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Abstract. Recently HP Labs engaged in a joint project with Dream-
Works Animation to develop a Utility Rendering Service that was used to
render part of the computer-animated feature film Shrek 2. In a compan-
ion paper [2] we formalized the problem of scheduling animation render-
ing jobs and demonstrated that the general problem is computationally
intractable, as are severely restricted special cases. We presented a novel
and efficient two-phase scheduling method and evaluated it both theo-
retically and via simulation using large and detailed traces collected in
DreamWorks Animation’s production environment.

In this paper we describe the overall experience of the joint project
and greatly expand our empirical evaluations of job scheduling strategies
for improving scheduling performance. Our new results include a work-
load characterization of Shrek 2 animation rendering jobs. We further-
more present parameter sensitivity analyses based on simulations using
randomly generated synthetic workloads. Whereas our previous theoret-
ical results imply that worst-case performance can be far from optimal
for certain workloads, our current empirical results demonstrate that our
scheduling method achieves performance quite close to optimal for both
real and synthetic workloads. We furthermore offer advice for tuning a
parameter associated with our method. Finally, we report a surprising
performance anomaly involving a workload parameter that our previous
theoretical analysis identified as crucial to performance. Our results also
shed light on performance tradeoffs surrounding task parallelization.

1 Introduction

The problem of scheduling computational jobs onto processors arises in numer-
ous scientifically and commercially important contexts. In this paper we focus
on an interesting subclass with three special properties: jobs consist of nonpre-
emptible tasks; tasks must execute in stages; and jobs yield completion rewards
if they finish by a deadline. In previous work we have formalized this problem as
the disconnected staged scheduling problem (dssp), described its computational
complexity, proposed a novel scheduling method, and evaluated our solution



theoretically and empirically using traces from an animation rendering applica-
tion [2]. The companion paper also mentions a range of practical domains other
than animation rendering in which dssp arises.

This paper extends our previous work three ways. First, we provide a detailed
description of the joint project between our company and DreamWorks Anima-
tion that first brought dssp to our attention. We believe that this case study
is interesting in its own right because it shows how modern parallel processing
technologies are applied to a commercially important problem substantially dif-
ferent from traditional scientific applications of parallel computing. The joint
project rendered parts of the animated feature film Shrek 2 in a 1,000-CPU
cluster on HP premises and thus illustrates the intersection of parallel process-
ing and “utility computing.” Our description of the project furthermore places
scheduling and other parallel computing technologies in a broader context of
business considerations. Finally, the project shows how new requirements driven
by business needs led to a new and interesting formal problem, which in turn cre-
ated research opportunities at the intersection of theoretical Computer Science,
CS systems, and Operations Research.

Second, we provide a thorough and detailed workload characterization of
traces we collected in the aforementioned cluster during the rendering of Shrek 2.
These are the traces used in our previous empirical work, and in some of the
extended empirical work presented in this paper.

Our third and major technical contribution in this paper is to greatly extend
our empirical results and explore via simulation several open questions raised by
our previous theoretical analysis. Whereas our previous empirical results were
based exclusively on traces collected in DreamWorks Animation’s production
environment, in this paper we supplement the production traces with randomly-
generated synthetic workloads. The latter transcend the domain-specific pecu-
liarities of the former and thus allow us to evaluate the generality and robustness
of our solution. Our new empirical work addresses three main issues:

1. We have proven theoretically that our solution architecture yields near-
optimal results if jobs’ critical paths are short; worst-case performance can
be arbitrarily poor, however, if critical paths are long. How pessimistic are
these theoretical results? Do real or random workloads lead to worst-case
performance?

2. In some domains, including animation rendering, it is possible to shorten the
critical paths of jobs by parallelizing tasks. What are the benefits of such
parallelization? Is parallelization always beneficial?

3. Our solution architecture contains an adjustable parameter. Can we offer
generic, domain-independent guidance on how to tune it?

In addition to addressing these issues we also report interesting and unantici-
pated relationships between problem parameters and performance.

The remainder of this paper is structured as follows: Section 2 defines dssp
and summarizes our previous results. Section 3 characterizes the DreamWorks
Animation rendering workload, and Section 4 presents our extended empirical
results. Section 5 describes the joint HP/DreamWorks Animation project that



motivated our interest in the dssp, Section 6 reviews related work, and Section 7
concludes.

