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Abstract

This paper describes two approaches to the problem of determining exact optimal storage capacity for Web caches
based on expected workload and the monetary costs of memory and bandwidth.

The first approach considers memory/bandwidth tradeoffs in an idealized model. It assumes that workload consists
of independent references drawn from a known distribution (e.g., Zipf) and caches employ a “Perfect LFU” removal
policy. We derive conditions under which a shared higher-level “parent” cache serving several lower-level “child”
caches is economically viable. We also characterize circumstances under which globally optimal storage capacities
in such a hierarchy can be determined through adecentralizedcomputation in which caches individually minimize
local monetary expenditures.

The second approach is applicable if the workload at a single cache is represented by an explicit request sequence
and the cache employs any one of a large family of removal policies that includes LRU. The miss costs associated with
individual requests may be completely arbitrary, and the cost of cache storage need only be monotonic. We use an
efficient single-pass simulation algorithm to compute aggregate miss cost as a function of cache size inO(M logM)
time andO(M) memory, whereM is the number of requests in the workload. Because it allows us to compute
arbitrarily-weighted hit rates atall cache sizes with modest computational resources, this algorithm permits us to
measure cache performance with no loss of precision.

The same basic algorithm also permits us to computecompletestack distance transformations inO(M logN)
time andO(N) memory, whereN is the number of unique items referenced. Experiments on very large reference
streams show that our algorithm computes stack distances more quickly than several alternative approaches, demon-
strating that it is a useful tool for measuring temporal locality in cache workloads.

1 Introduction

In the Internet server capacity planning literature, monetary cost is often regarded as the objective function in a con-
strained optimization problem:

The purpose of capacity planning for Internet services is to enable deployment which supports transaction
throughput targets while remaining within acceptable response time bounds and minimizing the total
dollar cost of ownership of the host platform [33].

Web cachecapacity planning must weigh the relative monetary costs of storage and cache misses to determine optimal
cache size. As large-scale Web caching systems proliferate, the potential savings from making this tradeoff wisely
increase. Calculating precisely the optimal size of an isolated cache might not be worth the bother, but deployments
on the scale of Akamai and WebTV raise the stakes to the point where careful calculation is essential. While the
monetary costs and benefits of caching do not figure prominently in the academic Web caching literature, they are
foremost in industry analysts’ minds:
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Figure 1: Two-level caching hierarchy of Section 2.

CacheFlow is targeting the enterprise, where most network managers will be loath to spend $40,000 to
save bandwidth on a $1,200-per-month T1 line. To sell these boxes, CacheFlow must wise up and deliver
an entry-level appliance starting at $7,000 [24].

This paper considers approaches to the problem of determining optimal cache sizes based on economic consider-
ations. We focus exclusively on the storage cost vs. miss cost tradeoff, ignoring throughput and response time issues,
which are covered extensively elsewhere [31, 15]. Performance constraints and cost minimization may safely be con-
sidered separately in the cache sizing problem, because one should always choose the larger of the two cache sizes they
separately require. In other words, if economic arguments prescribe a larger cache than needed to satisfy throughput
and latency targets, an opportunity exists to save money overall by spending money on additional storage capacity; we
might therefore say that our topic is optimal cacheexpansionrather than optimal sizing.

We begin in Section 2 with a simple model that includes only memory and bandwidth costs. We believe that
the memory/bandwidth tradeoff is the right one to consider in a highly simplified model, because the monetary costs
of both resources are readily available, and because bandwidth savings is the main reason why organizations deploy
Web caches.1 The analysis of Section 2 is reminiscent of Gray & Putzolu’s “five-minute rule” [19], but it extends
to large-scale hierarchical caching systems. We show how the economic viability of a shared high-level cache is
related to system size and technology cost ratios. We furthermore demonstrate that under certain conditions, globally-
optimal storage capacities in a large-scale caching hierarchy can be determined through scalable, decentralized, local
computations. Section 3 addresses the shortcomings of our simple model’s assumptions, describing an efficient method
of computing the optimal storage capacity of a single cache forcompletely arbitraryworkloads, miss costs, and storage
costs. We employ an algorithm that computescompletestack distance transformations and arbitrarily-weighted hit
ratios atall cache sizes for large traces using modest computational resources. We provide a simple implementation
of our fast simultaneous simulation algorithm [25] and present results demonstrating that it computes stack distances
and hit rates more quickly than alternative methods. Section 4 concludes by discussing our contributions in relation to
other work.

