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ABSTRACT
We present a method for automatically extracting from a
running system an indexable signature that distills the es-
sential characteristic from a system state and that can be
subjected to automated clustering and similarity-based re-
trieval to identify when an observed system state is simi-
lar to a previously-observed state. This allows operators to
identify and quantify the frequency of recurrent problems, to
leverage previous diagnostic efforts, and to establish whether
problems seen at different installations of the same site are
similar or distinct. We show that the naive approach to
constructing these signatures based on simply recording the
actual “raw” values of collected measurements is ineffective,
leading us to a more sophisticated approach based on sta-
tistical modeling and inference. Our method requires only
that the system’s metric of merit (such as average trans-
action response time) as well as a collection of lower-level
operational metrics be collected, as is done by existing com-
mercial monitoring tools. Even if the traces have no annota-
tions of prior diagnoses of observed incidents (as is typical),
our technique successfully clusters system states correspond-
ing to similar problems, allowing diagnosticians to identify
recurring problems and to characterize the “syndrome” of a
group of problems. We validate our approach on both syn-
thetic traces and several weeks of production traces from
a customer-facing geoplexed 24 × 7 system; in the latter
case, our approach identified a recurring problem that had
required extensive manual diagnosis, and also aided the op-
erators in correcting a previous misdiagnosis of a different
problem.
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“Those who cannot remember the past are
condemned to repeat it.” — George Santayana

1. INTRODUCTION
When complex software systems misbehave—whether they

suffer a partial failure, violate an established service-level ob-
jective (SLO), or otherwise respond in an unexpected way
to workload—understanding the likely causes of the problem
can speed repair. While a variety of problems can be solved
by simple mechanisms such as rebooting [3], many cannot,
including problems related to a misallocation or shortage of
resources that leads to a persistent performance problem or
other anomaly that can be addressed only by a nontrivial
configuration change. Understanding and documenting the
likely causes of such problems is difficult because they often
emerge from the behavior of a collection of low-level metrics
such as CPU load, disk I/O rates, etc., and therefore sim-
ple “rules of thumb” focusing on a single metric are usually
misleading [5].

Furthermore, today there is no systematic way to leverage
past diagnostic efforts when a problem arises, even though
such efforts may be expensive and are on the critical path of
continued system operation. To that end we would like to
be able to recognize and retrieve similar problem instances
from the past. If the problem was previously resolved, we
can try to justify the diagnosis and perhaps even apply the
repair actions. Even if the problem remained unresolved,
we could gather statistics regarding the frequency or even
periodicity of the recurrence of that problem, accumulating
necessary information for prioritizing or escalating diagnosis



and repair efforts. In order to do these things, we must be
able to extract from the system an indexable description that
both distills the essential system state associated with the
problem and that can be formally manipulated to facilitate
automated clustering and similarity based search. Meeting
these requirements would enable matching an observed be-
havior against a database of previously observed ones both
for retrieval and determining whether the problem is a re-
current one.

Our contributions are as follows:

1. A formal representation or signature that captures the
essential state of an enterprise system and is effec-
tive for clustering and similarity based retrieval using
known techniques from pattern recognition and infor-
mation retrieval [6]. We show that the construction
of an effective signature is nontrivial—the naive ap-
proach yields poor clustering and retrieval behaviors,
but good results are obtained with an approach based
on our prior successful use of statistical methods to
capture relationships between low-level system metrics
and high-level behaviors [22, 5].

2. The use of this representation to cluster and identify
performance problems, and compute statistics about
the frequency of their occurrence. This in turn lets
an operator distinguish a recurrent condition from a
transient or first-time condition, and even annotate the
corresponding signature(s) with a repair procedure or
other explanation for future reference when the same
problem recurs.

3. A demonstration of how the representation and clus-
tering can be used across different sites to aid diagno-
sis.

Our experimental validation is conducted on a realistic
testbed with injected performance faults, and on production
traces from several weeks of operation of a real customer-
facing Web application in our organization.

The rest of the paper is organized as follows. Section 2
outlines our approach and methodology and provides some
background on the statistical modeling technique used. Sec-
tion 3 describes both our controlled testbed and the produc-
tion traces used in our experiments. Section 4 presents our
results. Specifically, Section 4.1 compares three methods of
signature construction. Section 4.2 illustrates the use of our
method for identifying recurrent problems in a real produc-
tion environment. Section 4.3 shows that signatures can be
leveraged across sites. In Section 5 we review related work.
We discuss some caveats and ramifications in Section 6 and
offer concluding remarks in Section 7.

2. PROBLEM STATEMENT, APPROACH,
AND METHODOLOGY

We address three problems:

1. Signature construction: What representation should
we use to capture the essentials of the system state
and enable clustering (grouping) and retrieval?

2. Discovery and exploration: How do we facilitate the
identification of recurrent issues and the retrieval of
similar problems?

3. Evaluation methodology:

(a) How can we determine that our signatures are in-
deed capturing the system state, that is, that the
information contained in them effectively serves
as a “fingerprint” of a high-level system condition
of interest such as a performance anomaly?

(b) How can we verify that clustering (based on these
signatures) is meaningful, that is, that signatures
that are similar according to some similarity met-
ric are fingerprints of problems whose diagnoses
are similar?

(c) How can we evaluate the quality of retrieval, that
is, how can we verify that a query to retrieve sim-
ilar signatures is returning a high percentage of
actual matches with a low false positive rate?

The evaluation in particular has high practical importance:
since our intent is to facilitate the exploration of the past
history of the system to identify recurrent problems and
similar situations in different systems, the users of our tech-
nology (system operators) must be confident that problem
instances reported as belonging to the same group or cluster
are indeed related. This is why our evaluation criteria are
defined operationally, e.g., to say that clustering is “mean-
ingful” is to say that similar signatures do indeed identify
problems with similar root-cause diagnoses in practice.

Without loss of generality, when we refer to an “Internet
service” in the following discussion, we mean an external-
request-driven, interactive application based on the stan-
dard three-tier architecture [7] of a stateless Web server, a
tier containing application logic possibly running on top of a
middleware platform, and a persistence tier containing one
or more databases.

2.1 Sketch of the Approach
We assume the system’s operational policy defines one

or more reference metrics (average response time, request
throughput, etc.) and a threshold on each of these metrics
(or a threshold over a collection of metrics). These reference
metrics and the thresholds define a service level objective

or SLO. We say the system is in violation of its SLO if
the metric(s) exceed the policy threshold, and in compliance

with its SLO otherwise. The SLO may be defined as an
aggregate, for example, “at least 60% of requests during a
5-minute interval have a response time less than T”.1 Our
ultimate objective is to understand the underlying causes of
high-level system behavior and how these causes manifest
as SLO violation or compliance. We concentrate on the
questions stated above of identifying recurrent performance
issues, and the automatic retrieval of similar problems.