2 Background & Previous Work

In our previous work on dssp [2] we formalized the abstract scheduling problem
and described its computational complexity. We furthermore introduced a novel
two-phase scheduling method better suited to the special features of dssp than
existing solutions. Finally, we evaluated our solution’s performance through both
theoretical analysis and trace-driven simulation using workload traces collected
in a commercial production environment. This section reviews our previous work
and describes open questions that we address in the present paper.

2.1 Problem

Informally, in dssp we are given a set of independent computational jobs. Each
job is labeled with a completion reward that accrues if and only if the job fin-
ishes by a given global deadline. Jobs consist of nonpreemptible computational
tasks, and a job completes when all of its tasks have completed. Tasks must be
performed in stages: no task in a later stage may start until all tasks in earlier
stages have finished. Tasks within a stage may execute in parallel, but need not
do so. We are also given a set of processors ; at most one task may occupy a
processor at a time. Our goal is to place tasks on processors to maximize the
aggregate completion reward of jobs that complete by the global deadline.

Formally, we are given J jobs, indexed j ∈ 1 . . . J . Job j contains Gj stages,
indexed g ∈ 1 . . .Gj . The set of tasks in stage g of job j is denoted Sgj . Stages
encode precedence constraints among tasks within a job: no task in stage g + 1
may begin until all tasks in stage g have completed; no precedence constraints
exist among tasks in different jobs. The execution time (or “length”) of task
i is denoted Li. The total processing demand of job j, denoted T1(j), equals∑Gj

g=1

∑
i∈Sgj

Li. The critical path length (CPL) of a job is the amount of time
that is required to complete the job on an unlimited number of processors; it
is denoted T∞(j) ≡ ∑Gj

g=1 maxi∈Sgj{Li}. Figure 1 illustrates the stage and task
structure of two jobs, and their critical path lengths.

There are P identical processors. At most one task may occupy a processor
at a time, and tasks may not be preempted, stopped/re-started, or migrated
after they are placed on processors. Let Cj denote the completion time of job j
in a schedule and let Rj denote its completion reward. D is the global deadline
for all the jobs. Our goal is to schedule tasks onto processors to maximize the
aggregate reward RΣ ≡ ∑J

j=1 UD(Cj), where UD(Cj) = Rj if Cj ≤ D and
UD(Cj) = 0 otherwise. Our objective function is sometimes called “weighted
unit penalty” [4].

The computational complexity of dssp is formidable, even for very restricted
special cases. In [2] we show that general dssp is not merely NP-hard but also
NP-hard to approximate within any polynomial factor, assuming that P �= NP.
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Fig. 1. Job (j), task (i), and stage (g)
structure for two jobs.

Fig. 2. A schedule for the jobs in Fig-
ure 1.

Even for the special case where jobs have unit rewards and tasks have unit
execution times, it is strongly NP-complete to solve dssp optimally.

2.2 Two-Phase Scheduling Method

Before reviewing our approach to dssp, we motivate the need for a specialized
solution by considering shortcomings of existing alternatives. Scheduling in mod-
ern production environments almost always relies on priority schedulers such as
the commercial LSF product [18] or an open-source counterpart like Condor [5].
Priority schedulers by themselves are inadequate to properly address dssp. The
fundamental problem is that ordinal priorities are semantically too weak to ex-
press completion rewards. Ordinal priorities can express, e.g., that “job A is more
important than job B.” However sums and ratios of priorities are not meaningful
and therefore they cannot express, e.g., “jobs B and C together are 30% more
valuable than A alone.” When submitted workload exceeds available computa-
tional capacity, a priority scheduler cannot make principled decisions. In our
example, it cannot know whether to run A alone or B and C together if those
are the only combinations that can complete by the deadline. Priority sched-
ulers make performance-critical job selection decisions as accidental by-products
of task dispatching decisions.

Our solution, by contrast, decomposes dssp into two conceptually simple and
computationally feasible phases. First, an offline job selection phase chooses a
reward-maximizing subset of jobs to execute such that it expects all of these
jobs to complete by the deadline. An online task dispatching phase then places
tasks from the selected jobs onto processors to complete as many as possible by
the deadline. Completion rewards guide the first phase but not the second. Task
dispatching can achieve better performance precisely because it can safely ignore
completion rewards and consider only the computational properties of jobs but
not their business value.