2 A Simple Hierarchical Caching Model

In this section we consider a two-level cache hierarchy in whichC lower-level caches each receive identical request
streams at the rate ofR references per second as depicted in Figure 1. Requests that cannot be served by one of these
“child” caches are forwarded to a single higher-level “parent” cache. A document of sizeSi bytes may be stored in a
child or parent cache at a cost, respectively, of$Mc or $Mp dollars per byte. Bandwidth between origin servers and
the parent costs$Bp dollars per byte per second, and bandwidth between the parent and each child costs$Bc. Our
objective is to serve the child request streams at minimal overall cost in the long-term steady state (all caches “warm”).
The tradeoff at issue is the cost of storing documents closer to where they are requested versus the cost of repeatedly
retrieving them from more distant locations in response to requests.

Request streams are described by an independent reference model in which documenti is requested with relative
frequencypi where

P
i pi = 1; the rate of request for documenti is thereforepiR requests per second. The model

1According to a survey of Fortune1000 network managers who have deployed Web caches, 54% do so to save bandwidth, 32% to improve
response time, 25% for security reasons, and 14% to restrict employee access [22].
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Table 1: Notation of Section 2.

M total number of requests N total number of distinct documents
C number of child caches R request rate at children (requests/second)
i index of a typical document pi relative popularity of documenti,

P
i
pi = 1

Si size of documenti (bytes) $Mc cost of storage at a child cache ($/byte)
$Mp cost of storage at parent cache ($/byte)$M cost of storage when$Mc = $Mp ($/byte)
$Bc child-parent B/W cost ($/(byte/sec)) $Bp parent-server B/W cost ($/(byte/sec))

of Breslau et al. [13] (independent references from a Zipf-like popularity distribution) is an example of the class of
reference streams we consider. Given independent references drawn from a fixed distribution, the most natural cache
removal policy is “Perfect LFU”, i.e., LFU with reference counts that persist across evictions [13] (Perfect LFU is
optimal for such a workload only if documents are of uniform size). We therefore assume that all caches use Perfect
LFU replacement.

2.1 Centralized Optimization

Because we ignore congestion effects at caches and on transmission links, we may compute optimal cache sizes by
determining optimal dispositions for eachdocumentindependently, and then sizing caches accordingly. A document
may be cached 1) at the parent, 2) atall children, or 3) nowhere. These alternatives are mutually exclusive: By
symmetry, if it pays to cache a document at any child, then it ought to be cached at all children; and if a document is
cached at the children it is pointless to cache it at the parent. The costs of the three options for documenti are

cache at children cache at parent don’t cache
CSi$Mc Si$Mp + CpiRSi$Bc CpiRSi($Bp + $Bc)

The document should be cached at the children if and only if this option is cheaper than the alternatives (we break ties
by caching documents closer to children, rather than farther):

CSi$Mc � Si$Mp + CpiRSi$Bc ) pi �
C$Mc � $Mp

CR$Bc
(1)

CSi$Mc � CpiRSi($Bp + $Bc) ) pi �
$Mc

R($Bp + $Bc)
(2)

Each child cache should therefore be exactly large enough to accommodate documentsi whose popularitypi satisfies
Equations 1 and 2; Perfect LFU replacement ensures that, in the long-term steady state, precisely those documents
will be cached at the children. By similar reasoning, the parent cache should be just big enough to hold documents for
which parent caching is the cheapest option:

pi <
C$Mc � $Mp

CR$Bc
(3)

Si$Mp + CpiRSi$Bc � CpiRSi($Bp + $Bc) ) pi �
$Mp

CR$Bp
(4)

Taken together, the requirements for parent caching (Equations 3 and 4) imply that a parent cache is only justifiable if
there are enough children:

C$Mc � $Mp

CR$Bc
> pi �

$Mp

CR$Bp
) C >

$Mp$Bc=$Bp + $Mp

$Mc

(5)

Equation 5 is anecessarycondition for a shared parent cache to be economically viable, as is the existence of
at least one document whose popularity satisfies Equations 3 and 4. Together, the two conditions aresufficientto
justify a parent cache under our model assumptions, provided that a parent cache entails no fixed costs. In practice,
of course, the fixed cost of purchasing and installing a cache is often substantial. In such cases, the proper procedure
for determining whether a shared parent cache is economically justifiable is as follows: Compute overall cost (of
memory, bandwidth, and fixed costs) in a system with an optimally-sized parent cache, i.e., one capable of holding
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all documents that satisfy Equations 3 and 4. Compare this with total costs in a system without a parent cache, and
choose the cheaper option.

Of particular interest is the special case where per-byte memory costs at parent and children are equal, and the
number of children is large. If$Mp = $Mc = $M then Equation 5 simplifies to

C >
$Bc
$Bp

+ 1 (6)

If in addition to uniform memory costs we furthermore assume thatC is very large, the criteria for caching at a child
(Equations 1 and 2) simplify to

pi �

�
C � 1

C

�
$M
R$Bc

�
$M
R$Bc

and pi �
$M

R($Bc + $Bp)

If the first of these inequalities is satisfied, then the second must also be satisfied, becauseR and all costs are strictly
positive. Therefore in the case where the number of children is large and memory costs are identical at parent and
children, documenti should be cached at children iff

pi �
$M
R$Bc

(7)

2.2 Decentralized Optimization

We now consider circumstances under which adecentralizedcomputation that uses only local information yields the
same result as the centralized computation of Section 2.1.

Imagine that the parent and child caches are operated by independent entities, each of which seeks to minimize its
own operating costs ($Mp and$Bp for the parent,$Mc and$Bc for the children). Each child’s decision whether or not
to cache each document is independent of whether the document is cached at the parent, because the transmission and
storage costs facing children are unaffected by caching decisions at the parent. The higher-level cache in turn bases its
caching decisions solely on the document requests submitted to it and the costs it must pay in order to satisfy them. A
child will cache documenti iff

Si$Mc � SipiR$Bc ) pi �
$Mc

R$Bc
(8)

After the lower-level caches have sized themselves to accommodate documents whose rate of request satisfies
Equation 8, requests for those documents will not reach the parent. The parent will, however, receive requests for all
other documentsj at the rate ofCpjR, and will choose to cache all documents that satisfy

Sj$Mp � CpjR$Bp ) pj �
$Mp

CR$Bp
(9)

The condition of Equation 9 is identical to that of our previous centralized-optimization result (Equation 4). Fur-
thermore, when memory costs are uniform Equation 8 becomes the child-caching criterion for large numbers of chil-
dren (Equation 7). Therefore the caching decisions—and hence cache sizes—determined independently through (lit-
erally) greedy local computations are the same as those that a globally-optimizing “central planner” would compute.

2.3 Cost Calculations

In practice bandwidth costs rarely have the convenient dimensions we have thus far assumed, because they typically in-
volve fixed installation costs as well as periodic maintenance and service fees. However, we can convert periodic costs
into a single cost using a standard present-value calculation [12]; in the simplest case,PV = payment=interest rate.
For example, if the annual interest rate is 5%, the present value of perpetual yearly payments of $37 is $37/.05 =
$740. Slightly more sophisticated calculations can account for finite time horizons (depreciation periods) and variable
interest rates.2

In order to put the model of this section in perspective, we briefly consider the actual costs of bandwidth in our
area (the midwestern United States). Table 2 presents prices charged by a major Internet Service Provider near our
home institution and corresponding bandwidth costs assuming a 5% annual interest rate.

