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Abstract
Understanding real, large distributed systems can be as

difficult and important as building them. Complex mod-
ern applications that span geographic and organizational
boundaries confound performance analysis in challeng-
ing new ways. These systems clearly demand new ana-
lytic methods, but we are wary of approaches that suffer
from the same problems as the systems themselves (e.g.,
complexity and opacity).

This paper shows how to obtain valuable insight
into the performance of globally-distributed applica-
tions without abstruse techniques or detailed applica-
tion knowledge: Simple queueing-theoretic observations
together with standard optimization methods yield re-
markably accurate performance models. The models can
be used for performance anomaly detection, i.e., distin-
guishing performance faults from mere overload. This
distinction can in turn suggest both performance debug-
ging tools and remedial measures.

Extensive empirical results from three production
systems serving real customers—two of which are
globally distributed and span administrative domains—
demonstrate that our method yields accurate perfor-
mance models of diverse applications. Our method fur-
thermore flagged as anomalous an episode of a real per-
formance bug in one of the three systems.

1 Introduction

Users and providers of globally-distributed commercial
computing systems value application-level performance,
because an unresponsive application can directly reduce
revenue or productivity. Unfortunately, understanding
application-level performance in complex modern dis-
tributed systems is difficult for several reasons. To-
day’s commercial production applications are composed
of numerous opaque software components running atop
virtualized and poorly-instrumented physical resources.
To make matters worse, applications are increasingly
distributed across both geographical and organizational
boundaries. Merely to collect in one place sufficient
�
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measurement data and knowledge of system design to
support a detailed performance analysis is often very dif-
ficult in practice. Rapidly-changing application designs
and configurations limit the useful life-span of an analy-
sis once it has been performed.

For these reasons operators and administrators seldom
analyze running production systems except in response
to measurements (or user complaints) indicating unac-
ceptably poor performance. The analyst’s task is simpli-
fied if she can quickly determine whether the problem is
due to excessive workload. If so, the solution may be as
simple as provisioning additional resources for the appli-
cation; if not, the solution might be to “reboot and pray.”
If such expedients are not acceptable and further anal-
ysis is required, knowing whether workload accounts
for observed performance can guide the analyst’s choice
of tools: Ordinary overload might recommend resource
bottleneck analysis, whereas degraded performance not
readily explained by workload might suggest a fault in
application logic or configuration. If different organiza-
tions manage an application and the systems on which
it runs, quickly determining whether workload accounts
for poor performance can decide who is responsible for
fixing the problem, averting finger-pointing. In sum-
mary, performance anomaly detection—knowing when
performance is surprising, given workload—does not di-
rectly identify the root causes of problems but can indi-
rectly aid diagnosis in numerous ways.

This paper explores a simple approach to explain-
ing application performance in terms of offered work-
load. The method exploits four properties typical of
commercially-important globally-distributed production
applications:

1. workload consists of request-reply transactions;
2. transactions occur in a small number of types (e.g.,

“log in,” “browse,” “add to cart,” “check out” for an
E-commerce site);

3. resource demands vary widely across but not within
transaction types;

4. computational resources are adequately provi-
sioned, so transaction response times consist largely
of service times, not queueing times.



Data collection number of # trans’n ∑i
�
ei
� �

∑i yi
set dates duration transactions types OLS LAR

ACME July 2000 4.6 days 159,247 93 .2154 .1968
FT Jan 2005 31.7 days 5,943,847 96 .1875 .1816

VDR Jan 2005 10.0 days 466,729 37 .1523 .1466

Table 1: Summary of data sets and model quality.

We shall see that for applications with these properties,
aggregate response time within a specified period is well
explained in terms of transaction mix.

Our empirical results show that models of aggregate
response time as a simple function of transaction mix
have remarkable explanatory power for a wide vari-
ety of real-world distributed applications: Nearly all
of the time, observed performance agrees closely with
the model. The relatively rare cases where actual per-
formance disagrees with the model can reasonably be
deemed anomalous. We present a case study showing
that our method identified as anomalous an episode of an
obscure performance fault in a real globally-distributed
production system.