Job selection chooses a subset of jobs with maximal aggregate completion re-
ward such that their total processing demand does not exceed available capacity.



Let binary decision variable xj = 1 if job j is selected and xj = 0 otherwise and
let P denote the number of processors. Our selection problem is the following
integer program:

Maximize
∑J

j=1 xjRj (1)

subject to
∑J

j=1 xjT1(j) ≤ r · PD (2)

The summation in objective Equation 1 assumes that all selected jobs can be
scheduled, regardless of their T∞; jobs with T∞(j) > D have UD(Cj) = 0 and
may be discarded before job selection. PD in the right-hand side of Equation 2
is the total amount of processor time available between t = 0 and t = D. By
tuning selection parameter r we may select a set of jobs whose total processor
demand is less than or greater than the capacity that is actually available. The
final schedule after task dispatching typically achieves less than 100% utilization
because precedence constraints force idleness as shown in Figure 2. Intuitively, r
should therefore be set to slightly less than 1. Later we propose a way to compute
good values of r.

The selection problem is a classic 0-1 knapsack problem, for which a wide
range of solvers exist [11]. In this paper we solve the selection problem optimally
using a simple knapsack algorithm, dynamic programming (DP) by profits. Our
previous work explores a wider range of job selectors, including a sophisticated
mixed-integer programming selector that can account for a wide range of side
constraints [2].

Once a subset of jobs has been selected, a dispatcher places their tasks on
processors.We employ a non-delay (or “work-conserving”) dispatcher that places
runnable jobs onto idle processors whenever one of each is available. The end
result is a schedule that contains idle time due only to precedence constraints.

Given an idle processor and several runnable tasks, a dispatcher policy decides
which task to run. In [2] we implemented and empirically evaluated over two
dozen dispatcher policies. Our previous results show that our novel dispatcher
policy lcpf outperforms a wide range of alternatives by several performance
metrics. lcpf chooses a runnable task from the job whose critical path is longest.
Intuitively, lcpf favors jobs at greatest risk of missing the deadline. To the
best of our knowledge, lcpf represents the first attempt to tailor a dispatcher
policy to the special features of dssp, particularly its disconnected precedence
constraint DAG. Our empirical results in this paper include two other dispatcher
policies: stcpu chooses the runnable task whose parent job has the shortest total
CPU time, and random chooses a runnable task at random. In the special case
where each job contains exactly one task, lcpf coincides with the well-known
longest job first policy, and stcpu reduces to shortest job first.

2.3 Previous Performance Evaluation

Our theoretical results on the computational complexity of dssp show that this
problem is hard to solve optimally, and it is hard even to approximate within a



polynomial factor if job completion rewards and task execution times are unre-
stricted. However, we have also shown in [2] that in the unweighted case (i.e.,
uniform job completion rewards) a two-phase solution method using a greedy
(possibly sub-optimal) selector and any non-delay dispatcher can achieve near-
optimal performance if the maximum critical path length of any input job, de-
noted T max

∞ , is small relative to the global deadline D. Here we re-state this
result:

Theorem 1. The two-phase scheduling method with the selection parameter r =
1 − (1 − 1/P )(T max∞ /D) and any non-delay dispatcher completes at least (1 −
Tmax
∞
D (1 − 1

P ))OPT − 1 jobs before the deadline, where OPT is the maximum
number of jobs that can be completed by any algorithm.

Theorem 1 implies that any two-phase solution (with a proper selection pa-
rameter r) completes at least half as many jobs as an optimal algorithm if
Tmax
∞ ≤ D/2. As T max

∞ /D goes to 0, its performance approaches that of the
optimal algorithm.

The bound of Theorem 1 can be attained by two-phase algorithms that re-
quire remarkably little information about the computational demands of tasks.
Specifically, it is necessary to know only the aggregate processing demand of
subsets of tasks during selection. Knowledge of individual task execution times
is not required.

Our previous work includes empirical evaluations of selectors, dispatchers,
and combinations of the two. Briefly, we find that for the DreamWorks Anima-
tion production scheduling traces that we used:

1. Dispatcher policies differ dramatically in terms of job completion time dis-
tributions and other performance measures; our lcpf policy outperforms
alternatives by several measures.