2A back-of-the-envelope PV calculation sheds light on the industry analysts’ negative remark about CacheFlow cited in Section 1: If the
appliance yields a 15% bandwidth savings on a $1,200/month line ($180/month in cost savings) and if the annual interest rate is 5%, then the
product’s present value exceeds $40,000. However, if we assume a finite product life, we find that PV exceeds purchase price only for lifetimes of
roughly 7 years or more assuming 50% bandwidth savings.
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Table 2: Merit Networks Inc. prices of Internet connectivity for commercial and educational customers in U.S. dollars.

Technology Annual costs $B ($/(byte/sec))
& Bandwidth Installation Edu Comm Edu Comm

Private Line
56 Kbps 6,602 8,395 9,520 24.93 28.14

ISDN
64 Kbps 3,763 7,484 8,609 19.18 21.99

128 Kbps 3,763 8,504 10,609 10.87 13.50
256 Kbps 9,880 10,377 13,217 6.79 8.57
384 Kbps 10,224 11,996 15,326 5.21 6.60

Fractional T1
128 Kbps 7,307 14,077 16,182 18.05 20.68
256 Kbps 7,307 14,842 17,682 9.50 11.28
384 Kbps 7,307 15,352 18,682 6.55 7.93
768 Kbps 7,307 16,882 20,682 3.59 4.38

Full T1 line(s)
1.5 Mbps 7,307 19,942 24,682 2.17 2.67
3.0 Mbps 9,962 35,344 40,163 1.91 2.17

Table 3: LAN bandwidth costs of 10 Mbps shared Ethernet at the University of Michigan.

bandwidth bandwidth bandwidth bandwidth
number of installation per client cost number of installation per client cost

clients cost ($) (bytes/sec) ($/(byte/sec)) clients cost ($) (bytes/sec) ($/(byte/sec))

1 25803 1250000.0 0.020643 30 40414 41666.7 0.969936
5 27819 250000.0 0.111276 40 45452 31250.0 1.454464

10 30338 125000.0 0.242704 50 50490 25000.0 2.019600
15 32857 83333.3 0.394284 75 63085 16666.7 3.785100
20 35376 62500.0 0.566016 100 75680 12500.0 6.054400
25 37895 50000.0 0.757900

As a crude estimate of LAN bandwidth costs, we consider the cost of 10 Mbps shared Ethernet installations at our
home institution. Table 3 presents LAN bandwidth costs based the University of Michigan’s internal prices. Prices
shown are determined by the following formula:

price = 1:1� (number of hosts� $458 + $23; 000)

Consistent with the assumptions of this section, we compute available bandwidth per LAN client for the idealized case
of identical client behavior. Note that if we take any$Bp from Table 2 and anyC and$Bc from Table 3, these will
satisfy Equation 6 for anyC > 1. If this seems counter-intuitive, recall that we assumeidenticalchild workloads, i.e.,
we assume perfect sharing in lower-level caches’ reference patterns. Furthermore, note that Equation 6 is a necessary
but not a sufficient condition for a parent cache to be economically justifiable.

Some readers may object that technology costs fluctuate too rapidly to guide design decisions. While it is true that
memory and bandwidth prices change rapidly, engineering principles and rules of thumb based on technology price
ratios have remained remarkably robust for long periods [18, 20], and the main results of this section are stated in
terms of ratios.

In order to apply the methods of Section 2.1 or Section 2.2 in an optimal cache size computation, we require
both detailed workload data (R andpi) and technology costs ($M and$B) for the same site at which the workload is
recorded. Web proxy workloads are readily available, but they are not accompanied by technology cost information,
and our efforts to obtain cost data for the traces we use in our empirical work failed. Similarly, we were unable to
obtain large, high-quality workloads for the one site where we do have access to cost data, because Web caches are
not widely deployed on our University campus. We choose not to mix and match data from different sources by, for
example, combining workload and cost data from different times and sites, and therefore we do not use the methods of
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Table 4: Notation of Section 3

M total number of requests N total number of distinct documents requested
xt document requested at virtual timet Si size of documenti (bytes)
$t cost incurred if request at timet misses ($) $M (s) storage cost of cache capacitys ($)
Dt set of documents requested up to timet Pt(i) priority of documenti 2 Dt

�t priority depth of documents inDt (bytes) $A(s) total miss cost over entire reference sequence ($)

this section or the next to compute actual cache sizes. We do not regard this as a serious deficiency. Our main intent is
to describe general methods for computing the optimal value of an important parameter, not to share anecdotes about
the specific values that we obtain when we apply these methods to particular inputs.