We begin by evaluating several candidates for represen-
tations of the essentials of the system state, which we call
signatures. We then evaluate the use of automated clus-
tering [6] for grouping SLO violations in terms of their sig-
natures, identifying recurrent problems, and exposing col-
lections of metrics that together can become a syndrome

of a performance problem. We then evaluate information
retrieval techniques for finding signatures based on simi-
larity [20]. This ability will enable an operator to search

1Note that even SLOs expressed in terms of performance are
deeply connected to availability, because availability prob-
lems often manifest early as performance problems and be-
cause understanding how different parts of the system affect
availability is a similar problem to understanding how dif-
ferent parts of the system affect high-level performance.



databases indexed with signatures and find past occurrences
of similar problems. This in turn will allow the operator to
leverage past diagnoses and repair efforts.

In our evaluation we will use data from traces collected
from both a realistic testbed and workload, and from a pro-
duction system that has suffered several SLO violations over
a period of three months. In the case of the testbed we run
the system and periodically inject specific faults in order to
trigger SLO violations. The testbed enables us to annotate
each SLO violation with its root cause, providing ground
truth for verifying the results of the automated clustering
and of similarity retrieval. For the real application, we have
annotations for only a subset of the instances of SLO viola-
tions, and therefore it is only in these instances that we will
verify the use of information retrieval techniques. We will
define in Section 2.3 a notion called purity that will enable
us to evaluate the use clustering even in cases with partial
annotations.

Note that whether annotations are available or not, clus-
tering enables us to group SLO violations in terms of similar
signatures, and discover different types of SLO violation in-
stances, recurrent problems, etc. Similarly, retrieval enables
us to find and leverage past diagnoses and repairs. For ex-
ample, as we report in Sections 4.2 and 4.3, we find that if
the operators of the production system had had access to our
technology, a problem that was initially identified as unique
but later found to be a recurrence of a prior problem could
have been immediately identified as such. Also, one incident
that was initially classified as a recurring problem exhibited
a very dissimilar signature (using our method) than the al-
leged original problem; manual rediagnosis showed that our
method was correct, and indeed the second problem was not
a repeated manifestation of the first problem.

2.2 Signatures: Capturing System State
The first issue we address is that of a representation that

captures those aspects of system state that serve as a “fin-
gerprint” of a particular system condition. Our goal is to
capture the essential system state that contributes to SLO
violation or compliance, and to do so using a representa-
tion that provides information useful in the diagnosis of
this state, in clustering (grouping) of this state with sim-
ilar states, and in the retrieval process. We will call such a
representation a signature of the system state. We make the
following assumptions:

1. We assume that we can continuously measure whether
the system is in violation or compliance at any given
time with respect to the SLO. This can be done, for
example, by examining server logs containing timing
information or by running probes.

2. We assume that we can continuously measure a col-
lection of metrics that characterize the “low level” op-
eration of the system, such as CPU utilization, queue
lengths, I/O latencies, etc. This information can come
from OS facilities, from commercial operations tools
such as HP OpenView, from instrumented middleware
(as was done in [4]), from server logs, etc.

Since we can by assumption collect low-level system met-
rics, it would seem reasonable as a starting point to simply
use these raw values as the signature. As will be seen in
Section 4.1, our experiments allow us to conclude that sig-
natures based on using raw values are not as effective as

an approach that builds on our prior work on metric attri-
bution [22, 5]. In that work we automatically build models
that identify the set of low-level system and application met-
rics that correlate with each particular instance of the SLO
state. We hypothesize that this attribution information is
the key to constructing signatures that correctly character-
ize and distinguish different causes of SLO violations. We
therefore spend the rest of this section reviewing the rele-
vant aspects of that work and how it relates to signature
construction.

The metric attribution process goes as follows. The in-
put is a data log containing vectors ~M of low-level system
and application metrics and the state Y (compliance or vi-
olation) of the system. We divide time into regular epochs
(e.g., five-minute intervals) and we have one such vector for

each epoch. Each element mi of the ~M for an epoch contains
the average value of the specific metric over the epoch, and
Y contains a discrete value depending on whether the SLO
was violated or not. Relying on pattern classification tech-
niques and probabilistic modeling, the algorithms in [22, 5]
yield as output an ensemble of probabilistic models charac-
terizing the behavior of the metrics during intervals of both
compliance and violation.

Each one of these models essentially represents the rela-
tionship between the metrics and the SLO state as a joint
probability distribution. We use the Tree-Augmented Naive
Bayes models (TAN) to represent the joint probability dis-
tribution. Out of this distribution we can extract a char-
acterization of each metric and its contribution to the SLO
state. Let the term P (mi|mpi

, s−) represent the resulting
probabilistic model for metric mi under violations (s−), and
let P (mi|mpi

, s+), represent a probabilistic model for the
same metric under an SLO state of compliance. The term
mpi

represents a metric directly correlated with metric mi

in the Bayesian network representation; interested readers
should consult [5]. Using these models we can identify for a

given instance of ~M , which metrics (because of their values)
are more likely to come from their characteristic distribution
during violation. This process is called metric attribution.
Formally, for a given instance, a metric is flagged as “at-
tributable” if:

P (mi|mpi
, s
−) > P (mi|mpi

, s
+), (1)

that is, mi’s value is closer to its characteristic value for the
“violation” distribution than to its characteristic value for
the “compliance” distribution. The interpretation is that
the observed value of mi is more likely to come from the
distribution where the SLO state Y is that of violation. In
addition, the methods in [5, 22] are able to identify metrics
that yield no information on the SLO state. We call such
metrics irrelevant.

The process of constructing signatures is as follows. Given
a system trace, we follow the procedure detailed in [22] to
continuously learn an ensemble of models; for every epoch, a
subset of models from the ensemble is selected by choosing
models with a high accuracy score in estimating the SLO
state over a window in the past (the particular score we
use is called the Brier score, which is defined and explained
in [22]). From those models we extract a list of metrics
whose values are “abnormal” (resp. “normal”), that is, the
values are identified as being closer to their characteristic



values during periods of SLO violation (resp. compliance).2

We then extract the signatures, by yielding a transformed
data log containing a set of vectors ~S where:

• entry si = 1 if metric i is selected by the models and
its value is deemed abnormal. We say the metric is
attributed;

• entry si = −1 if the metric is selected by the subset
of models but is not found to be “abnormal”. We say
that the metric is not attributed;

• entry si = 0 if the metric is not selected by any of the
models at all—we say that the metric is irrelevant to
the SLO state.

Each vector ~S is then a signature for that epoch. Note
that we produce a signature for every epoch including those
in which the SLO was not violated. The intended semantics
of a signature are as follows. A metric receives a value of 1
if its raw value is more likely to come from the distribution
of values associated with SLO violation (i.e., Inequality 1
is true). These semantics hold for both periods of violation
and compliance. As will become apparent, these signatures
are useful both for characterization of the behavior of the
system in compliance periods, and in violation periods.

Thus, given system traces collected on an Internet service,
our approach generates a database consisting of the signa-
tures describing the system state, coupled with the SLO
state.