2. lcpf is relatively insensitive to a poorly-tuned selection parameter r.
3. An optimal selector with a well-tuned r and an lcpf dispatcher achieves 9%–

32% higher aggregate value in the weighted case than a priority scheduler
with no selection.

3 Workload Characterization

In this section, we describe a real production system where animation rendering
jobs were run and then characterize the jobs and tasks in this workload.

3.1 Rendering Infrastructure

In early 2004, DreamWorks Animation began to supplement their in-house ren-
der farm with an extra cluster of 500 machines for production of the animated
feature film Shrek 2. Each machine in this cluster is an HP ProLiant DL360
server with two 2.8-GHz Xeon processors, 4 GB of memory and two 36-GB 10k
RPM SCSI disks. It contains a total of 1,000 CPUs and can serve up to 1,000



tasks simultaneously, because at most one task may occupy a processor at any
time.

Our workload characterization is based on LSF [18] scheduler logs collected
on this cluster during the period 15 February–10 April 2004. The logs associate
tasks with their parent render jobs and we reconstructed their stage structure.
We removed from consideration all jobs that did not complete successfully, e.g.,
because a user canceled them. Our final trace contains 56 nights, 2,388 jobs, and
280,011 tasks.

3.2 Jobs, Tasks, and Stages

Minimum Maximum Average Std Dev Median

Number of tasks/job 3 1328 117 114 84
Number of jobs/night 5 79 43 18 41
Number of tasks/night 880 8908 5000 1970 4976
Task length Li 0 85686 8500 9899 5356
Maximum tasks in stage 1 700 93 93 91

Percent of jobs rerun/night 0% 26.4% 12.4%

T∞ in hours (all nights) 0.06 24.07 4.35 3.46 3.42
T∞ in hours (average/night) 0.59 14.04 4.61 0.50

T1 in hours (all nights) 0.23 5026.36 276.77 420.08 134.72
T1 in hours (average/night) 6.12 1849.48 301.22 396.49

Table 1. Task and job statistics.

Number of stages per job with: 1 task 2 tasks 3 tasks more than 3 tasks

Average (all jobs) 2.24 1.07 0.21 1.62

Table 2. Most stages of jobs have 1-3 tasks. Jobs have one or two stages with many
tasks.

Table 1 shows statistics about jobs, tasks, and stages in the eight week work-
load. While the number of tasks and jobs varied widely across all of the nights —
there were a few weekend nights where very little rendering was done, as shown
in Figure 3 — the medians shown in the fifth column represent the majority of
nights. Most nights have a few tens of jobs and a few thousands of tasks. Task
length varies widely; some tasks complete in less than a second while many tasks
take hours. The median task length is 1.5 hours.

The middle section of Table 1 shows the percentage of jobs that were run
twice during a single night. These jobs completed on the first run and produced
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Fig. 3. Time series of the number of jobs each night. Low workloads correspond to
weekends.

the correct number of frames, but the frames were not satisfactory for some
reason and the job was resubmitted. Note that in order for a job to run twice in
one night, 2 · T∞(j) must fit in the 13 hour time window.

The number of stages per job is shown in Figure 4. Most jobs have 3–7
stages, depending on whether all of physical simulation, model baking, and frame
rendering need to be done (with some gluing stages in between). However, only 1
or 2 of the stages have more than 3 tasks, as shown in Table 2. Those stages
usually compute something per frame (e.g., render the frame), which is why
Figure 5 shows that the maximum number of tasks in a single stage is strongly
correlated with the number of frames being rendered. For 82% of the jobs, the
maximum number of tasks in a stage equals the number of frames. Figure 6
shows that the maximum length of that single stage is nearly equal to T∞, i.e.,
in most cases a single stage accounts for most of a job’s critical path length.
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Fig. 5. The maximum
number of tasks in a single
stage is highly correlated
with number of frames
that the job renders.

Fig. 6. The length of the
longest single stage ac-
counts for most of T∞(j).
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Fig. 9. Predicted and ac-
tual T∞ appear correlated
on log scales but often dif-
fer by 30–100%.
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Fig. 12. Sums of predicted
vs. actual CPU demand for
all jobs in each night.

3.3 T1 and T1 Distributions for Jobs

Figure 7 shows the relationship between T∞ and T1 for each job. T1 is generally
around 100 times as much as T∞, because the longest stage has a median of
91 tasks. The median T∞ of 3.4 hours shows that most jobs can complete in
a short time, given enough resources. However, Figure 8 demonstrates that on
most nights (75%), there is at least one job that cannot be completed within a
13 hour time window.

