server capacity planning literature, mone-
tary cost is often regarded as the objective function in a
constrained optimization problem:

The purpose of capacity planning for Internet services is
to enable deployment which supports transaction
throughput targets while remaining within acceptable
response time bounds and minimizing the total dollar
cost of ownership of the host platform [33].

Web cachecapacity planning must weigh the relative mone-
tary costs of storage and cache misses to determine optimal
cache size. As large-scale Web caching systems proliferate,

the potential savings from making this tradeoff wisely
increase. Calculating precisely the optimal size of an
isolated cache might not be worth the bother, but deploy-
ments on the scale of Akamai and WebTV raise the stakes to
the point where careful calculation is essential. While the
monetary costs and benefits of caching do not figure promi-
nently in the academic Web caching literature, they are
foremost in industry analysts’ minds:

CacheFlow is targeting the enterprise, where most
network managers will be loath to spend $40,000 to
save bandwidth on a $1200-per-month T1 line. To sell
these boxes, CacheFlow must wise up and deliver an
entry-level appliance starting at $7000 [24].

This paper considers approaches to the problem of deter-
mining optimal cache sizes based on economic considera-
tions. We focus exclusively on the storage cost vs. miss cost
tradeoff, ignoring throughput and response time issues,
which are covered extensively elsewhere [15,31]. Perfor-
mance constraints and cost minimization may safely be
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considered separately in the cache sizing problem, because
one should always choose the larger of the two cache sizes
they separately require. In other words, if economic argu-
ments prescribe a larger cache than needed to satisfy
throughput and latency targets, an opportunity exists to
save money overall by spending money on additional
storage capacity; we might therefore say that our topic is
optimal cacheexpansionrather than optimal sizing.

We begin in Section 2 with a simple model that includes
only memory and bandwidth costs. We believe that the
memory/bandwidth tradeoff is the right one to consider in
a highly simplified model, because the monetary costs of
both resources are readily available, and because bandwidth
savings is the main reason why organizations deploy Web
caches.1 The analysis of Section 2 is reminiscent of Gray
and Putzolu’s “five-minute rule” [19], but it extends to
large-scale hierarchical caching systems. We show how
the economic viability of a shared high-level cache is
related to system size and technology cost ratios. We
furthermore demonstrate that under certain conditions,
globally optimal storage capacities in a large-scale caching
hierarchy can be determined through scalable, decentra-
lized, local computations. Section 3 addresses the shortcom-
ings of our simple model’s assumptions, describing an
efficient method of computing the optimal storage capacity
of a single cache forcompletely arbitraryworkloads, miss
costs, and storage costs. We employ an algorithm that
computescompletestack distance transformations and arbi-
trarily weighted hit ratios atall cache sizes for large traces
using modest computational resources. We provide a simple
implementation of our fast simultaneous simulation algo-
rithm [25] and present results demonstrating that it
computes stack distances and hit rates more quickly than
alternative methods. Section 4 concludes by discussing our
contributions in relation to other work.

2. A simple hierarchical caching model

In this section we consider a two-level cache hierarchy in
which C lower-level caches each receive identical request
streams at the rate ofR references per second as depicted in
Fig. 1. Requests that cannot be served by one of these
“child” caches are forwarded to a single higher-level
“parent” cache. A document of sizeSi bytes may be stored
in a child or parent cache at a cost, respectively, of $Mc

or $Mp

dollars per byte. Bandwidth between origin servers and the
parent costs $Bp

dollars per byte per second, and bandwidth
between the parent and each child costs $Bc

. Our objective is
to serve the child request streams at minimal overall cost in
the long-term steady state (all caches “warm”). The tradeoff
at issue is the cost of storing documents closer to where they

are requested versus the cost of repeatedly retrieving them
from more distant locations in response to requests.