Performance anomaly detection is relatively straight-
forward to evaluate and illustrates the ways in which
our approach complements existing performance analy-
sis methods, so in this paper we consider only this ap-
plication of our modeling technique. Due to space con-
straints we do not discuss other applications, e.g., capac-
ity planning and resource allocation.

2 Transaction Mix Models

We begin with a transaction log that records the type and
response time of each transaction. We divide time into
intervals of suitable width (e.g., 5 minutes for all exper-
iments in this paper). For interval i let Ni j denote the
number of transactions of type j that began during the in-
terval and let Ti j denote the sum of their response times.
We consider models of the form

yi � ∑
j

Ti j � α1Ni1 � α2Ni2 �����	� (1)

Note that no intercept term is present in Equation 1, i.e.,
we constrain the model to pass through the origin: ag-
gregate response time must be zero for intervals with no
transactions. For given vectors of model parameters a j
and observed transaction mix Ni j at time i, let

ŷi � f 
a ��Ni ��� ∑
j

a jNi j (2)

denote the fitted value of the model at time i and let ei �
yi � ŷi denote the residual (model error) at time i. We
define the accuracy of a model as a generalization of the
familiar concept of relative error:

normalized aggregate error � ∑i
�
ei
�

∑i yi
(3)

We say that a model of the form given in Equation 1 is
optimal if it minimizes the figure of merit in Equation 3.
We shall also report the distribution of residuals and scat-
terplots of � y � ŷ � pairs for our models. (The coefficient
of multiple determination R2 cannot be used to assess
model quality; it is not meaningful because Equation 1
lacks an intercept term [17, p. 163].)

To summarize, our methodology proceeds through the
following steps: 1) obtain parameters a j by fitting the
model of Equation 1 to a data set of transaction counts
Ni j and response times Ti j; 2) feed transaction counts Ni j
from the same data set into Equation 2 to obtain fitted
values ŷi; 3) compare fitted values ŷi with observed val-
ues yi to assess model accuracy; 4) if the ŷi agree closely
with the corresponding yi for most time intervals i, but
disagree substantially for some i, deem the latter cases
anomalous. We emphasize that we do not divide our data
into “training” and “test” sets, and that our goal is not to
forecast future performance. Instead, we retrospectively
ask whether performance can be explained well in terms
of offered workload throughout most of the measurement
period. If so, the rare cases where the model fails to ex-
plain performance may deserve closer scrutiny.

Numerous methods exist for deriving model param-
eters a j from data. The most widely-used proce-
dure is ordinary least-squares (OLS) multivariate regres-
sion, which yields parameters that minimize the sum of
squared residuals ∑i e2

i [17]. Least-squares regression is
cheap and easy: it is implemented in widely-available
statistical software [18] and commercial spreadsheets
(e.g., MS Excel). However it can be shown that OLS
models can have arbitrarily greater normalized aggregate
error than models that minimize Equation 3, and there-
fore we shall also compute the latter. Optimal-accuracy
model parameters minimize the sum of absolute residu-
als ∑i

�
ei
�
. The problem of computing such parameters

is known as “least absolute residuals (LAR) regression.”
LAR regression requires solving a linear program. We
may employ general-purpose LP solvers [15] or special-
ized algorithms [4]; the computational problem of esti-
mating LAR regression parameters remains an active re-
search area [11].

Statistical considerations sometimes recommend one
or another regression procedure. For instance, OLS and



LAR provide maximum-likelihood parameter estimates
for different model error distributions. Another impor-
tant difference is that LAR is a robust regression proce-
dure whereas OLS is not: A handful of outliers (extreme
data points) can substantially influence OLS parameter
estimates, but LAR is far less susceptible to such distor-
tion. This can be an important property if, for instance,
faulty measurement tools occasionally yield wildly inac-
curate data points. In this paper we shall simply com-
pare OLS and LAR in terms of our main figure of merit
(Equation 3) and other quantities of interest.