2.3 Clustering Signatures
The objective when applying clustering to a database of

signatures is to find the natural groupings or clusters of these
signatures that characterize different performance problems
and normal operation regimes. The output of clustering is a
set of clusters, plus a characterization of each cluster center.
By inspecting the actual elements of the signature database
in each cluster we can identify different regions of normality
as well as recurrent problems. In addition, the centroid of
a cluster of problem behaviors can be used as a syndrome

for the problem, since it highlights the metrics that are in
a sense characteristic of a set of manifestations of the same
problem.

In order to render the description above operational, we
need to specify a distance metric and a clustering algo-
rithm that minimizes the distortion (sum of distances of
each signature to its nearest cluster center). In this paper
we explored both the L1 and L2 norms as distance met-
rics (Lp = p

√
∑

i
|xi

1 − xi
2|

p). As our basic clustering al-
gorithm we will use the standard iterative algorithms [6]:
k-medians for the L1 norm, and k-means for the L2 norm.
These algorithms find k cluster centers (medians and mean
respectively) that minimize the distortion as defined above.
We will report only on the results based on the L1 norm.
Although the results for the L2 norm were quantitatively
different, they were qualitatively similar and offered no new
insight as far as making decisions about the signature rep-
resentation. In addition the centers of the clusters in the
k-medians case are represented by actual signatures that
are members of the cluster.3

2Mechanisms for fusing the information from different mod-
els are described in detail in [22].
3A complete analysis of these norms is well beyond the scope
of this paper and will be explored in future work.

Ideally, we would like each cluster to contain signatures
belonging to a single class of performance problems (SLO vi-
olations), or else signatures belonging only to periods of SLO
compliance. We introduce a score determining the purity of
a clustering to formalize this intuition. In the case where we
have no annotations, we distinguish signatures only in terms
of their corresponding SLO state (compliance or violation).
We count the number of signatures in each cluster that de-
scribe epochs of compliance and the number that describe
epochs of violations. These counts are then normalized by
the total number of signatures (the sum of the two), to pro-
duce probability estimates pc and pv (pc + pv = 1). These
are used in turn to score “purity” of each cluster. A cluster
is pure if it contains signatures of only compliance or only
violation epochs, i.e., if either pc or pv are 1. With these
probabilities, we compute the entropy of each cluster, given
as: H = −pclog2(pc) − pvlog2(pv). For a pure cluster, en-
tropy is 0, which is the best result. The entropy is 1 when
the cluster is evenly split between the two types of signatures
(pc = pv = 0.5). It is straightforward to generalize the def-
inition of purity score when there are labels distinguishing
different annotations corresponding to SLO violations.

We compute the overall average entropy of the all of the
clusters weighted by the normalized cluster size to give us a
measure of purity of the clustering result. Average entropy
close to 0 is a strong indication that indeed the signatures
captured meaningful characteristics of the periods of vio-
lations in contrast to periods of non-violation. Indeed, we
will use the purity score to compare different proposals for
generating signatures (see Figures 2, and 3).

In order to include the purity information in the cluster-
ing process, we added an iterative loop using the standard
k-medians (k-means) as a building block.4 In the first step
k-medians is applied to the whole database D of signatures,
yielding k clusters as its output. The purity score is ap-
plied to each one of these clusters. If the score is above an
input threshold tp, then the procedure stops. Otherwise,
k-medians is applied once more to the signatures for those
clusters that didn’t pass the test. There are two parameters
used to control these process: a number k which is the max-
imum of clusters expected in each application of k-medians,
and the total ktot of clusters expected. The process stops
when ktot is reached. There are a number of procedures for
determining these parameters, including score metrics with
regularization components and search procedures which in-
crease their value gradually until no significant improvement
in the clustering distortion is achieved [6]. In this paper
we explore the space of ktot and set k = 5. These values
were appropriate for evaluating the power of the signature
extraction process and displaying its properties. We also
checked the amount by which our algorithm will affect the
minimization in distortion with regards to a straightforward
application of the k-medians algorithm and found it to be
negligible.

When we compare different candidate methods of signa-
ture construction in Section 4.1, we will use the purity of the
clustering process as providing evidence of the information
contained in each approach. Signatures that enable cluster-
ings with a higher degree of purity (lower entropy) will be
favored as they clearly contain enough information to enable

4In the rest of the description we will mention only k-
medians with the understanding that when the L2 norm
is used the actual algorithm is k-means.



the automated grouping of the different SLO related states
(see Section 4.1.1).

2.4 Retrieving Signatures
Using information retrieval techniques we can retrieve from

a database all previous instances that are “similar” to a spe-
cific signature S. This capability enables us to leverage past
diagnoses and repairs and in general all information about
previous instances displaying similar characteristics (as cap-
tured in the signature vector).

As in the case of clustering, similarity is formalized in the
context of a distance metric, and as in that case, we explored
both L1 and L2 norms, displaying only the results for the
L1 norm.

Our evaluation will follow the standard measures from the
machine learning and information retrieval community [20].
The evaluation focuses on the quality of the retrieval with
respect to the similarity and the quality of the signatures.
If a specific annotation A is associated with a (set of) signa-
ture(s) S we expect that when similar signatures are used,
the retrieval process yields signatures also associated with
annotation A. Therefore, in evaluating our retrieval results,
we consider only those signatures associated with annota-
tions (see Sections 3.1 and 3.3).

Formally the process of retrieval proceeds as follows: given
a signature, return the N closest signatures to it from the
existing signature database. Given known annotations both
to the query signature and the signatures in the database,
we compute the two standard measures of retrieval quality:
Precision and Recall.

For a given query, precision measures what fraction of
the N returned items have the matching annotation (1.0 is
perfect); recall measures the percentage of signatures in the
database with the same annotation as the query that are
actually retrieved. Note that the maximal value of 1.0 is
achieved only when N is at least equal to the number of
signatures with the same annotation as the query signature.
As N increases recall goes up but precision typically goes
down, as it becomes harder to retrieve only signatures that
have a matching annotation.

Following the common practice in the information retrieval
community, we increase N and measure the precision/recall
pair, until we achieve a recall of 1.0. We then plot precision
as a function of recall, to produce the Precision-Recall curve
(see Figure 4 for an example). A perfect precision/recall
curve has precision of 1.0 for all values of recall. As in the
case of clustering, we will use precision and recall to evaluate
the different proposals for a signature (see Section 4.1.2).

3. TRACE COLLECTION AND CHARAC-
TERIZATION

Our empirical results are based on large and detailed traces
collected from two distributed applications, one serving syn-
thetic workloads in a controlled laboratory environment and
the other serving real customers in a globally-distributed
production environment. These two traces allow us to val-
idate our methods in complementary ways. The testbed
trace is annotated with known root causes of performance
problems. Annotated data allows us to evaluate our signature-
based diagnostic methods in terms of simple information-
retrieval performance measures (e.g., precision, recall). The
production trace is not annotated as well or as thoroughly

as the testbed trace. By treating it as an unlabeled data
set, we can use it to evaluate the effectiveness of the sig-
nature clustering, which in turn provides identification of
the “syndromes” describing performance problems. Since
we do have annotations for some of the signatures in the
production trace, we can further validate the accuracy of
our retrieval on real-world data.