Request streams are described by an independent refer-
ence model in which documenti is requested with relative
frequencypi where

P
i pi � 1; the rate of request for docu-

ment i is thereforepiR requests per second (Table 1). The
model of Breslau et al. [13] (independent references from a
Zipf-like popularity distribution) is an example of the class
of reference streams we consider. Given independent refer-
ences drawn from a fixed distribution, the most natural
cache removal policy is “Perfect LFU”, i.e. LFU with refer-
ence counts that persist across evictions [13] (Perfect LFU is
optimal for such a workload only if documents are of
uniform size). We therefore assume that all caches use
Perfect LFU replacement.

2.1. Centralized optimization

Because we ignore congestion effects at caches and on
transmission links, we may compute optimal cache sizes by
determining optimal dispositions for eachdocumentinde-
pendently, and then sizing caches accordingly. A document
may be cached: (1) at the parent, (2) atall children, or (3)
nowhere. These alternatives are mutually exclusive: By
symmetry, if it pays to cache a document at any child,
then it ought to be cached at all children; and if a document
is cached at the children it is pointless to cache it at the
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Fig. 1. Two-level caching hierarchy of Section 2.

Table 1
Notation of Section 2

M Total number of requests
C Number of child caches
i Index of a typical document
Si Size of documenti (bytes)
$Mp

Cost of storage at parent cache ($/byte)
$Bc

Child–parent B/W cost ($/(byte/s))
N Total number of distinct documents
R Request rate at children (requests/s)
pi Relative popularity of documenti,

P
i pi � 1

$Mc
Cost of storage at a child cache ($/byte)

$M Cost of storage when $Mc
� $Mp

($/byte)
$Bp

Parent–server B/W cost ($/(byte/s))

1 According to a survey of Fortune1000 network who have deployed Web
caches, 54% do so to save bandwidth, 32% to improve response time, 25%
for security reasons, and 14% to restrict employee access [22].



parent. The costs of the three options for documenti are

cache at children cache at parent do not cache

CSi$Mc
Si$Mp

1 CpiRSi$Bc
CpiRSi�$Bp

1 $Bc
�

The document should be cached at the children if and only if
this option is cheaper than the alternatives (we break ties by
caching documents closer to children, rather than farther):

CSi$Mc
# Si$Mp

1 CpiRSi$Bc
) pi $

C$Mc
2 $Mp

CR$Bc

�1�

CSi$Mc
# CpiRSi�$Bp

1 $Bc
� ) pi $

$Mc

R�$Bp
1 $Bc

� �2�

Each child cache should therefore be exactly large enough
to accommodate documentsi whose popularitypi satisfies
Eqs. (1) and (2). Perfect LFU replacement ensures that, in
the long-term steady state, precisely those documents will
be cached at the children. By similar reasoning, the parent
cache should be just big enough to hold documents for
which parent caching is the cheapest option:

pi ,
C$Mc

2 $Mp

CR$Bc

�3�

Si$Mp
1 CpiRSi$Bc

# CpiRSi�$Bp
1 $Bc

� ) pi $
$Mp

CR$Bp

�4�
Taken together, the requirements for parent caching (Eqs.
(3) and (4)) imply that a parent cache is only justifiable if
there are enough children:

C$Mc
2 $Mp

CR$Bc

. pi $
$Mp

CR$Bp

) C .
$Mp

$Bc
=$Bp

1 $Mp

$Mc

�5�
Eq. (5) is anecessarycondition for a shared parent cache

to be economically viable, as is the existence of at least one
document whose popularity satisfies Eqs. (3) and (4).
Together, the two conditions aresufficientto justify a parent
cache under our model assumptions, provided that a parent
cache entails no fixed costs. In practice, of course, the fixed
cost of purchasing and installing a cache is often substantial.
In such cases, the proper procedure for determining whether
a shared parent cache is economically justifiable is as
follows: compute overall cost (of memory, bandwidth, and
fixed costs) in a system with an optimally sized parent
cache, i.e. one capable of holding all documents that satisfy
Eqs. (3) and (4). Compare this with total costs in a system
without a parent cache, and choose the cheaper option.