Intuitively, for models that include all transaction
types j and for data collected during periods of ex-
tremely light load, parameters a j represent typical ser-
vice times for the different transaction types. Interac-
tion effects among transactions are not explicitly mod-
eled, nor are waiting times when transactions queue for
resources such as CPUs, disks, and networks. Our ongo-
ing work seeks to amend the model of Equation 1 with
terms representing waiting times. This is not straightfor-
ward because the multiclass queueing systems that we
consider are much harder to analyze than single-class
systems [5] (classes correspond to transaction types). As
we shall see in Section 3, the severe simplifying assump-
tions that we currently make do not preclude remarkable
accuracy.

Well-known procedures exist for simplifying models
such as ours, but these must be used with caution. The
number of transaction types can be inconveniently large
in real systems, and a variety of refinement procedures
are available for reducing in a principled way the num-
ber included in a model [17]. When we reduce the num-
ber of transaction types represented, however, parame-
ters a j no longer have a straightforward interpretation,
and negative values are often assigned to these parame-
ters. On the other hand, the reduced subset of transaction
types selected by a refinement procedure may represent,
loosely speaking, the transaction types most important
to performance. Model refinement therefore provides an
application-performance complement to procedures that
automatically identify utilization metrics most relevant
to performance [12]. We omit results on model refine-
ment due to space limitations.

Measuring our models’ accuracy is easy, but evalu-
ating their usefulness for performance anomaly detec-
tion poses special challenges. If a model is reason-
ably accurate in the sense that observed performance yi
is close to the fitted value ŷi for most time intervals i,
why should we regard the relatively rare exceptions as
“anomalous” or otherwise interesting? To address this
question we model data collected on systems with known
performance faults that occur at known times and see
whether the model fails to explain performance during
fault episodes.
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Figure 1: The globally-distributed “FT” application.

 0

 0.25

 0.5

 0.75

 1

 0.01  0.1  1

P[
X

<=
x]

normalized absolute residual

LAR
least squares

Figure 2: Cumulative distribution of
�
ei
� �

yi, FT data.

3 Empirical Evaluation

We evaluate the method of Section 2 using three large de-
tailed data sets collected on real production systems. The
first, which we call “ACME,” was collected in July 2000
on one of several servers comprising a large Web-based
shopping system; see Arlitt et al. for a detailed work-
load characterization [2]. The other two, which we
call “FT” and “VDR,” were collected in early 2005 on
two globally-distributed enterprise applications serving
both internal HP users and external customers. Cohen
et al. provide a detailed description of FT [13]; VDR
shares some features in common with FT but has not
been analyzed previously. One noteworthy feature com-
mon to both FT and VDR is that different organiza-
tions are responsible for the applications and for the
application-server infrastructure on which they run. Fig-
ure 1 sketches the architecture of the globally-distributed
FT application; a dashed rectangle indicates managed ap-
plication servers.

Table 1 describes our three data sets and presents sum-
mary measures of model quality for least-squares and
LAR parameter estimation. Our figure of merit from
Equation 3, ∑i

�
ei
� �

∑i yi, shows that the models are quite
accurate. In all cases, for LAR regression, normalized
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Figure 3: Scatterplot of yi vs. ŷi, FT data.

aggregate error ranges from roughly 15% to under 20%.
Least-squares regression yields slightly worse models by
this measure; it increases ∑i

�
ei
�

by 3.2%–9.5% for our
data. Figure 2 shows the cumulative distribution of ab-
solute residuals normalized to y, i.e., the distribution of�
ei
� �

yi, for the FT data and both regression procedures.
The LAR model is wrong by 10% or less roughly half of
the time, and it is almost never off by more than a fac-
tor of two. The figure also shows that LAR is noticeably
more accurate than least-squares.

A scatterplot of fitted vs. observed aggregate response
times offers further insight into model quality. Figure 3
shows such a plot for the FT data and OLS regression.
Plots for LAR regression and other data sets are qualita-
tively similar: Whereas aggregate response times y range
over several orders of magnitude, in nearly all cases fit-
ted values ŷ differ from y by less than a factor of two. A
small number of points appear in the lower-right corner;
these represent time intervals whose observed aggregate
response times were far larger than fitted model values.
For our data sets, the reverse is very rare, and very few
points appear in the upper-left corner. Such points might
indicate that transactions are completing “too quickly,”
e.g., because they quickly abort due to error.

