
Zero-Overhead NVM Crash Resilience

Faisal Nawab∗,† Dhruva Chakrabarti†

Terence Kelly† Charles B. Morrey III†

∗CS Dept., UC Santa Barbara †HP Labs, Palo Alto, CA

Abstract

Byte-addressable non-volatile memory (NVM) allows fine-
grained in-place update of durable data. NVM transaction
mechanisms prevent failures during updates from corrupting
data, but such mechanisms carry substantial performance
overheads. Our new alternative for high-performance multi-
threaded software guarantees consistent recovery of appli-
cation data following failure and has zero overhead during
failure-free operation. Our approach preserves application
data integrity in crash-injection experiments and its perfor-
mance rivals state-of-the-art NVM transactions.

Introduction

Density scaling limitations cast doubt on the long-term vi-
ability of DRAM [10]. The most likely replacement tech-
nologies retain data without power, i.e., they provide byte-
addressable non-volatile memory (NVM) [2]. HP Labs is
developing memristor memories [18] within a larger effort to
build a next-generation computer [9].

Familiar durability interfaces such as file systems and data-
bases will survive into the NVM era [5,15]. However, NVM
on the memory bus invites a fundamentally new way to ma-
nipulate durable data: via load and store instructions.
In contrast to indirect block-granularity modifications me-
diated by complex software stacks, this new “NVM style
of programming” involves direct, fine-grained, in-place up-
dates. Today’s applications use separate data formats for
memory and storage, requiring cumbersome translation be-
tween formats. NVM-style programs use only an in-memory
format, simplifying software and improving performance.

Of course, failures such as process crashes, OS kernel pan-
ics, and power outages during NVM updates can corrupt
application data. Realizing the full value of NVM-style pro-
gramming requires mechanisms to preserve application data
integrity across NVM updates in the presence of failures.
Below we review existing approaches to this problem, out-
line our new approach, and evaluate its effectiveness. Our
tech report provides more detail [12].

Related Work

Whole-system persistence (WSP) tolerates power outages
by using residual energy in the system power supply to flush
CPU state into NVM, thus transforming a power failure into
a suspend/resume [11]. One drawback is that peripheral
devices can be reset by a power outage unbeknownst to their
drivers, which may cause errors when computation resumes.
Another limitation is that WSP does not tolerate software

bug crashes (kernel panics and process crashes), which are
common in practice.

Transactional file update tolerates process, kernel, and
machine crashes [13,16]. It furthermore supports higher ab-
stractions such as persistent heaps, which facilitate NVM-
style programming and which can slide beneath complex
legacy software with remarkable ease. For example, we crash-
proofed HP Indigo printers by retrofitting transactional file
update beneath their control software [1]. Despite its attrac-
tions, transactional file update targets block storage rather
than byte-addressed NVM.

NVM transaction mechanisms include Mnemosyne, which
adds durability semantics to a software transactional mem-
ory [17]. NV-Heaps leverages hardware support to imple-
ment atomic NVM updates and provides type-safe pointers
and garbage collection [4]. Our Atlas system automatically
infers consistent states of a persistent heap from applica-
tions’ use of synchronization primitives (e.g., mutexes) and
uses UNDO logs to ensure that recovery can restore a consis-
tent heap [3]. These NVM transaction mechanisms provide
the full benefits of NVM-style programming, but they incur
performance overheads from transaction logging.

NVM Transaction Overheads

NVM transaction overhead largely stems from forcing data
from volatile CPU caches to NVM (e.g., via cache line flushes).
For example, before allowing an in-place update of NVM
within a transaction, Atlas must first ensure that an UNDO
log entry has reached NVM; before deleting an UNDO log
Atlas must force the in-place updates into NVM [3]. We can
eliminate the need to force data into NVM by borrowing
an insight from whole-system persistence: flush-on-failure

can replace flush-as-you-go. We need not insist that data
has reached NVM during failure-free operation if instead we
are assured that the data will reach NVM in the event of
failure [12].