Our traces record two kinds of data about each appli-
cation: application-level performance data for our models’
SLO indicator, and system-level resource utilization metrics
(e.g., CPU utilization). Our tools measure the latter as av-
erages in non-overlapping windows.

3.1 Testbed Traces
Our controlled experiments use the popular PetStore e-

commerce sample application, which implements an elec-
tronic storefront with browsing, shopping cart and checkout.
Each tier (Web, J2EE, database) runs on a separate HP
NetServer LPr server (500 MHz Pentium II, 512 MB RAM,
9 GB disk, 100 Mbps network cards, Windows 2000 Server
SP4) connected by a switched 100 Mbps full-duplex network.
Apache’s extended HTTPD log format provides us with
per-transaction response times and we obtain system-level
metrics from HP OpenView Operations Agent running on
each host. A detailed description of our testbed’s hardware,
software, networking, and workload generation is available
in [22]. We collect 62 individual metrics at 15-second in-
tervals and aggregate them into one-minute windows con-
taining their means and variances. We pre-process our raw
measurements from the Apache logs to average transaction
response times over the same windows and then join all data
from the same application into a single trace for subsequent
analysis.

We use the standard load generator httperf [11] to gen-
erate workloads in which simulated clients enter the site,
browse merchandise, add items to a shopping cart, and check-
out, with tunable probabilities governing the transition from
“browse item” to “add item to cart” (probability Pb) and
from “add item to cart” to “checkout cart” (probability Pc).
We measure the average response time of client requests in
each 1 minute window and require that the average response
time stay below 100 msec to maintain SLO compliance. We
created three handcrafted fault loads designed to cause SLO
violations. In the first, we alternate one-hour periods of
Pb = Pc = 0.7 with one-hour periods of Pb = Pc = 1.0 (a
“BuySpree”). In the second, we execute a parasitic program
on the database server machine that consumes about 30% of
the available CPU during alternating one hour intervals, but
no other major resources (“DBCPU contention”). The third
faultload does the same thing but on the application server
rather than the database server (“APPCPU contention”).

Note that these faultloads simulate both faults due to in-
ternal problems (CPU contention) and faults resulting from
changes in workload (extreme buying plateaus during Buy-
Spree). In both cases, the injected faults correspond to an-

notations of known root causes of performance problems in
the final processed trace that we employ in our analyses and
evaluations.

3.2 Production System Traces
Our second trace is based on measurements collected at

several key points in a globally-distributed application that
we call “FT” for confidentiality reasons. FT serves business-
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Figure 1: Architecture of the “FT” production system. FT is a globally-distributed multi-tiered application
with regional hubs in the Americas, Europe/Middle East/Africa, and Asia. Different organizations are
responsible for the FT application and the application server on which it runs; the latter is indicated by
a shaded dashed rectangle in the figure. FT has a globally-distributed main database and an additional
auxiliary database, managed by a third organization, shown in the lower right.

# # # RAM
Region Role hosts CPUs disks (GB)

Amer App srvr 2 16 16 64
Amer DB srvr 2 12 18 32

EMEA App srvr 3 16 10 32
EMEA DB srvr 2 6 ? 16

Asia App srvr 2 12 63/22 20
Asia DB srvr 2 6 8 16

Table 1: Key hardware and software components in
FT. The two app server hosts in Asia have different
numbers of disks. All app servers ran WebLogic and
all DB servers ran Oracle 9i. Most of the DB servers
had 550 MHz CPUs.

critical customers on six continents 24 hours per day, 365 days
per year. Its system architecture therefore incorporates re-
dundancy and failover features both locally and globally, as
shown in Figure 1. Table 1 summarizes key hardware and
software components in FT, and the transaction volumes
recorded by our traces (Table 2) demonstrate the non-trivial
workloads of the FT installations. All hosts at the applica-
tion server and database server tiers are HP 9000/800 servers
running the HP-UX B.11.11 operating system, except that
one database server in Asia is an HP rp7410 server.

HP OpenView Performance Agent (OVPA) provides sys-
tem utilization metrics for application server and database
hosts. FT is instrumented at the application level with
ARM [18], providing transaction response times. OVPA and

transactions/min % SLO
Server Dates mean 95 % max viol

AM1 12/14–1/14 208.6 456.4 1,387.2 23.6
AM2 12/13–2/08 207.9 458.0 977.4 22.5

Asia1 12/17–1/05 39.9 118.2 458.4 26.2
Asia2 12/17–1/30 52.1 172.8 775.0 13.1

Table 2: Summary of FT application traces. The
last column is the percentage of transactions which
violated their SLO in the data. Trace collection be-
gan in late 2004 and ended in early 2005. “AM”
and “Asia” servers were located in the Americas
and Asia, respectively.

ARM data are aggregated into 5-minute windows in the pro-
cessed traces we analyze. We have traces from the Americas
and Asia/Pacific hubs but not from Europe. Table 2 sum-
marizes our FT traces. Our criterion for SLO violation is
whether the average response time over all transactions in a
5-minute period exceeded 4 seconds.

FT is well suited to our interests because its requirements
include high performance as well as high availability. Fur-
thermore performance debugging in FT is particularly chal-
lenging for two reasons. First, different organizations are
responsible for FT itself and for the application server in-
frastructure in which crucial FT components run (the latter
is delimited with a shaded dashed oval in Figure 1); opportu-
nities for inter-organizational finger-pointing abound when
end-to-end performance is poor. Second, FT’s supporting



infrastructure is physically partitioned into three regions
with separate operational staffs. A performance problem
that occurs in the afternoon in each region, for example, will
occur three different times, will appear to be specific to a sin-
gle region each time it occurs, and will demand the attention
of three separate teams of system operators. Cost-effective
performance debugging in FT requires that commonalities
be recognized across regions, across time, and across orga-
nizational boundaries, and that different teams of human
diagnosticians leverage one another’s efforts.

Another attractive feature of our FT traces is that some of
our 5-minute samples are annotated, in the sense that they
correspond to times when we know that a specific perfor-
mance problem occurred whose root cause was subsequently
diagnosed. In the next section we describe this problem,
which illustrates both the challenges that we face and the
opportunities that our approach attempts to exploit.

3.3 A Diagnosed Problem: Insufficient Database
Connections (IDC)

The FT production system experienced a recurrent per-
formance problem mainly in the Americas domain during
December 2004 and January 2005. During episodes of this
problem, business-critical customers experienced latencies
of several minutes on transactions that normally complete
within seconds. The operators who first detected the prob-
lem described it as “stuck threads” in the application server
because WebLogic issued messages in a log file each time
it diagnosed a stuck thread. There can be many causes for
threads to become stuck, therefore it is necessary to look for
other symptoms to diagnose the cause.