As the FT data of Figure 3 was being collected, there
occurred several episodes of a known performance fault
that was eventually diagnosed and repaired. This fault,
described in detail in [13], involved an application mis-
configuration that created an artificial bottleneck. An im-
portant concurrency parameter in the application server
tier, the maximum number of simultaneous database con-
nections, was set too low. The result was that queues of
worker threads waiting for database connections in the
app server tier grew very long during periods of heavy
load, resulting in excessively—and anomalously—long
transaction response times. FT operators do not know
precisely when this problem occurred because queue
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lengths, waiting times, and utilization are not recorded
for finite database connection pools and other “soft” re-
sources. However the admins gave us rough estimates
that allow us to identify three major suspected episodes,
shown with special points in Figure 3.

The most remarkable feature of the figure is that false
positives are extremely rare: Data points for “normal”
time intervals are almost never far from the y � x diag-
onal and nearly all large discrepancies between y and ŷ
occur during suspected performance fault episodes. Un-
fortunately, false negatives do seem evident in the fig-
ure: Of the three suspected performance fault episodes,
only episode 3 (indicated by open squares) appears far
from y � x; most points corresponding to episodes 1
and 2 lie near the diagonal. Has our method failed to
detect performance anomalies, or does the problem re-
side in our inexact conjectures regarding when episodes
occurred? Figure 4 suggests the latter explanation. This
figure shows the distributions of average (as opposed to
aggregate) transaction response times for four subsets of
the FT data: normal operation and the three alleged per-
formance fault episodes. Figure 4 shows that episode 3—
the one that stands out in Figure 3—has far higher mean
response times than the other two episodes.

Several explanations are possible for our results. One
possibility is that the problem did in fact occur during all
three alleged episodes, and that our proposed anomaly
detection method identifies only the most extreme case.
Another possibility is that alleged episodes 1 and 2 were
not actual occurrences of the problem. Based on how
the alleged episodes were identified, and based on the
large difference between episode 3 and the other two in
Figure 4, the latter explanation seems more likely. (In a
similar vein, Cohen et al. report that an episode of this
problem on a host not analyzed here was initially mis-
diagnosed [13].) For our ongoing work we hope to an-



alyze systems with sporadic performance faults whose
episodes are known with greater certainty. Data on such
systems is hard to obtain, but it is required for a com-
pelling evaluation of the proposed method.

4 Discussion

Section 3 shows that the very simple transaction mix
performance models of Section 2 have remarkable ex-
planatory power for real, globally-distributed production
systems; they furthermore sometimes flag subtle perfor-
mance bugs as anomalous. We would expect our tech-
nique to work well for any system that approximately
conforms to the simplifying assumptions enumerated in
Section 1: Workload consists of transactions that fall
into a small number of types; service times vary less
within types than across types; and resources are ade-
quately provisioned so that service times dominate re-
sponse times. This section discusses limitations inher-
ent in our assumptions, the usefulness of the proposed
method, and extensions to broaden its applicability.

We can identify plausible scenarios where our as-
sumptions fail and therefore our method will likely per-
form poorly. If workload is moderately heavy relative
to capacity, queueing times will account for an increas-
ing fraction of response times, and model accuracy will
likely suffer. We would also expect reduced accuracy
if service times are inter-dependent across transaction
types (e.g., due to resource congestion). For instance,
“checkout” transactions may require more CPU time dur-
ing heavy browsing if the latter reduces CPU cache hit
rates for the former.

On the positive side, our method does not suffer if
transactions are merely numerous, internally complex,
or opaque. Furthermore it may flag as anomalous situa-
tions where problems are actually present but our simpli-
fying assumptions are not violated. For instance, it can
detect cases where transactions complete “too quickly,”
e.g., because they abort prematurely. Finally, our method
can be used to detect anomalies in real time. At the close
of every time window (e.g., every five minutes) we sim-
ply fit a model to all available data (e.g., from the previ-
ous week or month) and check whether the most recent
data point is anomalous. LAR and OLS regressions may
be computed in less than one second for the large data
sets of Table 1.