3.4 Predictions of T1 and T1

The previous section analyzed the actual T∞ and T1 of jobs. In practice, the
actual times are not known before the jobs execute. Scheduling decisions must
be made based on predicted times. In this section, we compare the predictions
that DreamWorks Animation artists supplied before a job was run with the
actual run times.

Figure 9 shows a scatterplot of predicted versus actual T∞ for jobs in our
trace. Predictions are based on an estimate of the time required to render a
single frame from the job. While Figure 9 suggests a strong correlation between
the predicted and actual times, only 14% of the predictions are within 10% of
the actual T∞. Only 46% of the predictions are within 30% of the actual T∞,
and 21% of the predictions are wrong by a factor of 2 or more.



Figure 10 shows a similar scatterplot for T1. These predictions are formed
by multiplying the estimated time to render a single frame by the number of
frames in the job, which leaves even more room for error, since not all frames
take the same amount of time to render. Only 37% of the predictions are within
20%, 25% are wrong by a factor of 2 or more, and 7% are wrong by a factor of
10 or more.

However, while T1 predictions are not very accurate for individual jobs (and
we have no predictions of individual task execution times), our predictions are
quite good when aggregated over all jobs for a given night. 32% of the predictions
are within 10% and 80% are within 30% of the actual sums. Only 4% of the
predictions are wrong by a factor of 2 or more. Figure 12 shows the sums of the
predicted and actual T1 for all jobs in each night, relative to each other. These
sums are the only quantity for which we have good predictions. Fortunately,
in job selection, we only need the sum of T1 for a set of jobs rather than the
individual jobs’ requirements; that sum indicates whether the set can fit in the
knapsack capacity of PD.

3.5 Job Priorities

Priority 0-99 100-199 200-299 300-399
Must do Must do Good If there

Meaning first tonight to do is time

Percent of jobs (all nights) 55.2% 8.1% 35.7% 1.0%
Number of jobs (all nights) 1318 193 853 24
Number of jobs (average/night) 24 4 15 0.4

Table 3. Number and percent of jobs in each priority band

Currently, DreamWorks Animation uses job priorities to decide which jobs to
run first. Table 3 shows the priority categories that they use and the percentage
of jobs assigned to each category. In Figure 11, we compare the CPU demand
of jobs in different priority categories. Unsurprisingly, we find little correlation
because job priorities are intended to reflect the relative importance of jobs, not
their computational demands.

4 Sensitivity Analysis

In this section, we evaluate how sensitive the performance of our scheduling
method is to two variables: a parameter of our method and a property of our
workload. We describe these variables first and then present the questions that
the rest of this section tries to answer.

The scheduling method presented in Section 2.2 is a two-phase method. The
first phase, job selection, uses a selection parameter r to decide the subset of



jobs to run. As r approaches 1, the number of chosen jobs increases to fill all of
the CPU time. The lower the value of r, the more idle time is allowed in the job
schedule but the lower the possible reward if all jobs complete.

The workload itself contains many jobs, each of which has a critical path
length T∞, and the workload has a maximum CPL T max

∞ . Theorem 1 shows
that our two-phase scheduling method achieves close-to-optimal performance
if T max

∞ /D is small and jobs have unit rewards. It leaves open the case where
T max
∞ /D is large, as it is in DreamWorks Animation’s workload, and jobs have

non-unit rewards. In addition, while Theorem 1 gives tight worst-case bounds
for pathological examples, we wanted to explore average case performance. Our
evaluation therefore aims to answer the following questions:

1. How should the selection parameter r be set? Does it depend on the dis-
patching policy used?

2. How sensitive is dispatcher performance to different maximum critical path
lengths?

3. What happens to performance as T max∞ ≈ D? Is it as bad as the worst case
given by Theorem 1?

4. Can we improve performance by breaking long tasks into small pieces (thereby
shortening T max∞ )?

In order to answer the latter three questions, we needed to generate work-
loads with varying values of Tmax

∞ . We therefore decided to generate synthetic
workloads. We first describe our synthetic workload generation and then present
our results.