Of particular interest is the special case where per-byte
memory costs at parent and children are equal, and the
number of children is large. If $Mp

� $Mc
� $M then

Eq. (5) simplifies to

C .
$Bc

$Bp

1 1 �6�

If in addition to uniform memory costs we furthermore
assume thatC is very large, the criteria for caching at a
child (Eqs. (1) and (2)) simplify to

pi $
C 2 1

C

� �
$M

R$Bc

<
$M

R$Bc

and pi $
$M

R�$Bc
1 $Bp

�
If the first of these inequalities is satisfied, then the second
must also be satisfied, becauseR and all costs are strictly
positive. Therefore, in the case where the number of chil-
dren is large and memory costs are identical at parent and
children, documenti should be cached at children iff

pi $
$M

R$Bc

: �7�

2.2. Decentralized optimization

We now consider circumstances under which adecentra-
lizedcomputation that uses only local information yields the
same result as the centralized computation of Section 2.1.

Imagine that the parent and child caches are operated by
independent entities, each of which seeks to minimize its
own operating costs ($Mp

and $Bp
for the parent, $Mc

and $Bc

for the children). Each child’s decision whether or not to
cache each document is independent of whether the docu-
ment is cached at the parent, because the transmission and
storage costs facing children are unaffected by caching deci-
sions at the parent. The higher-level cache in turn bases its
caching decisions solely on the document requests
submitted to it and the costs it must pay in order to satisfy
them. A child will cache documenti iff

Si$Mc
# SipiR$Bc

) pi $
$Mc

R$Bc

�8�

After the lower-level caches have sized themselves to
accommodate documents whose rate of request satisfies
Eq. (8), requests for those documents will not reach the
parent. The parent will, however, receive requests for all
other documentsj at the rate ofCpjR, and will choose to
cache all documents that satisfy

Sj$Mp
# CpjR$Bp

) pj $
$Mp

CR$Bp

�9�

The condition of Eq. (9) is identical to that of our
previous centralized-optimization result (Eq. (4)). Further-
more, when memory costs are uniform Eq. (8) becomes the
child-caching criterion for large numbers of children (Eq.
(7)). Therefore, the caching decisions — and hence cache
sizes — determined independently through (literally)
greedy local computations are the same as those that a
globally optimizing “central planner” would compute.
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2.3. Cost calculations

In practice bandwidth costs rarely have the convenient
dimensions we have thus far assumed, because they typi-
cally involve fixed installation costs as well as periodic
maintenance and service fees. However, we can convert
periodic costs into a single cost using a standard present-
value calculation [12]; in the simplest case, PV�
payment/interest rate. For example, if the annual interest
rate is 5%, the present value of perpetual yearly
payments of $37 is $37=:05� $740: Slightly more
sophisticated calculations can account for finite time
horizons (depreciation periods) and variable interest
rates.2

In order to put the model of this section in perspective, we
briefly consider the actual costs of bandwidth in our area (the
midwestern US). Table 2 presents prices charged by a major
Internet Service Provider near our home institution and corre-
sponding bandwidth costs assuming a 5% annual interest rate.

As a crude estimate of LAN bandwidth costs, we consider
the cost of 10 Mbps shared Ethernet installations at our
home institution. Table 3 presents LAN bandwidth costs
based the University of Michigan’s internal prices. Prices
shown are determined by the following formula:

price� 1:1 × �number of hosts× $4581 $23; 000�
Consistent with the assumptions of this section, we compute
available bandwidth per LAN client for the idealized case of

identical client behavior. Note that if we take any $Bp
from

Table 2 and anyC and $Bc
from Table 3, these will satisfy

Eq. (6) for anyC . 1: If this seems counter-intuitive, recall
that we assumeidentical child workloads, i.e. we assume
perfect sharing in lower-level caches’ reference patterns.
Furthermore, note that Eq. (6) is a necessary but not a
sufficient condition for a parent cache to be economically
justifiable.

Some readers may object that technology costs fluctuate
too rapidly to guide design decisions. While it is true that
memory and bandwidth prices change rapidly, engineering
principles and rules of thumb based on technology price
ratios have remained remarkably robust for long periods
[18,20], and the main results of this section are stated in
terms of ratios.