3 A Detailed Model of Single Caches

The model assumptions and optimization procedures of Section 2 are problematic for several reasons: The workload
model assumes an idealized steady state, ignoring such features as temporal locality and the creation of new documents
at servers. Production caches use variants of LRU; many cache designers reject Perfect LFU because of its higher time
and memory overhead. Storage and miss costs are not simple linear functions of capacity.

In this section we describe a method that suffers from none of these problems. We assume that 1) workload is
described by anexplicit sequenceof requests; 2) associated with each request is anarbitrary miss cost; 3) the cache
uses one of a large family of replacement policies that includes LRU and a variant of Perfect LFU; and 4) the cost of
cache storage capacity is an arbitrary monotonic function. It is straightforward to extend the algorithm of this section to
multi-level storage hierarchies in which each cache has at most one parent or child, as described in Mattson et al. [30].
It is not clear, however, that the method can be extended to the more interesting case in which shared high-level caches
serve multiple children.

Our cache workload consists of a sequence ofM referencesx1; x2; : : : ; xM where subscripts indicate the “virtual
time” of each request: if the request at timet is for documenti, thenxt = i. Associated with each reference is a
nonnegative miss cost$t. Whereas document sizes are constant, the miss costs associated with different requests for
the same document need not be equal: ifxt = xt0 = i for t 6= t0 we requireSxt = Sx

t0
= Si, but we permit$t 6= $t0

(e.g., miss costs may be assessed higher during peak usage periods). Finally, the cost of cache storage$M (s) is an
arbitrary nondecreasing function of cache capacitys; this permits us to consider, e.g., fixed costs.

The set of documents requested up to timet is denotedDt � fi : xt0 = i for some t0 � tg. A scalarpriority Pt
is defined over documents inDt; two documents never have equal priority:Pt(i) = Pt(j) i� i = j. Informally, the
priority depth�t of a documenti 2 Dt is the smallest cache size at which a reference to the document will result in a
cache hit. Formally,

�t(i) � Si +
X
h2Ht

Sh where Ht � fh 2 Dt : Pt(h) > Pt(i)g (10)

The priority depth of documents not inDt is defined to be infinity. Priority depth generalizes the familiar notion of
LRU stack distance [30] to the case of non-uniform document sizes and general priority functions. Let

$A(s) �

MX
t=1

$tIt(s) where It(s) �

�
0 if s � �t(xt)
1 otherwise

denote total miss cost over the entire reference sequence as a function of “size” parameters. For every input sequence,
$A(s) is equal to the aggregate miss cost incurred by a cache of sizes whose removal priority is defined byP if and
only if 1) s � maxi Si, and 2) the cache removal policy satisfies theinclusion property, meaning that a cache of
sizes will always contain any smaller cache’s contents. The second requirement is familiar from the literature on
stack distance transformations of reference streams; replacement policies with this property are sometimes known as
“stack policies” [30, 11, 32, 37]. LRU and the variant of Perfect LFU that caches a requested document only if it
has sufficiently high priority (“optional-placement Perfect LFU”) are stack policies; FIFO and mandatory-placement
LFUs are not [30].3 The first requirement is necessary because aggregate miss cost is monotonic only for cache sizes
capable of holding any document.

3The distinction between mandatory- and optional-placement policies is important. Whereas models of processor memory hierarchies typically
assume mandatory placement (e.g., Sleator & Tarjan on paging policies [34]), in Web caching we need not require that a requested document
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Given$A(s) we can efficiently determine a cache sizes that minimizes total cost$A(s)+$M (s). Because storage
cost is nondecreasing in cache capacity, we need not consider total cost at all cache sizes:$A(s) is a “step function”
that is nonincreasing ins, with at mostM “steps,” and minimal overall cost must occur at one of them (see Figure 2).
We may therefore determine a (not necessarily unique) cache size that minimizes total cost inO(M) time.