4.1 Synthetic Workload Generation

In our standard synthetic workloads, Tmax
∞ /D ≈ 1. We then transform these

workloads to create new workloads with lower values of Tmax
∞ . We first describe

how we generate a standard synthetic workload.
For all experiments in the next few subsections, the number of CPUs P = 100

and the global deadline D = 13 hours = 4680× 10 seconds. For job completion
rewards, we use the size-dependent reward function Rj = T1(j). For each stan-
dard workload, we add jobs to the workload until the total CPU demand of the
workload exceeds 2× P × D.

While the workload is not full, we create new jobs as follows: For each new
job, we draw a random number of stages from U [5, 10] where U [a, b] denotes an
integer drawn with uniform probability from the set {a, a + 1, . . . , b}. For each
stage, we draw a number of tasks from U [1, 10]. For each task, we draw a task
length from U [1, 600]. After choosing task lengths for every task in a job, we
then compute the job’s critical path length T∞. If T∞ ≤ D, we add the job to
the workload; otherwise, we discard it.

To transform an already generated workload into a new one with a desired
Tmax∞ , we alter the number of stages that it has. A job with fewer stages will
probably have a shorter T∞, since it will have fewer dependencies between tasks.



We therefore also generated workloads with a fixed number of stages. For each
such workload, we first create a standard workload where the number of stages
in each job is always 10, and the task lengths are drawn from U [1, 600]. We then
alter the workload so that each job has a smaller (fixed) number of stages, say
6. For each job, we reassign all tasks that were previously in a stage > 6 to a
stage drawn from U [1, 6]. The new workload therefore has the same number of
jobs and the same total processing time as the original workload and, unlike the
previous transformation, the same number of tasks. We call this transformation
T1.

A different way to alter the T∞ of a job is as follows: While the job’s T∞
exceeds the new T max

∞ , we find the task with the longest length and replace it
with two tasks that are half as long (in the same stage as the original task). The
CPU time of the job (and of each stage of each job) therefore remains constant,
but the job now has more parallizable tasks. We call this transformation T2.

4.2 Scheduling Performance when Tmax
1

≈ D

While Theorem 1 shows that the two-phase scheduling method achieves near-
optimal performance if (Tmax

∞ /D) is small and jobs have unit rewards, it does not
apply to the more general case where T max

∞ /D is large and jobs have non-unit
completion rewards. Furthermore we do not know how pessimistic the bound
of Theorem 1 is when critical paths are long: We know that the bound is tight
because we can construct pathological inputs that result in worst-case perfor-
mance given by the theorem. However our theoretical results alone shed little
light on whether such inputs are likely to arise in practice. How does the worst-
case bound of Theorem 1 compare with average performance for workloads with
T max
∞ ≈ D?
In this section we answer this question by generating synthetic workloads

with T max∞ ≈ D and applying our two-phase scheduling method to them in
simulation. We use DP by profits to solve the job selection problem optimally.
Ideally, we would like to compare the performance achieved by our scheduler with
the optimal solution value. However, as discussed in Section 2 and proven in [2],
it is computationally infeasible to solve dssp optimally. We therefore instead
compute an upper bound equal to the aggregate value of jobs selected when
selection parameter r = 1. This is the reward that would accrue if we select jobs
to utilize available processor capacity as fully as possible, and all selected jobs
complete by the deadline. It is clearly an upper bound for the optimal value of
the overall scheduling problem (which may be lower if some jobs fail to complete
on time). When evaluating our two-phase scheduler we use the term performance
ratio to denote the ratio of its actual performance to the upper bound discussed
above.

Section 4.1 describes how to generate synthetic workloads with T max∞ close
to D. For each workload generated in this way, we run the two-phase scheduling
method with varying values of selection parameter r during job selection. In this
experiment we use three dispatcher policies during the task dispatching phase:
lcpf, stcpu, and random, and we vary the selection parameter r from 0.7



to 1.0 in increments of 0.01. For each (r, dispatcher) pair we generate 20 different
random workloads and report mean performance ratio. Figure 13 presents our
results.

The figure shows that lcpf clearly dominates both stcpu and random for
any fixed r value. This is not surprising because lcpf takes into account the
critical paths of jobs while the other policies do not. For workloads with long
critical paths, performance will suffer if the jobs with the longest critical paths
are started too late to complete on time. Both stcpu and random ignore jobs’
critical path lengths and therefore start many long jobs too late to complete by
the deadline, while lcpf starts long jobs as early as possible.