Due to the severity of the problem, a joint task force
comprising both FT application developers and application
server administrators quickly formed to address it. This
team eventually diagnosed and repaired the root cause of the
performance problem, thus providing annotations for data
points in our traces corresponding to episodes. Our account
of the problem is based on detailed bug-tracking database
entries and e-mail correspondence among the troubleshoot-
ers.

After several weeks of debugging, the problem was traced
to an overly-small pool of database connections. Under
heavy load, application threads sometimes had to wait more
than 10 minutes to acquire a connection, and were therefore
flagged as “stuck threads” by WebLogic. The problem was
solved by increasing the connection pool size by 25%. We
use the annotation IDC (Insufficient Database Connections)
to refer to this problem.

4. RESULTS
To substantiate our claims, we analyze the data collected

from both the experimental testbed excited with synthetic
workloads and from the globally-distributed production en-
vironment described in Section 3. We will use testbed to
identify traces in the first case and FT-trace for the sec-
ond case. For the testbed experiments, we intentionally
injected known faults into the system to cause performance
problems. The testbed trace is therefore reliably annotated

with the appropriate fault per epoch. In the FT-trace

we have only partial annotations, related to one diagnosed
problem, as described in Section 3.3. These annotations as
well as the fact that we have an objective measure of per-
formance as reflected by the SLO state of compliance and

Metric Raw Attr. Raw Value
Name Value & Attr

transaction count 398.00 0 0
gbl app cpu util 97.47 1 97.47
gbl app alive proc 449 0 0
gbl app active proc 357 0 0
gbl app run queue 10.57 1 10.57
gbl app net in packet rate 817 1 817
gbl mem util 54.62 1 54.62
gbl mem user util 26.32 1 26.32
DB1 CPU util 25.96 -1 -25.96

Table 3: Examples of the different signature pro-
posals, showing a subset of the metrics collected in
the production environment. The first column is of
raw values (not normalized to preserve the context
of these metrics), second is metric attribution (with
possible values in {+1, 0,−1}), and third is the prod-
uct of raw values and metric attribution.

violation will provide ground truth against which we can
compare the results of the clustering and retrieval opera-
tions.

4.1 Claim 1: Evaluating Proposals
for Signatures

We evaluate and compare three possible approaches for
creating signatures. Let ~S denote the vector representing
the signature. In all cases the elements si in this vector
correspond to a specific system, application, or workload
metric.

1. Raw values: in this case we represent a signature ~S

using the raw values of the metrics. In other words
~S = ~M . Following common practice in data anal-
ysis [6], we normalize these values to [0, 1], using the
range of values ever seen, to prevent scaling issues from
influencing similarity metrics and clustering.5 This
signature is the most naive and requires no extra pro-
cessing of the traces.

2. Metric attribution: If the attribution as described in
Section 2.2 flags the metric mi to be attributable, then
si = 1, otherwise si = −1. If the metric mi is not even
considered by the models for the attribution process,
then the metric is considered to be irrelevant to the
SLO state, and si = 0. This requires significant com-
putation [5], but we have shown that the computations
could be done on millisecond timescales, allowing this
approach to be used in real time [22].

3. Metric attribution and raw values: This is similar to
the previous approach except that the raw value of the
metric is multiplied by its entry si as explained in the
previous item.6

We evaluate signature-generation approaches based on the
quality of clustering and retrieval operations. We demon-
strate that signatures based on metric attribution are su-
perior for our purposes. This strongly implies that metric
attribution captures information about system state that

5The results with unnormalized values were much worse for
the signatures relying on the raw values.
6The intuition is that the information contained in the value
of the metric is added to the information in the attribution
process.



goes beyond the raw values of the collected metrics, further
validating the results in [22, 5].

We also remark that in our experiments we see that some
metrics are consistently deemed irrelevant for all time epochs
in the traces (e.g., in the FT-trace data the root CPU,
memory and disk utilization on the application server were
never found to be relevant by any model, getting a value of 0
for all epochs). In some cases such an observation can lead
to reducing the number of metrics being collected, although
that loss of information can be detrimental in cases where
a dropped metric becomes relevant in future performance
problems. In addition, because our modeling process rapidly
narrows down to a small number of metrics that are highly
correlated with the SLO state, unless the expense of data
collection is significant, we discourage removing any metrics
from the measurement apparatus.

4.1.1 Signatures and Clustering
We cluster signatures as described in Section 2.3. To eval-

uate the quality of the clusters, we rely on the notion of pu-
rity also described in the same section. Entropy is used as a
measure of purity with low entropy implying that the clus-
ters contain only one type of annotated value (and hence are
of a better quality). In the case of the testbed we have four
annotations: one refers to periods of SLO compliance and
the other three are given by the injected root-cause problem.
For the FT-trace, we use SLO compliance and violation to
check purity. In both cases we vary the number of clusters
and check the variation in the weighted average entropy over
the clusters. Stable entropy across different cluster numbers
is an indication of the robustness of the clustering output.
Figures 2 and 3 show the resultant entropy for each signa-
ture generation method and number of clusters. Note that
in both cases, testbed and FT-trace, the clustering using
attribution information clearly yields purer clusters than the
clustering using only the raw value of the metrics.

Table 4 provides the counts of each annotation with 9
clusters using signatures based on metric attribution on one
of the Americas production systems. Presenting the raw
counts in a cluster provides the application administrator
a sense of the intensity of the pure clusters, giving her the
capability to focus attention on the more prominent clus-
ters of performance problem instances. It is worth noting
that one of the clusters (cluster 3) contained most of the
instances of the IDC problem (75%), which is significant
since the clustering algorithm did not have knowledge of
the IDC annotation of these instances, but only knew that
these were violation instances. Clusters 9 and 10 indicate
that for about 10% of the data the signatures were not able
to separate between periods of violation and compliance.

4.1.2 Signatures and Retrieval
Figure 4 shows precision/recall curves of retrieval exer-

cises performed on the testbed traces using the three ap-
proaches described above for the signatures (see Section 2.4
for the definition of these curves). Precision/recall perfor-
mance is better in direct proportion to the area under its
curve. Clearly the use of attribution provides an informa-
tional advantage, as the curves using attribution are far su-
perior.

Our real-world traces were collected during a period when
a misconfiguration was causing a performance problem (the
“IDC” problem discussed in Section 3). Overall, 269 epochs

Cluster # # vio # compl Entropy
1 552 27 0.27
2 225 0 0.00
3 265 2 0.06
4 0 1304 0.00
5 1 1557 0.00
6 0 1555 0.00
7 0 1302 0.00
8 216 274 0.99
9 100 128 0.99

Table 4: Example of a clustering instance using sig-
natures based on metric attribution. The first col-
umn is a count of number of violation instances, the
second shows the number of compliance instances,
and the third shows the cluster entropy based on
the purity of the cluster. Cluster 3 contains almost
all the instances corresponding to the IDC problem;
201 instances of the 265 violation instances in cluster
3 are annotated as the IDC problem, the remainder
68 IDC annotated instances are distributed between
cluster 1 and 2.

were annotated with this problem. Figure 5 shows the lo-
cation of these epochs over the month long trace, overlaid
on the value of the reference metric (transactions average
response time). It can be seen that the issue occurred inter-
mittently over that period.