In order to apply the methods of Section 2.1 or Section
2.2 in an optimal cache size computation, we require both
detailed workload data (R andpi) and technology costs ($M

and $B) for the same site at which the workload is recorded.
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Table 2
Merit Networks Inc. prices of Internet connectivity for commercial and educational customers in US$

Technology and bandwidth Installation Annual costs $B ($/(byte/s))
Edu. Comm. Edu. Comm.

Private line
56 Kbps 6602 8395 9520 24.93 28.14

ISDN
64 Kbps 3763 7484 8609 19.18 21.99
128 Kbps 3763 8504 10,609 10.87 13.50
256 Kbps 9880 10,377 13,217 6.79 8.57
384 Kbps 10,224 11,996 15,326 5.21 6.60

Fractional T1
128 Kbps 7307 14,077 16,182 18.05 20.68
256 Kbps 7307 14,842 17,682 9.50 11.28
384 Kbps 7307 15,352 18,682 6.55 7.93
768 Kbps 7307 16,882 20,682 3.59 4.38

Full T1 line(s)
1.5 Mbps 7307 19,942 24,682 2.17 2.67
3.0 Mbps 9962 35,344 40,163 1.91 2.17

Table 3
LAN bandwidth costs of 10 Mbps shared Ethernet at the University of
Michigan

Number of
clients

Installation
cost ($)

Bandwidth per
client (bytes/s)

Bandwidth cost
($/(byte/s))

1 25,803 1250000.0 0.020643
5 27,819 250000.0 0.111276

10 30,338 125000.0 0.242704
15 32,857 83333.3 0.394284
20 35,376 62500.0 0.566016
25 37,895 50000.0 0.757900
30 40,414 41666.7 0.969936
40 45,452 31250.0 1.454464
50 50,490 25000.0 2.019600
75 63,085 16666.7 3.785100

100 75,680 12500.0 6.054400

2 A back-of-the-envelope PV calculation sheds light on the Industry
analysts’ negative remark about CacheFlow cited in Section 1. If the appli-
ance yields a 15% bandwidth savings on a $1200/month line ($180/month
in cost savings) and if the annual interest rate is 5%, then the product’s
present value exceeds $40,000. However, if we assume a finite product life,
we find that PV exceeds purchase price only for lifetimes of roughly 7 years
or more assuming 50% bandwidth savings.



Web proxy workloads are readily available, but they are not
accompanied by technology cost information, and our
efforts to obtain cost data for the traces we use in our empiri-
cal work failed. Similarly, we were unable to obtain large,
high-quality workloads for the one site where we do have
access to cost data, because Web caches are not widely
deployed on our University campus. We choose not to
mix and match data from different sources by, for example,
combining workload and cost data from different times and
sites, and therefore we do not use the methods of this section
or the next to compute actual cache sizes. We do not regard
this as a serious deficiency. Our main intent is to describe
general methods for computing the optimal value of an
important parameter, not to share anecdotes about the speci-
fic values that we obtain when we apply these methods to
particular inputs.

3. A detailed model of single caches

The model assumptions and optimization procedures of
Section 2 are problematic for several reasons: The workload
model assumes an idealized steady state, ignoring such
features as temporal locality and the creation of new docu-
ments at servers. Production caches use variants of LRU;
many cache designers reject Perfect LFU because of its
higher time and memory overhead. Storage and miss costs
are not simple linear functions of capacity.

In this section we describe a method that suffers from
none of these problems. We assume that: (1) workload is
described by anexplicit sequenceof requests; (2) associated
with each request is anarbitrary miss cost; (3) the cache
uses one of a large family of replacement policies that
includes LRU and a variant of Perfect LFU; and (4) the
cost of cache storage capacity is an arbitrary monotonic
function. It is straightforward to extend the algorithm of
this section to multi-level storage hierarchies in which
each cache has at most one parent or child, as described in
Mattson et al. [30]. It is not clear, however, that the method
can be extended to the more interesting case in which shared
high-level caches serve multiple children.