Comparing stcpu with random, we see that stcpu is slightly better when
r ≥ 0.92 and random is slightly better when r ≤ 0.87; their performance is
similar when r is in the range [0.87, 0.92]. Note also that random becomes less
effective when more jobs are selected whereas stcpu is relatively insensitive to
the tuning of r. This is intuitive because random treats all tasks equally, and
if too many jobs are selected it will spread available processor capacity among
them roughly evenly, with the result that many fail to complete by the deadline.
By contrast, stcpu imposes a near-total priority order on jobs, because it is
rare for two jobs to have the same total processing demand. If r increases and
more jobs are selected, some of the additional jobs have small processing demand
and stcpu finishes them early during task dispatching. This has relatively little
impact on the remaining processing capacity available to larger jobs, and the
overall result is that many jobs still finish by the deadline.

Figure 13 shows that the performance of lcpf reaches a maximum of roughly
0.84 when r = 0.87. In other words, lcpf achieves at least 84% of the optimal
performance even though the maximum critical path lengths Tmax∞ in the work-
loads used are at least 97% of the deadline D. This result stands in stark contrast
to the very weak performance bound that Theorem 1 would guarantee with simi-
larly long critical paths: If Tmax∞ /D = 0.97, our previous theoretical results state
that a two-phase scheduler can achieve as little as 3% of optimal performance
in the unit-reward case.

Finally, we observe in Figure 13 that lcpf’s performance is relatively flat
when r is in the range [0.85, 1]. When r < 0.85, all selected jobs finish by
the deadline and selecting more jobs simply increases the number that finish.
As the selection parameter increases beyond r > 0.85, performance does not
improve because the additional jobs selected do not complete by the deadline;
more processing capacity is used, but it is wasted on jobs that do not complete
quickly enough to yield a reward. Because a job that fails to complete by the
deadline simply wastes any capacity devoted to it, it might be best in practice to
set r to a relatively low value rather than a higher value that achieves comparable
reward (e.g., 0.85 as opposed to 1 in the figure). Our results suggest that for lcpf
and the workload studied (T max∞ ≈ D) a value of r in the range [0.85, 9] is a
good choice.



4.3 Performance vs. MaxCPL

In this section we empirically evaluate the performance of the two-phase schedu-
ling method as the maximum critical path length Tmax

∞ of the workload varies.
Intuitively, jobs with relatively long critical paths face higher risk of finishing
after deadline D and thus yielding no reward. Theorem 1 shows that the worst-
case performance of two-phase scheduling for unit-reward dssp is a strictly de-
creasing function of (Tmax∞ /D). However our theoretical worst-case bounds for
unit-reward dssp do not necessarily predict typical performance in the weighted
case. We therefore explore via simulation the relationship between maximum
critical path length Tmax∞ and the performance ratio that our scheduling method
achieves.

We describe two classes of simulation experiments to address this issue and
compare their results qualitatively. Our first approach uses the workloads with
a fixed number of stages and transform them into new workloads with fewer
number of stages using transformation T1. While it directly alters only the
number of stages per job, Figure 14 shows that the number of stages is closely
related to T max

∞ for the workload. T max
∞ is almost a linear function of the number

of stages for jobs in the synthetic workload.
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Fig. 13. Performance ratio vs. selection
parameter r, for synthetic workloads with
Tmax
∞ /D ≈ 1.

Fig. 14. MaxCPL vs. number of stages
for each of eight synthetic workloads gen-
erated by transformation T1.

Figures 15, 16, and 17 show the performance ratio of three dispatching poli-
cies as the number of stages per job varies. One feature of these figures is that
random differs qualitatively from lcpf and stcpu: The latter two policies dom-
inate random for most values of r and for most numbers of stages. Furthermore,
for all r values except r = 1.0, the performance of random decreases slowly as
the number of stages (and T max

∞ ) increases, but suffers only slightly. Finally, the
performance of random relies heavily on a well-tuned r. If r is close to 1 its
performance degrades substantially. For the workload studied, r of 0.8 to 0.9
seems appropriate for random and yields far better performance than r ≈ 1.