At first glance, it might appear that the bottleneck in our overall approach to computing optimal cache size is the
computation of priority depth (Equation 10). A straightforward implementation of a priority list, e.g., as a linked
list, would requireO(N) memory andO(N) time per reference for a total ofO(MN) time to process the entire
sequence ofM requests. For reasonable removal policies, however, it is possible to perform this computation in
O(M logN) time andO(N) memory using an algorithm reminiscent of those developed for efficient processor-
memory simulation [11, 32, 37]; we describe our priority-depth algorithm in Section 3.1. Given a pair(�t(xt); $t) for
each ofM requests, we can compute$A(s) after sorting these pairs on� in O(M logM) time andO(M) memory.
This “post-processing” sorting step is therefore the computational bottleneck for any trace workload, in whichM � N .
By contrast, a simulation of asingle cache sizewould requireO(M logN) time for practical removal policies.

3.1 Fast Simultaneous Simulation

In this section we briefly outline an algorithm which computes�t for each ofM references inO(M logN) time
andO(N) memory by making a single pass over the input sequence. Because it allows us to compute$A(s) at the
additional cost of sorting the output, in effect this algorithm enables us to simulateall cache sizes of possible interest
simultaneously. An efficient method is necessary in order to process real traces, in whichM andN can both exceed
10 million [27]. To make the issue concrete, whereas a na¨ıveO(MN) priority depth algorithm required over five days
to process 11.6 million requests for 5.25 million documents, ourO(M logN) algorithm completed the job in roughly
three minutes on the same computer.

In order for our method to work, we require that the priority functionP corresponding to the cache’s removal
policy satisfy an additional constraint: The relative priority of two documents may only change when one of them
is referenced. This is not an overly restrictive assumption; indeed, some researchers regard it as a requirement for a
practical replacement policy, because it permits requests to be processed in logarithmic time [8].

We represent documents in the setDt as nodes of a binary tree, where an inorder traversal visits document records
in ascending priority. We require one node per document, hence theO(N) memory requirement. At each node we store
the aggregate size of all documents in the right (higher-priority) subtree; we can therefore recover�t(i) by traversing
the path from documenti’s node to the root. To process a request, we output the referenced document’s priority depth,
remove the corresponding node from the tree, adjust its priority, and re-insert it. Tree nodes are allocated in anN -long
array indexed by document ID, so locating a node requiresO(1) time. All of the other operations requireO(logN)
time, for a total ofO(M logN) time to process the entire input sequence.

always be cached (as in Irani’s discussion of variable-page-size caching [23]). Optional-placement Perfect LFU is optimal for infinite sequences
of independent references from a fixed distribution, if document sizes are uniform. Limited empirical evidence, however, suggests that optional-
placement variants of LFU perform worse than their mandatory-placement counterparts on real Web workloads [27]; the subject has not been
investigated thoroughly. GD-Size [14] and mandatory-placement variants of LFU such as GDSF [4], swLFU [26, 27], and LUV [8] do not satisfy
the inclusion property, and therefore the one-pass simulation methods described in Section 3.1 cannot be applied to them.
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Table 5: Traces derived from access logs recorded at six NLANR sites, 1–28 March 1999. Run times shown are
wall-clock times to compute given quantities, in seconds. The run times sum to under four hours, ten minutes.

BO1 PA PB SD SV UC BO1 PA PB SD SV UC

# docs (millions) 5.25 4.90 9.82 8.64 9.38 7.62 run times (sec):
# reqs (millions) 11.58 13.55 19.80 37.09 23.74 26.02 stack distances 249 341 403 1117 581 716
maxSi (MB) 218.6 104.9 218.7 175.0 107.4 175.0 priority depths 230 288 399 872 547 587
unique bytes (billions) 104.5 76.0 188.3 204.9 159.1 150.1 HR(size) 309 414 497 1439 712 903
bytes req’d (billions) 236.2 220.7 383.1 620.3 412.9 397.5 BHR(size) 314 423 522 1461 740 913

For all removal policies of practical interest, a document’s priority onlyincreaseswhen it is accessed. A simple
binary tree would therefore quickly degenerate into a linked list, so we use a splay tree to ensure (amortized) loga-
rithmic time per operation [35, 28]. It is possible to maintain the invariant that each tree node stores the total size of
all documents represented in its right subtree during insertions, deletions, and “splay” operations without altering the
overall asymptotic time or memory complexity of the standard splay tree algorithm. A simple ANSI C implementation
of our priority depth algorithm is available [25].