Different failures require different flush-on-failure mecha-
nisms. Tolerating power outages requires sufficient standby
power for orderly system shutdown. Fortunately, NVM dra-
matically reduces the cost compared to DRAM: The time
and energy required to flush CPU caches to NVM is orders of
magnitude smaller than would be required to dump volatile
DRAM to block storage. Narayanan & Hodson report that
a typical computer’s power supply contains sufficient resid-
ual energy for this task [11]. Tolerating OS kernel panics
requires the kernel panic handler to flush all CPU caches to
NVM before halting the system. An HP team has modified



the Linux kernel to do this on x86 systems, which required
a small amount of fairly simple code.

Tolerating process crashes is surprisingly easy: Even on
conventional hardware and on OSes such as Linux, cached
modifications to shared file-backed memory mappings—which
outlive the crashed process—are immediately visible to the
file’s readers and will eventually find their way down through
the CPU cache and page cache to the backing file. The de-
tails are somewhat involved (see Appendix A of [12]), but the
upshot for NVM transaction systems is that flush-on-failure
support for tolerating process crashes is already available
and will remain so on NVM-based hardware. Extensive ex-
periments confirm that Atlas tolerates process crashes with-
out cache flushing, greatly reducing Atlas transaction over-
head [12]. Unfortunately, even if flush-on-failure allows us
to eliminate CPU cache flushing from NVM transaction sys-
tems, transaction logging overhead remains.

Zero-Overhead Atomic Updates

Our main contribution is a crash resilience technique that
avoids all of the performance overheads of existing NVM
transaction mechanisms because it performs no logging. Our
technique combines flush-on-failure with a class of multi-

threaded isolation mechanisms into a consistent recovery mech-
anism.

Non-blocking algorithms ensure orderly (e.g., race-free)
multi-threaded access to shared memory and guarantee that
the suspension or termination of some threads cannot pre-
vent others from making useful progress [7]. Conventional
mutual exclusion cannot support non-blocking algorithms
because a thread that loops infinitely or terminates while
holding a mutex can prevent all other threads from making
progress. Non-blocking algorithms instead rely on atomic
CPU instructions such as compare-and-swap. We employ
lock-free and wait-free sub-species of non-blocking algorithms,
using the latter term for brevity.

Our technique is to combine flush-on-failure with non-
blocking algorithms: Consistent data recovery will always
succeed following the abrupt termination of a program that
manipulates NVM via non-blocking algorithms on a system
with flush-on-failure support. To understand why, consider
a recovery observer [14], a hypothetical thread that is cre-
ated at, and observes the state of NVM at, the instant when
failure halts a program’s real threads. The definition of non-
blocking algorithm ensures that the recovery observer will
see a “sane” state of memory and can make useful progress.
Flush-on-failure ensures that real recovery code will have
precisely the same view of NVM as the hypothetical recov-
ery observer. Therefore real recovery code has a consistent
view of application data and can resume correct execution.
In summary, using non-blocking algorithms to manipulate
NVM on a system with flush-on-failure is sufficient to en-
able consistent recovery of application data. A more detailed
discussion is available in our tech report [12].

Our synthesis of non-blocking algorithms and flush-on-
failure avoids the overheads of generic NVM transactions
because it does not maintain transaction logs. Instead it
uses flush-on-failure to ensure consistent recoverability for
high-performance non-blocking algorithms. The downside
is that our approach lacks the generality and convenience of
NVM transactions. Designing non-blocking algorithms is a
subtle art and using them to meet practical requirements is
not always easy.

Experiments

Our experiments use a lock-free skip list designed by Her-
lihy & Shavit [8] and implemented in C by Dybnis [6]. We
adapted the code to store data in a file-backed memory map-
ping, which enjoys flush-on-failure for process crashes. We
test crash resilience by injecting sudden asynchronous pro-
cess crashes (SIGKILL) during updates crafted to make cor-
ruption both likely and obvious; our recovery code checks
the integrity of the backing file. Hundreds of injected crashes
left no evidence of data corruption.