Figure 6 shows the precision-recall graphs for retrieving
signatures of the IDC problem. The graph shows that high
precision is achieved for a relatively large range of the recall
value. For example, of the top 100 signatures retrieved, 92
are correctly retrieved, leading to a precision of 92% (and
recall of 34.2%). Such a precision would be more than suffi-
cient for an operator to safely infer that the label attached
to the majority of signatures being retrieved matches the
problem described by the query signature. As in the case
of clustering, these results confirm that the use of attribu-
tion in the generation of signatures provides the required
information.

4.2 Claim 2: Identifying Recurrent Problems
We show that the clustering is meaningful: each cluster

groups signatures that would have the same annotations if
they were provided, and the centroids can be used as the syn-
drome that characterizes that group of signatures. There-
fore clustering can be used to identify recurrent issues and to
gather statistics regarding their frequency and periodicity.

First, based on the results of the Subsection 4.1 we can
assert that the clustering as applied to the data in the FT-

trace is robust. As Figure 3 indicates, the entropy of
the clusters does not change significantly as we increase the
number of clusters, implying that the existing clusters are
being subdivided rather than completely new ones created.
Recall that the entropy is an indication of the “purity” of
the cluster, namely of the elements in the cluster what per-
centage belong to the same annotation.

Second, we demonstrate that the clustering is meaningful
for the case of nine clusters. Table 4 shows the number of
elements belonging to each annotation (compliance or vio-
lation) in each cluster. Note that for most of the clusters,
comprising of 90% of the 5 minute epochs in a trace collected
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Figure 2: Clustering on the annotated data from
testbed. The signature method relying on attribu-
tion performs best and is more stable across differ-
ent number of clusters. X axis denotes the number
of clusters.

over a month, the vast majority of elements in each cluster
correspond to one annotation. In addition these clusters are
different from one another. Table 5 depicts the cluster cen-
troids (with a subset of the metrics) for four of the clusters
from Table 4: clusters 4 and 7, which contained only com-
pliance signatures, and clusters 1 and 3, which contained
mostly violation signatures. Note that the compliance cen-
troids deem most metrics as not attributed with a violation
state (values -1 for metrics), while the violation centroids
deemed some of the metrics as attributed with a violation
state (value 1), and others as either irrelevant (value 0) or
non-attributed. We also see the difference between the cen-
troids of the “violation” clusters (1 and 3) with respect to
the metrics that are deemed attributed. Cluster 1 deemed
the Database tier CPU utilization (DB1 cpubusy) as at-
tributed but assigned a -1 value for the application server
CPU utilization (gbl cpu total util). In contrast, the cen-
troid of cluster 3 deemed the application server CPU as at-
tributed, together with the number of alive processes and
active processes on the application server. As discussed ear-
lier, most members of cluster 3 were labeled as the IDC
problem, which had the symptom of high application server
CPU utilization and high number of alive and active pro-
cesses. These differences point out to the symptoms of the
members in each cluster and define the syndrome of a group
of signatures.

Given this clustering, recurrent problems can be identi-
fied by looking at the time of occurrence of the signatures
in each cluster. Figure 7 depicts the instances of cluster 1, 2
and 3 overlaid in time on the performance indicator graph.
Cluster 3 is recurrent, and as mentioned earlier, we verified
with the IT operators that the periods defined by “Clus-
ter 3” coincided with the manifestation of the IDC problem
according to their records. Thus, had they had this tool,
they could have easily identified the problem as a recurring
one since its symptoms matched those of the signatures. In
addition, the clustering discovered another undiagnosed re-
curring problem (Cluster 1), with the symptom of higher
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Figure 3: Clustering of the data from FT-trace.
Each graph corresponds to a different server. The
signatures relying on information from metric attri-
bution outperform those using only raw values.

Database CPU utilization (average of approximately 60%
compared to approximately 20% in most other times), while
at the same time all application server utilization metrics
were not attributed, and were in fact normal. This problem
remains undiagnosed to this date, and did not appear again
in the following months, however, if it appears again, these
past instances would be retrieved and perhaps help prioritize
finding a solution or the root cause of the problem.

4.3 Claim 3: Leveraging Signatures Across
Sites

In this section we provide evidence that the signatures
collected at various sites and systems can be leveraged dur-
ing the diagnosis of performance problems. In particular, we
show that diagnosis of a performance problem can be aided
by querying for similar (or dissimilar) signatures collected
at different sites or machines.

In the process of diagnosing the IDC problem, which was
observed on the Americas site, the debugging team investi-
gated whether the same problem occurred in the Asia-Pacific
region as well. In particular, they hypothesized that it did
occur during a failover period on December 18, 2004, in
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Figure 4: Using data from testbed we see that pre-
cision/recall behavior is closest to ideal when metric
attribution is used. A method’s performance is di-
rectly proportional to the area under the curve.

Clust Clust Clust Clust
Metric 1 3 4 7

gbl app cpu total util -1 1 -1 -1
gbl app disk phys io 0 0 1 1
gbl app alive proc 0 1 0 -1
gbl app active proc 0 1 1 -1
gbl app run queue -1 0 -1 -1
gbl app net in packet rate 0 0 -1 1
gbl app net out packet rate 1 1 -1 -1
gbl app mem util 0 0 -1 -1
gbl app mem sys util 0 0 -1 -1
DB1 cpu util 1 1 -1 -1

Table 5: Comparison of the centroid values for four
clusters (clusters 1, 3, 4 and 7 from Table 4), two
containing mostly compliance signatures (clusters 4
and 7) and two containing mostly violation signa-
tures (clusters 1 and 3). Cluster 3 contained mostly
signatures of the IDC problem. Note the difference
between cluster 1 and cluster 3 in terms of metrics
that are attributed and those not attributed.

which the transactions from the Americas cluster were being
sent to the Asia systems hosting the FT application. A high
percentage of the transactions were violating their SLOs on
one of the Asia cluster machines during the first 100 min-
utes of the failover period. The debugging team suspected
that the cause was the same IDC problem, and annotated
it as such. Our signature database included signatures on
traces collected on that day. We then performed the follow-
ing query: are the signatures annotated as the IDC problem
on the Americas site similar to the signatures collected dur-
ing the failover period at the Asia site?

As Figure 8 shows, the result of the query was that the
signatures of the Asia failover period are very different from
the signatures of the IDC problem. Key metrics that were
highly attributed in one were not attributed in the other. Of
the metrics that were attributed in both, only transaction
volume (tt count) was similar in its attribution signal for
the signatures from the two sites.
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Figure 5: Temporal location of the instances of the
IDC problem on one of the Americas machines, over-
laid on the reference metric.