We devised our efficient priority depth algorithm before we became aware of similar techniques dating back to the
mid-1970s [11, 32, 37], which appear not to be widely used in Web-related literature. To the best of our knowledge, no
recent papers containing stack depth analyses (e.g., References [1, 2, 7, 10, 9, 29]) cite the most important papers on
efficient stack distance computation (References [11, 32, 37]). The idea of using splay trees as we do is suggested by
Thompson, who used AVL trees in his own work [37]. Our algorithm is simpler than those described in the processor-
memory-caching literature because we ignore associativity considerations and assume that cached data is read-only. It
is more general and better suited to Web caching because it handles variable document sizes, arbitrary miss costs, and
a wide range of optional-placement cache policies.

3.2 Numerical Results

To illustrate the flexibility and efficiency of our priority depth algorithm, we used it to computecompletestack distance
transformations and LRU hit rates atall cache sizes for six four-week NLANR [17] Web cache traces summarized
in Table 5 and described more fully in Reference [27]. Similarly detailed results rarely appear in the Web caching
literature.4 Perhaps this is because such complete and exact calculations have been viewed as computationally infea-
sible. All of the results presented here, however, were computed in a total of under five hours on an unspectacular
machine—far less time than was required to download our raw trace data from NLANR.5 Finally, we describe a tim-
ing test conducted outside of our research group that shows that our priority depth implementation computes stack
distances substantially faster than two alternatives.

Figure 4 shows LRU hit rates and byte hit rates at all cache sizes for our six Web traces, computed by our splay-
tree-based priority depth algorithm. For the workloads considered, exact performance measurements at all cache sizes
appear to offer littlevisual advantage over the customary technique of interpolating measurements taken at regular
intervals (e.g., 1GB, 2GB, 4GB, etc.) via single-cache-size simulation. However, since exact hit rate functions may be
obtained at very modest computational cost, it is not clear that a less precise approach offers any advantage, either.

LRU stack distance, a standard measure of temporal locality in symbolic reference streams, is a special-case output
of our priority depth algorithm when all document sizes are 1. Mattson et al. is the classic reference on stack distance
analysis [30]; Almeida et al. [2] and Arlitt & Williamson [7] apply the technique to Web traces. The frequency
distribution of stack distances from our six traces is shown on the left in Figure 3. Frequency distributions visually
exaggerate temporal locality, particularly when (as is common in the literature) the horizontal axis is truncated at a
shallow depth. The situation does not improve if we aggregate the observed stack distances into constant-width bins,
because as Arlitt & Williamson have noted, the visual impression of temporal locality created depends on the bin sizes
we choose [7]. Perhaps the clearest and least ambiguous way to present these data is with a cumulative distribution,
as on the right in Figure 3, from which order statistics such as the median and quartile stack distances are directly
apparent.

4Almeida et al. present complete stack distance traces for four Web server workloads ranging in size from 28,000–80,000 requests [1, 2]. They
furthermore note that the marginal distribution of a stack distance trace is related to cache miss rate, but their discussion assumes uniform document
sizes. Arlitt et al. present the only stack depth analysis of large traces (up to 1.35 billion references) of which we are aware [5, 6].

5We used a Dell Poweredge 6300 server with four 450-MHz Intel Pentium II Xeon processors and 512 MB of RAM running Linux kernel
2.2.12-20smp.
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Figure 3: Frequency distribution (left) and cumulative distribution (right) of LRU stack distances in six traces. Com-
pare these data with Table 10 and Figure 8 of Arlitt & Jin [6]; temporal locality is far weaker in our network cache
workload than in their very large server workload.
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Figure 4: Exact hit rates (left) and byte hit rates (right) as function of cache size for six large traces, LRU removal.
Fast simultaneous simulation method yields correct results only for cache sizes� largest object size in a trace; smaller
cache sizes not shown.