We also compared the performance of the multi-threaded
non-blocking skip list with a mutex-based multi-threaded
hash table crash-fortified by Atlas. We ran Atlas in both
flush-as-you-go and flush-on-failure modes. On a server-class
machine, the non-blocking skip list is almost twice as fast
as the former and over 30% faster than the latter; indeed,
the non-blocking skip list approaches the performance of the
non-Atlas-ized (i.e., crash-vulnerable) hash table [12].

Conclusions & Future Work

Flush-on-failure support and non-blocking algorithms to-
gether guarantee consistent recovery of application data in
NVM. Our ongoing work applies this technique to a range of
applications including high-throughput streaming data pro-
cessing and large-scale graph analysis.

1. REFERENCES
[1] A. Blattner et al. Generic Crash-Resilience for Indigo.

Technical Report HPL-2013-75, HP Labs, 2013.

[2] G. W. Burr et al. Candidate device technologies for
SCM. IBM J. of Res. & Dev., 52(4.5), 2008.

[3] D. Chakrabarti et al. Atlas: Leveraging Locks for
NVM consistency. In OOPSLA, 2014.

[4] J. Coburn et al. NV-Heaps: Making persistent objects
fast & safe with NVM. In ASPLOS, 2011.

[5] S. R. Dulloor et al. System Software for persistent
memory. In EuroSys, 2014.

[6] J. Dybnis. Non-Blocking Data Structures Library for
x86 and x86-64, Apr. 2009.

[7] K. Fraser and T. Harris. Concurrent Programming
without locks. ACM TOCS, 25(2), May 2007.

[8] M. Herlihy and N. Shavit. The Art of Multiprocessor

Programming. Morgan Kaufmann, 2008. Pp. 339–349.

[9] HP Labs. A New Kind of Computer, Nov. 2014.

[10] Int’l Tech. Roadmap for Semiconductors, 2013 Ed.

[11] D. Narayanan and O. Hodson. Whole-System
persistence. In ASPLOS, 2012.

[12] F. Nawab et al. Procrastination Beats Prevention.
Technical Report HPL-2014-70, HP Labs, 2014.
Submitted to EDBT.

[13] S. Park et al. Failure-Atomic msync(). In EuroSys,
2013.

[14] S. Pelley et al. Memory Persistency. In ISCA, 2014.

[15] S. Pelley et al. Storage Management in the NVRAM
era. In VLDB, 2014.

[16] N. Talagala. Atomic Writes Accelerate MySQL
(FusionIO/Sandisk blog), Oct. 2011.

[17] H. Volos et al. Mnemosyne: Lightweight persistent
memory. In ASPLOS, 2011.

[18] C. Xu et al. Overcoming challenges of crossbar
resistive memory. In HPCA, 2015. (forthcoming).

http://www.hpl.hp.com/techreports/2013/HPL-2013-75.pdf
http://dx.doi.org/10.1147/rd.524.0449
http://dl.acm.org/citation.cfm?doid=2660193.2660224
http://doi.acm.org/10.1145/1950365.1950380
http://doi.acm.org/10.1145/2592798.2592814
https://code.google.com/p/nbds/
http://doi.acm.org/10.1145/1233307.1233309
http://www.hpl.hp.com/research/systems-research/themachine/
http://www.itrs.net/Links/2013ITRS/Home2013.htm
http://doi.acm.org/10.1145/2150976.2151018
http://www.hpl.hp.com/techreports/2014/HPL-2014-70.pdf
http://edbticdt2015.be/
http://doi.acm.org/10.1145/2465351.2465374
http://dl.acm.org/citation.cfm?id=2665671.2665712
http://www.vldb.org/pvldb/vol7/p121-pelley.pdf
http://www.fusionio.com/blog/atomic-writes-accelerate-mysql-performance/
http://doi.acm.org/10.1145/1950365.1950379

	References