Our cache workload consists of a sequence ofM refer-
encesx1; x2;…; xM where subscripts indicate the “virtual

time” of each request: if the request at timet is for document
i, thenxt � i (refer to Table 4 for a summary of notation
used in this section). Associated with each reference is a
non-negative miss cost $t. Whereas document sizes are
constant, the miss costs associated with different requests
for the same document need not be equal: ifxt � xt 0 � i for
t ± t 0 we requireSxt

� Sxt 0 � Si ; but we permit $t ± St 0 (e.g.
miss costs may be assessed higher during peak usage peri-
ods). Finally, the cost of cache storage $M(s) is an arbitrary
non-decreasing function of cache capacitys; this permits us
to consider, e.g. fixed costs.

The set of documents requested up to timet is denoted
Dt ; { i : xt 0 � i for somet 0 # t} : A scalar priority Pt is
defined over documents inDt; two documents never have
equal priority:Pt�i� � Pt� j� iff i � j: Informally, thepriority
depthd t of a documenti [ Dt is the smallest cache size at
which a reference to the document will result in a cache hit.
Formally,

dt�i� ; Si 1
X

h[Ht

Sh where Ht ; { h [ Dt : Pt�h� . Pt�i�}

�10�
The priority depth of documents not inDt is defined to be
infinity. Priority depth generalizes the familiar notion of
LRU stack distance [30] to the case of non-uniform docu-
ment sizes and general priority functions. Let

$A�s� ;
XM
t�1

$tIt�s� where It�s� ;
0 if s $ dt�xt�
1 otherwise

(
denote total miss cost over the entire reference sequence as a
function of “size” parameters. For every input sequence,
$A(s) is equal to the aggregate miss cost incurred by a cache
of sizes whose removal priority is defined byP if and only
if: (1) s $ maxiSi ; and (2) the cache removal policy satisfies
the inclusion property, meaning that a cache of sizes will
always contain any smaller cache’s contents. The second
requirement is familiar from the literature on stack distance
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Table 4
Notation of Section 3

M Total number of requests
xt Document requested at virtual timet
$t Cost incurred if request at timet misses ($)
Dt Set of documents requested up to timet
d t Priority depth of documents inDt (bytes)
N Total number of distinct documents requested
Si Size of documenti (bytes)
$M(s) Storage cost of cache capacitys ($)
Pt(i) Priority of documentsi [ Dt

$A(s) Total miss cost over entire reference sequence ($)

co
st

cache size

memory cost
miss cost
total cost

optimal sizes

Fig. 2. Cache costs as monotonic step functions.



transformations of reference streams; replacement policies
with this property are sometimes known as “stack policies”
[11,30,32,37]. LRU and the variant of Perfect LFU that
caches a requested document only if it has sufficiently
high priority (“optional-placement Perfect LFU”) are stack
policies; FIFO and mandatory-placement LFUs are not
[30].3 The first requirement is necessary because aggregate
miss cost is monotonic only for cache sizes capable of hold-
ing any document.

Given $A(s) we can efficiently determine a cache sizes
that minimizes total cost $A�s�1 $M�s�: Because storage
cost is non-decreasing in cache capacity, we need not
consider total cost at all cache sizes: $A(s) is a “step func-
tion” that is non-increasing ins, with at mostM “steps”, and
minimal overall cost must occur at one of them (see Fig. 2).
We may therefore determine a (not necessarily unique)
cache size that minimizes total cost inO(M) time.

At first glance, it might appear that the bottleneck in our
overall approach to computing optimal cache size is the
computation of priority depth (Eq. (10)). A straightforward
implementation of a priority list, e.g. as a linked list, would
require O(N) memory andO(N) time per reference for a
total of O(MN) time to process the entire sequence ofM
requests. For reasonable removal policies, however, it is
possible to perform this computation inO(M log N) time
andO(N) memory using an algorithm reminiscent of those
developed for efficient processor-memory simulation
[11,32,37]; we describe our priority-depth algorithm in
Section 3.1. Given a pair (d t(xt),$t) for each ofM requests,
we can compute $A(s) after sorting these pairs ond in
O(M log M) time and O(M) memory. This “post-proces-
sing” sorting step is therefore the computational bottleneck
for any trace workload, in whichM $ N: By contrast, a
simulation of a single cache size would require
O(M log N) time for practical removal policies.