Upon close inspection of the attributed metrics from one
of the Asia machines and the transaction mix on that ma-
chine, we quickly arrived at a different diagnostic conclusion
for the Asia problem. Due to the failover from the Americas
system, Asia1 was experiencing higher transaction volumes,
and during the initial phase of the failover, it was experi-
encing higher response times (see Figure 9). During this
initial phase, Asia1 was seeing a high transaction volume of
one type of transaction (call it the XYZ transaction) that
it normally does not see (see Figure 10). The SQL state-
ments associated with this unusual transaction type were
not prepared or cached on the Asia machines, leading to
more database overhead, as can be seen in Figure 11, lead-
ing to higher response times, and ultimately SLO violation.
This diagnosis was accepted by the diagnostics team; the re-
pair consists of priming the database and middleware caches
for the new transaction type before a planned failover. As
a result of this experience, we were able to replace the false
annotation originally provided for that trace data with a
new and correct annotation explaining the problem and de-
scribing the required repair.

5. RELATED WORK
The use of search and retrieval to find similar instances

and experiences of faults and performance problems is not
new. It is common practice for system operators to use Web
search engines to search for the text of error messages or
console messages as part of their debugging, but such meth-
ods are ad-hoc and imprecise. Redstone et al. advocate a
machine-readable compact representation of system state in
an attempt, among other things, to formalize the recording
of instances and that search [15]. Yet to the best of our
knowledge our work is the first to propose a concrete tech-
nique for constructing the appropriate representation and
evaluating its efficacy.

While others have attempted to use low-level metrics to
characterize high-level system behavior, we believe that we
are the first to propose an automatic method for generating
a compact, indexable representation of system state that
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Figure 6: Precision-recall graph for retrieval of the
signatures of the IDC issue in the web-service pro-
duction environment. Methods based on metric at-
tribution outperform the one relying on raw values
significantly.

facilitates syndrome identification and incident clustering.
This section surveys recent research on related computer
performance diagnosis problems and reviews applications of
signatures to diagnostic problems in other domains.

Aguilera et al. describe two algorithms for isolating perfor-
mance bottlenecks in distributed systems of opaque software
components [1]. Their “convolution” algorithm employs sta-
tistical signal-processing techniques to infer causal message
paths that transactions follow among components, which
are not assumed to communicate via RPC-like request/reply
pairs. At the opposite extreme of this knowledge-lean ap-
proach, Magpie characterizes transaction resource footprints
in fine detail but requires that application logic be meticu-
lously encoded in “event schema” [2]. Cohen et al. employ
statistical pattern classification techniques to identify sys-
tem utilization metrics that correlate with performance [5].

Our research differs from these projects in that it is aimed
at aiding root cause diagnosis by finding similar problems,
rather than bottleneck detection or workload modeling. While
our approach does not determine the root cause, finding
a previously solved (annotated) problem may provide root
cause (or repair action) when the retrieval is accurate. Like
Aguilera et al. and unlike Magpie, we assume little knowl-
edge of application structure or logic and we rely heavily on
statistical methods. Like Cohen et al. we find that pattern-
classification techniques are useful for identifying a small
subset of system measurements that are relevant to perfor-
mance. To us, however, this subset is useful not for its own
sake but rather for constructing signatures. For brevity, in
this section we do not discuss prior work already summa-
rized in the above papers’ excellent literature reviews.
Faults in distributed systems, as opposed to performance

problems, are the subject of a large literature. For com-
munications networks, whose components have highly con-
strained and well specified behavior, a wide range of fault
localization techniques have been explored [16]. Yemini et al.
describe an event correlation (root cause determination) pro-
cedure that relies on an extensive library describing each
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Figure 8: Comparing the signatures from the Asia
failover period and the IDC problem in the Ameri-
cas. The bars for each metric show the mean attri-
bution value for the signatures in each period. For
metrics where there are fewer than two bars shown,
a missing bar means that the metric was not selected
by any model that predicted the violation for this
period. Metrics whose name does not begin with
“DB1” are from the application server.

system component’s possible faults and the consequences of
each fault [21]. These detailed component descriptions are
compiled into a codebook that reduces root cause analysis
to a simple and efficient task of decoding observed symp-
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failover period.
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Figure 10: Throughput for the XYZ Transaction
during the Asia1 failover period. XYZ transactions
are usually never seen in Asia.
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Figure 11: CPU utilization on the DB server was
unusually high at the beginning of the failover pe-
riod. Once the caches are warmed, CPU utilization
returns to 20% or lower.

toms into the faults that caused them. This approach has
been commercialized for communications systems [17] but
is inappropriate for arbitrary distributed software because
it is infeasible to enumerate the faults and symptoms of ar-
bitrary computer programs. In addition, this approach has
no learning or adaptation aspects, which our probabilistic
models provide.

The Pinpoint system of Chen et al. analyzes run-time ex-
ecution paths of complex distributed applications to auto-
matically detect failures by identifying statistically abnor-
mal paths; faulty paths can then aid a human analyst in di-
agnosing the underlying cause [4]. Kiciman & Fox describe
in greater detail the use of probabilistic context-free gram-
mars to detect anomalous paths in Pinpoint [10]. Our ap-
proach shares with Pinpoint the use of statistical techniques,
but the instrumentation we require is more readily available
and we seek to diagnose performance problems rather than
faults.

Jain describes a traditional performance debugging tech-
nique that generates visual signatures of performance prob-
lems [8]. Popular in the 1970s, “Kiviat graphs” display a
handful of utilization metrics in such a way that resource
bottlenecks and imbalances assume a distinctive appear-
ance. Like our signatures, Kiviat graphs of different systems
(or of different conditions on a single system) invite compar-
ison and facilitate similarity matching. However our signa-
tures differ in several ways from this classic technique: sig-
natures are intended for automated indexing, retrieval, and
similarity measurement; they do not rely on human visual
inspection; they scale to dozens or hundreds of metrics; and
they incorporate application-level performance measures in
addition to utilization metrics.

Signatures have been used extensively in virus scanning
and intrusion detection [12]. Statistical techniques are of-
ten employed to flag anomalous activity automatically, but
signatures of malicious behavior are almost always defined
manually. Kephart et al. describe a statistical method for
automatically extracting virus signatures for a commercial
detection product [9].

Redstone et al. advocate automating the diagnosis of user-
visible bugs by leveraging the efforts of troubleshooters world-
wide [15]. These authors note that such problems have often
already been diagnosed and documented, e.g., in newsgroups
and vendor bug databases. The real problem is finding the
right diagnosis by indexing into a vast disorganized knowl-
edge base. Signatures can help us to realize the vision that
Redstone et al. sketch.

Modern systems software, middleware, and styles of ap-
plication architecture bring obvious benefits but entail sub-
stantial costs. Ours is one of several research attempts to
preserve the benefits of modern architectural styles while
mitigating their problems. We briefly survey three such
problems and corresponding research toward solutions.