Our ongoing work extends the transaction mix model
of Equation 1 with additional terms representing queue-
ing time. A naı̈ve approach is simply to add resource uti-
lization terms as though they were transaction types. Our
future work, however, will emphasize more principled
ways of incorporating waiting times, based on queueing
theory. Perhaps the most important aspect of our ongo-
ing work is to validate our methods on a wider range

of real, large distributed systems. Testing model accu-
racy requires only transaction types and response times,
which are relatively easy to obtain. However to verify
that performance anomalies reported by our models cor-
respond to performance bugs in real systems requires re-
liable information about when such bugs occurred, and
such data is difficult to obtain.

5 Related Work

Researchers have proposed statistical methods for perfor-
mance anomaly detection in a variety of contexts. Chen
et al. [10] and Kiciman & Fox [16] use fine-grained prob-
abilistic models of software component interactions to
detect faults in distributed applications. Ide & Kashima
analyze time series of application component interac-
tions; their method detected injected faults in a bench-
mark application serving synthetic workload [14]. Brut-
lag describes a far simpler time-series anomaly detection
method [6] that has been deployed in real production sys-
tems for several years [7]. Our approach differs in that
it exploits knowledge of the transaction mix in workload
and does not employ time series analysis; it is also far
simpler than most previous methods.

If a performance problem has been detected and is
not due to overload, one simple remedial measure is to
re-start affected application software components. Can-
dea & Fox argue that components should be designed to
support deliberate re-start as a normal response to many
problems [8]. Candea et al. elaborate on this theme by
proposing fine-grained rebooting mechanisms [9].

On the other hand, if workload explains poor perfor-
mance, a variety of performance debugging and bottle-
neck analysis tools may be applied. Barham et al. ex-
ploit detailed knowledge of application architecture to
determine the resource demands of different transaction
types [3]. Aguilera et al. and Cohen et al. pursue far less
knowledge-intensive approaches to detecting bottlenecks
and inferring system-level correlates of application-level
performance [12, 1]. Cohen et al. later employed their
earlier techniques in a method for reducing performance
diagnosis to an information retrieval problem [13]. The
performance anomaly detection approach described in
this paper may help to inform the analyst’s choice of
available debugging tools.

Queueing-theoretic performance modeling of complex
networked services is an active research area. Stewart
& Shen predict throughput and mean response time in
such services based on component placement and perfor-
mance profiles constructed from extensive benchmark-
ing [19]. They use a single-class M/G/1 queueing ex-
pression to predict response times. Urgaonkar et al. de-
scribe a sophisticated queueing network model of multi-
tier applications [20]. This model requires rather exten-



sive calibration, but can be used for dynamic capacity
provisioning, performance prediction, bottleneck identi-
fication, and admission control.

6 Conclusions

We have seen that very simple transaction mix models
accurately explain application-level performance in com-
plex modern globally-distributed commercial applica-
tions. Furthermore, performance faults sometimes man-
ifest themselves as rare cases where our models fail to
explain performance accurately. Performance anomaly
detection based on our models therefore appears to be
a useful complement to existing performance debugging
techniques. Our method is easy to understand, explain,
implement, and use; an Apache access log, a bit of Perl,
and a spreadsheet suffice for a bare-bones instantiation.
Our technique has no tunable parameters and can be ap-
plied without fuss by nonspecialists; in our experience it
always works well “out of the box” when applied to real
production systems.

More broadly, we argue that a principled synthesis
of simple queueing-theoretic insights with an accuracy-
maximizing parameter estimation procedure yields ac-
curate and versatile performance models. We exploit
only limited and generic knowledge of the application,
namely transaction types, and we rely on relatively lit-
tle instrumentation. Our approach represents a middle
ground between knowledge-intensive tools such as Mag-
pie on the one hand and nearly-knowledge-free statistical
approaches on the other. Our future work explores other
topics that occupy this interesting middle ground, includ-
ing extensions of the method described here.
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