3.1. Fast simultaneous simulation

In this section we briefly outline an algorithm which
computesd t for each ofM references inO(M log N) time
andO(N) memory by making a single pass over the input
sequence. Because it allows us to compute $A(s) at the addi-
tional cost of sorting the output, in effect this algorithm

enables us to simulateall cache sizes of possible interest
simultaneously. An efficient method is necessary in order to
process real traces, in whichM andN can both exceed 10
million [27]. To make the issue concrete, whereas a naı¨ve
O(MN) priority depth algorithm required over five days to
process 11.6 million requests for 5.25 million documents,
our O(M log N) algorithm completed the job in roughly
3 min on the same computer.

In order for our method to work, we require that the
priority function P corresponding to the cache’s removal
policy satisfy an additional constraint: the relative priority
of two documents may only change when one of them is
referenced. This is not an overly restrictive assumption;
indeed, some researchers regard it as a requirement for a
practical replacement policy, because it permits requests to
be processed in logarithmic time [8].

We represent documents in the setDt as nodes of a binary
tree, where an inorder traversal visits document records in
ascending priority. We require one node per document,
hence theO(N) memory requirement. At each node we
store the aggregate size of all documents in the right
(higher-priority) subtree; we can therefore recoverd t(i) by
traversing the path from documenti’s node to the root. To
process a request, we output the referenced document’s
priority depth, remove the corresponding node from the
tree, adjust its priority, and re-insert it. Tree nodes are allo-
cated in anN-long array indexed by document ID, so locat-
ing a node requiresO(1) time. All of the other operations
require O(log N) time, for a total ofO(M log N) time to
process the entire input sequence.

For all removal policies of practical interest, a docu-
ment’s priority onlyincreaseswhen it is accessed. A simple
binary tree would therefore quickly degenerate into a linked
list, so we use a splay tree to ensure (amortized) logarithmic
time per operation [28,35]. It is possible to maintain the
invariant that each tree node stores the total size of all docu-
ments represented in its right subtree during insertions, dele-
tions, and “splay” operations without altering the overall
asymptotic time or memory complexity of the standard
splay tree algorithm. A simple ANSIC implementation of
our priority depth algorithm is available [25].

We devised our efficient priority depth algorithm before
we became aware of similar techniques dating back to the
mid-1970s [11,32,37], which appear not to be widely used
in Web-related literature. To the best of our knowledge, no
recent papers containing stack depth analyses (e.g. Refs.
[1,2,7,9,10,29]) cite the most important papers on efficient
stack distance computation (Refs. [11,32,37]). The idea of
using splay trees as we do is suggested by Thompson, who
used AVL trees in his own work [37]. Our algorithm is
simpler than those described in the processor-memory-cach-
ing literature because we ignore associativity considerations
and assume that cached data is read-only. It is more general
and better suited to Web caching because it handles variable
document sizes, arbitrary miss costs, and a wide range of
optional-placement cache policies.
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3 The distinction between mandatory- and optional-placement policies is
important. Whereas, models of processor memory hierarchies typically
assume mandatory placement (e.g. Sleator and Tarjan on paging policies
[34]), in Web caching we need not require that a requested document
always be cached (as in Irani’s discussion of variable-page-size caching
[23]). Optional-placement Perfect LFU is optimal for infinite sequences of
independent references from a fixed distribution, if document sizes are
uniform. Limited empirical evidence, however, suggests that optional-
placement variants of LFU perform worse than their mandatory-placement
counterparts on real Web workloads [27]; the subject has not been inves-
tigated thoroughly. GD-Size [14] and mandatory-placement variants of
LFU such as GDSF [4], swLFU [26,27], and LUV [8] do not satisfy the
inclusion property, and therefore the one-pass simulation methods
described in Section 3.1 cannot be applied to them.