Layers of modular re-usable components interacting through
narrow interfaces allow us to divide and conquer increas-
ingly complex problems at low cost. However they also con-
ceal performance-critical information about each component
from its neighbors. For example, conventional operating sys-
tems offer strong inter-process fault isolation but suffer side
effects including redundant data buffering and copying. The
IO-Lite buffering/caching subsystem retains fault isolation
while eliminating redundancy [13].



Resource virtualization permits application developers to
ignore congestion and scarcity, which they often do to the
detriment of performance. The SEDA framework encour-
ages application designers to explicitly address overload and
resource scarcity while retaining many of the benefits of vir-
tualization [19].

Finally, decentralized management and geographic distri-
bution allow different organizations to cooperatively serve
a global user base, but these trends also diffuse the knowl-
edge required for performance debugging. Aguilera et al.

and Cohen et al. confront the opacity of complex modern
applications by illuminating performance bottlenecks and
correlates of performance in unmodified distributed appli-
cations [1, 5]. Our signature-based syndrome identification
methods reduce redundant diagnostic effort across time, ge-
ography, and organizational boundaries.

6. DISCUSSION

6.1 On Root Cause Analysis and Diagnosis
The statistical and pattern recognition techniques under-

lying the automated extraction of signatures capture corre-
lation, not necessarily causation. Indeed, as is well known
in the statistics and other communities, the ability to infer
causation from pure observation is limited and in most cases
impossible [14]. By pure observation we mean lack of direct
intervention into the system or additional information, com-
ing from human experts regarding the causal relations and
paths in the system. In some instances, time information
and information about the sequence of events can be used
as heuristics to find causal connections. This has been at-
tempted in many domains including this one, most notably
in [1]. We leave as future work the inclusion of this kind
of information into our approach and the exploration of its
utility, although we remark that there is nothing in principle
that prevents us from considering “sequences” of signatures
or adding time information (including precedence informa-
tion) into the creation of the signatures and the subsequent
analysis.

It follows from this discussion that we cannot claim (nor
have we ever) that the approach advocated in this paper
yields a root cause of the problem. Indeed, even with hu-
man expert knowledge, root cause analysis is far from easy
(recall the example of Section 3.3). Nevertheless, we pos-
tulate that offering the capabilities of systematic similarity
search and clustering of correlated metrics helps in narrow-
ing down the possible causes and is therefore useful in the
diagnosis process. In addition, it may not be necessary to
reach a root cause to produce a repair. As difficult as root
cause analysis has proven to be over the years, perhaps a
more pragmatic approach would be to automatically map
the evidence for the faults and metric state to a finite set of
possible repair actions.

6.2 On Annotations, the Real World, and
Clustering

It is a fact of life in the IT trenches that annotations are
currently scarce and also imperfect. Part of the reason for
imperfect annotations on real data results from the reality
that the administration of different subsystems or tiers of
an application may be delegated to different individuals dis-
tributed across the organization, as we experienced when
investigating the problem and resolution described in Sub-

section 4.3. Our experience with other companies running
multi-tier applications confirms that there is often no single
administrator responsible for understanding the end-to-end
paths through the application. One result of this is a fre-
quent lack of clear agreement on what the true cause of a
problem is or was: forensic data may be discarded before
it’s needed, and each operator is typically focused on either
debugging or exonerating her/his piece of the system.

Our acceptance of good clustering, given by low entropy/
high purity, the difference in the centroids, and the use of
the centroids as a “proxy” for annotated data, provides a
pragmatic approach when un-annotated data is all that we
have at our disposal. Note that we can still use the clustering
to identify recurring problems as this reduces to checking
whether two data points belong to the same cluster, and
the size of a particular cluster reflects how many violations
can be attributed to the “syndrome” that cluster represents.
Retrieval is still valuable in gathering all similar instances
that are stored in the database, as can be seen from our
results: clustering was able to recognize 75% of the IDC
cases belonging to the same cluster, and we get excellent
precision-recall behavior when we do have annotations.

We hope that the availability of a systematic way to ex-
ploit annotations, as proposed in this paper, will encourage a
change in best practices that makes annotations more preva-
lent. As a human operator investigates further, character-
izes and names a syndrome that results from a clustering,
the final diagnosis and repair procedures can be stored in
the database for future reliable retrieval.

6.3 Performance Impact of Our Approach
There are five points where our approach adds computa-

tion cost or other overhead that may impact performance
considerations: overhead of collecting data, construction of
TAN models for metric attribution [5], signature computa-
tion, clustering, and retrieval. Our system data is collected
by a commercial tool that is widely deployed in industry;
the tool is designed to minimize performance impact on the
observed system, and at any rate the widespread use of such
tools represents a sunk cost. Updated system data is coa-
lesced and reported periodically, generally in 1 or 5 minute
epochs. Building and maintaining an ensemble of TAN mod-
els takes 5–10 seconds with our code, so it is practical to ap-
ply the ensemble algorithm to system data in real time. In
our prototype implementation in Matlab, given an ensem-
ble with approximately 41–67 models (generated using one
month of system data), it takes about 200ms to compute
a signature for one epoch. Using the k-medians algorithm
(with k=10) to cluster 7507 signatures (about one month
when using 5-minute epochs) takes less than 10 seconds.
Finally, retrieving the top 100 matching signatures from a
database of 7700 signatures takes less than one second. We
conclude that signature generation can proceed in real time,
and analysis with clustering or retrieval is fast enough to be
done at will.

7. CONCLUSIONS
A result in this paper with deep implications is that simply

recording the values of raw system metrics does not provide
an effective way to index and retrieve syndrome data: a more
sophisticated way of generating “signatures” is required. We
further showed that it is sufficient to include information
regarding attribution and relevance of these metrics rela-



tive to performance objectives. We further demonstrated
how automated (but well known) techniques for clustering
and retrieval enable diagnosticians to leverage the results of
past work and identify similar or recurring problems, even
when no problem annotations or application-specific knowl-
edge are available. Our application of these techniques was
helpful in correcting a misdiagnosis as well as correctly clas-
sifying a recurrent problem in a real world geographically
distributed system. The initial classification of this problem
required the exchange of 80 pages of notes among adminis-
trators over a period of a month.

This work opens several avenues of research in choices and
properties of different methods for signature construction,
clustering, similarity metrics, etc. In addition, we would
like to extend this work to signatures that include tempo-
ral sequences, and to further explore how to transfer the
signatures, syndromes, and annotations from one system to
another. Further research is also required to incorporate
the information inherent in partial and even in imperfect
annotations in the clustering and retrieval techniques.

Our results suggest that systems can and should derive
signatures for observed undesirable behaviors and then in-
dex those signatures for later retrieval during troubleshoot-
ing. We believe that further research in this area will lead to
improvements in system scale and availability. These tech-
niques and their further development will enable a system-
atic way of capturing knowledge and expertise from opera-
tors (through annotations of diagnoses and repair actions)
that can be leveraged by other operators across geography
and across time.
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