Martin Arlitt of Hewlett-Packard Labs recently compared the speed of three stack distance programs: The first
author’s publicly-available implementation of the fast splay-tree-based priority depth algorithm of Section 3.1 [25],
a simpleO(MN) linked-list implementation supplied with Kelly’s fast code, and Arlitt’s own program [3]. Arlitt’s
implementation divides the LRU stack into a number of equal-sized “bins,” each of which contains 50 items. The
advantage of this approach is that the worst-case number of operations to process a reference is proportional to the
number of bins plus the number of items in a bin, rather than to the number of items. In the asymptotic analysis,
however, this strategy still requiresO(MN) time to process its entire input. The trace used for this test is the largest
of which we are aware: 1,352,804,108 references to 2,770,108 unique items derived from the World Cup Web server
workload described in Reference [6] and available from the Web Characterization Repository [21]. Temporal locality
is strong in this trace (the median stack depth is 179); it is therefore “friendly” to the simple linked-list implementation.
Run times were as follows: 446 hours 24 minutes for the simple list, 45:52 for the bin/list hybrid, and 18:40 for the
splay tree algorithm. Breaking the LRU stack into bins yields a nearly tenfold speedup over a simple linked list (from
roughly 18 days to under two days). The splay-tree algorithm runs 24 times faster than the linked list and more than
twice as fast as the hybrid list/bin approach. Other results, too tentative and incomplete to report here, confirm our
intuiton that the performance advantages of our splay-tree algorithm are inversely related to locality. Arlitt found that
both the list and bin/list implementations outperform the splay tree code on a Web server trace with very high locality,
whereas the splay tree offers very dramatic advantages on a Web proxy workload with relatively low temporal locality.
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4 Discussion

The main contribution of Section 2 is to generalize a familiar principle—the five minute rule—to multi-level branching
storage hierarchies. Simple rules of thumb such as this often support illuminating back-of-the-envelope calculations;
see Gray & Shenoy [20] for a good recent summary of time-tested rules of thumb updated for the capabilities and costs
of modern technologies. The results of Section 2.2 suggest that under some circumstances centralized design may yield
few benefits, because decentralized computation may lead to equally good outcomes. More sophisticated results of
a similar flavor can be found in the literature on microeconomic approaches to distributed resource allocation [38].
The main contribution of Section 3 is to present a fast simultaneous simulation technique adopted from the processor-
memory literature but more suitable to Web-related research, and demonstrate its application to the optimal cache
sizing problem.

The idealized model of Section 2 is useful for computing optimal cache sizes only to the extent that its underlying
workload and cost assumptions are valid. Breslau et al. have argued that the assumption of independent references is
approximately correct [13], but Almeida et al. have described several shortcomings of this model and have proposed
more accurate alternatives [1, 2]. Section 2 assumes homogeneous lower-level caches; Wolman et al. explore the
implications of sharing among heterogeneous client aggregates, and furthermore consider document modification
rates, which we have ignored [39, 40]. The main formal weakness of our hierarchical caching model is the simple
linear cost model. In many cases of practical interest, memory and bandwidth costs are step functions that do not
admit accurate linear approximations. From a practical standpoint, another serious weakness is that we ignore the
low-level aspects of Web operation. Feldmann et al. report that details such as bandwidth heterogeneity and aborted
transfers can negate the bandwidth savings that proxy caching would otherwise yield [16]. An important goal of our
ongoing work is to determine how much detail can be added to the model of Section 2 without sacrificing scalable
decentralized computation of optimal cache sizes.

The major limitation of the single-cache optimization method of Section 3 is that in its present form it cannot ac-
count for document expirations. However, the problem of modeling a cache that evicts stale documents is quite similar
to that of modeling write invalidations in processor cache hierarchies, and the stack algorithm literature considers this
problem [30, 32, 37, 36]. Our simulator implementation [25] does not currently support document expirations, but it
is likely that this feature will be added to support our future research.
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