3.2. Numerical results

To illustrate the flexibility and efficiency of our priority
depth algorithm, we used it to computecompletestack
distance transformations and LRU hit rates atall cache
sizes for six four-week NLANR [17] Web cache traces
summarized in Table 5 and described more fully in Ref.
[27]. Similarly detailed results rarely appear in the Web
caching literature.4 Perhaps this is because such complete
and exact calculations have been viewed as computationally
infeasible. All of the results presented here, however, were
computed in a total of under five hours on an unspectacular
machine — far less time than was required to download our
raw trace data from NLANR.5 Finally, we describe a timing
test conducted outside of our research group that shows that
our priority depth implementation computes stack distances
substantially faster than two alternatives.

Fig. 3 shows LRU hit rates and byte hit rates at all cache
sizes for our six Web traces, computed by our splay-tree-
based priority depth algorithm. For the workloads consid-
ered, exact performance measurements at all cache sizes
appear to offer littlevisual advantage over the customary
technique of interpolating measurements taken at regular
intervals (e.g. 1GB, 2GB, 4GB, etc.) via single-cache-size
simulation. However, since exact hit rate functions may be
obtained at very modest computational cost, it is not clear
that a less precise approach offers any advantage, either.

LRU stack distance, a standard measure of temporal
locality in symbolic reference streams, is a special-case
output of our priority depth algorithm when all document
sizes are 1. Mattson et al. is the classic reference on stack

distance analysis [30]; Almeida et al. [2] and Arlitt and
Williamson [7] apply the technique to Web traces. The
frequency distribution of stack distances from our six traces
is shown on the left in Fig. 4. Frequency distributions
visually exaggerate temporal locality, particularly when
(as is common in the literature) the horizontal axis is trun-
cated at a shallow depth. The situation does not improve if
we aggregate the observed stack distances into constant-
width bins, because as Arlitt and Williamson have noted,
the visual impression of temporal locality created depends
on the bin sizes we choose [7]. Perhaps the clearest and least
ambiguous way to present these data is with a cumulative
distribution, as on the right in Fig. 4, from which order
statistics such as the median and quartile stack distances
are directly apparent.

Martin Arlitt of Hewlett-Packard Labs recently compared
the speed of three stack distance programs: The first
author’s publicly available implementation of the fast
splay-tree-based priority depth algorithm of Section 3.1
[25], a simpleO(MN) linked-list implementation supplied
with Kelly’s fast code, and Arlitt’s own program [3]. Arlitt’s
implementation divides the LRU stack into a number of
equal-sized “bins”, each of which contains 50 items. The
advantage of this approach is that the worst-case number of
operations to process a reference is proportional to the
number of bins plus the number of items in a bin, rather
than to the number of items. In the asymptotic analysis,
however, this strategy still requiresO(MN) time to process
its entire input. The trace used for this test is the largest of
which we are aware: 1,352,804,108 references to 2,770,108
unique items derived from the World Cup Web server work-
load described in Ref. [6] and available from the Web Char-
acterization Repository [21]. Temporal locality is strong in
this trace (the median stack depth is 179); it is therefore
“friendly” to the simple linked-list implementation. Run
times were as follows: 446 h 24 min for the simple list,
45:52 for the bin/list hybrid, and 18:40 for the splay tree
algorithm. Breaking the LRU stack into bins yields a nearly
tenfold speedup over a simple linked list (from roughly
18 days to under two days). The splay-tree algorithm runs
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Table 5
Traces derived from access logs recorded at six NLANR sites, 1–28 March 1999. Run times shown are wall-clock times to compute given quantities, in
seconds. The run times sum to under 4 h, 10 min

BOL PA PB SD SV UC

# Docs (millions) 5.25 4.90 9.82 8.64 9.38 7.62
# Reqs (millions) 11.58 13.55 19.80 37.09 23.74 26.02
Max Si (MB) 218.6 104.9 218.7 175.0 107.4 175.0
Unique bytes (billions) 104.5 76.0 188.3 204.9 159.1 150.1
Bytes req’d (billions) 236.2 220.7 383.1 620.3 412.9 397.5

Run times (s)
Stack distances 249 341 403 1117 581 716
Priority depths 230 288 399 872 547 587
HR (size) 309 414 497 1439 712 903
BHR (size) 314 423 522 1461 740 913

4 Almeida et al. present complete stack distance traces for four Web
server workloads ranging in size from 28,000–80,000 requests [1,2].
They furthermore note that the marginal distribution of a stack distance
trace is related to cache miss rate, but their discussion assumes uniform
document sizes. Arlitt et al. present the only stack depth analysis of large
traces (up to 1.35 billion references) of which we are aware [5,6].

5 We used a Dell Poweredge 6300 server with four 450-MHz Intel
Pentium II Xeon processors and 512 MB of RAM running Linux kernel
2.2.12-20smp.



24 times faster than the linked list and more than twice as
fast as the hybrid list/bin approach. Other results, too
tentative and incomplete to report here, confirm our intui-
tion that the performance advantages of our splay-tree
algorithm are inversely related to locality. Arlitt found
that both the list and bin/list implementations outperform
the splay tree code on a Web server trace with very high
locality, whereas the splay tree offers very dramatic advan-

tages on a Web proxy workload with relatively low
temporal locality.

4. Discussion

The main contribution of Section 2 is to generalize a
familiar principle — the five minute rule — to multi-
level branching storage hierarchies. Simple rules of
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Fig. 3. Exact hit rates (top) and byte hit rates (bottom) as function of cache size for six large traces, LRU removal. Fast simultaneous simulation method yields
correct results only for cache sizes$ largest object size in a trace; smaller cache sizes not shown.

Cumulative distribution of LRU stack distances
Six NLANR traces, 1-28 March 1999
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thumb such as this often support illuminating back-of-the-
envelope calculations; see Gray and Shenoy [20] for a
good recent summary of time-tested rules of thumb
updated for the capabilities and costs of modern technolo-
gies. The results of Section 2.2 suggest that under some
circumstances centralized design may yield few benefits,
because decentralized computation may lead to equally
good outcomes. More sophisticated results of a similar
flavor can be found in the literature on microeconomic
approaches to distributed resource allocation [38]. The
main contribution of Section 3 is to present a fast simulta-

neous simulation technique adopted from the processor-
memory literature but more suitable to Web-related
research, and demonstrate its application to the optimal
cache sizing problem.

The idealized model of Section 2 is useful for computing
optimal cache sizes only to the extent that its underlying
workload and cost assumptions are valid. Breslau et al. have
argued that the assumption of independent references is
approximately correct [13], but Almeida et al. have
described several shortcomings of this model and have
proposed more accurate alternatives [1,2]. Section 2
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Fig. 4. Frequency distribution (top) and cumulative distribution (bottom) of LRU stack distances in six traces. Compare these data with Table 10 and Fig. 8 of
Arlitt and Jin [6]; temporal locality is far weaker in our network cache workload than in their very large server workload.
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assumes homogeneous lower-level caches; Wolman et al.
explore the implications of sharing among heterogeneous
client aggregates, and furthermore consider document
modification rates, which we have ignored [39,40]. The
main formal weakness of our hierarchical caching model
is the simple linear cost model. In many cases of practical
interest, memory and bandwidth costs are step functions that
do not admit accurate linear approximations. From a prac-
tical standpoint, another serious weakness is that we ignore
the low-level aspects of Web operation. Feldmann et al.
report that details such as bandwidth heterogeneity and
aborted transfers can negate the bandwidth savings that
proxy caching would otherwise yield [16]. An important
goal of our ongoing work is to determine how much detail
can be added to the model of Section 2 without sacrificing
scalable decentralized computation of optimal cache sizes.

The major limitation of the single-cache optimization
method of Section 3 is that in its present form it cannot
account for document expirations. However, the problem
of modeling a cache that evicts stale documents is quite
similar to that of modeling write invalidations in processor
cache hierarchies, and the stack algorithm literature consid-
ers this problem [30,32,36,37]. Our simulator implementa-
tion [25] does not currently support document expirations,
but it is likely that this feature will be added to support our
future research.
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