Figures 16 and 17 show that lcpf outperforms stcpu by a wide margin when
the number of stages per job is large. Furthermore, contrary to our intuition that
performance should decrease monotonically as the number of stages increases,
we notice a local minimum of the performance ratios of both lcpf and stcpu
at roughly 5 stages/job. Upon further investigation of Figure 14 we found that 5
stages corresponds to T max

∞ ≈ D/2. We conjecture that lcpf and stcpu exhibit
non-monotonicity while random does not for the following reason: Whereas
random disperses processor capacity across tasks from all jobs, lcpf and stcpu
take a different approach. They impose an order on jobs and try to finish some
jobs (the ones with greatest CPL and smallest total CPU demand, respectively)
before devoting any processing capacity to others. If Tmax

∞ ≈ 0.5 × D, stcpu
and lcpf will process a set of jobs and finish them slightly after t = D/2. By
the time they finish these jobs, there may not be time to start the remaining
jobs and finish them by the deadline. The remaining jobs are started late and
narrowly miss the deadline, thus contributing no value and wasting processing
resources.

Our second set of experiments uses the workloads that altered Tmax
∞ directly

using transformation T2. We again present results for three dispatching policies:
Figure 19 for lcpf, Figure 20 for stcpu, and Figure 18 for random.

The results for this set of experiments are similar to those for the first set:
stcpu and lcpf resemble each other but not random; lcpf outperforms stcpu
when MaxCPL is long; and random is more sensitive to selection parameter r
than the other two. In both experiments, the results show minima for MaxCPL
slightly larger than D/2. Furthermore these results shed additional light on the
relationship between performance ratio and MaxCPL: Figures 19 and 20 show
second local minima at around Tmax

∞ = 0.35 × D, that is, at T max
∞ ≈ D/3. It

is possible for the performance of our scheduling method to have multiple local
minima with respect to Tmax

∞ , and these local minima occur at approximately
D/n from the right side, where n = 2, 3, . . . is an integer. We conjecture that
lcpf and stcpu finish jobs in “rounds.” If Tmax

∞ ≈ D/n these policies will finish
the first n − 1 rounds; jobs in the last round will narrowly miss the deadline,
thereby wasting processor resources without contributing value.

4.4 Selection Parameter Tuning

dssp is a deadline scheduling problem where a job’s completion reward is zero
if it completes after the global deadline D. If too many jobs are selected during
the job selection phase, then during task dispatching these selected jobs will
compete for limited processor capacity and each job has a higher risk of finishing
too late. It is thus important to set the selection parameter r properly for each
dispatching policy; in most cases it should be strictly less than 1. Let r0 ≡
1−(1−1/P )(T max∞ /D). Theorem 1 has proved that a general two-phase solution
with r = r0 completes at least r0 ·OPT−1 jobs before the deadline, where OPT
is the maximum number of jobs that can be completed by any scheduler. This
seems to suggest a default selection parameter value. This section tries to find a
reasonably good value for r for various dispatching policies.
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Fig. 15. Performance ratio vs. number of
stages with dispatching policy random.
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stages with dispatching policy stcpu.
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We begin by briefly reviewing our simulation results from Section 4.3. Fig-
ure 15 shows that for dispatcher policy random, the worst strategy is to choose
r ≥ 1. Figure 15 suggests that the best choice of r is in the range [0.85, 0.9]. For
any r ∈ [0.85, 0.9], performance is strictly better than for r = 1.

For dispatching polices such as lcpf or stcpu, it is also true that r slightly
less than 1 is better than r = 1. However the best selection parameter is no longer
a fixed constant. Given two fixed selection parameters r1 < r2, we consider their
corresponding performance ratio curves which we denote f1, f2 respectively. It
is highly likely that when Tmax

∞ is small, then f1 > f2. At some value T max
∞ 0

these two curves intersect. After that Tmax∞ > Tmax∞ 0, then the order is reversed
f1 < f2.

Figures 19 and 20 suggest that the best value of r is correlated to the
maximum critical path length of the workload. Inspired by the value of r0

above, we suspect that it is possible to find a constant λ ∈ [0, 1], such that
r = 1 − λ(1 − 1/P )(T max

∞ /D) is a good choice for the selection parameter. Fig-
ure 21 shows the performance ratio of our algorithm using lcpf dispatching
policy with three λ values: λ = 0.0, 0.2, and 1.0. λ = 0.0 corresponds to the se-
lection parameter r= 1.0; λ = 1.0 corresponds to the selection parameter r = r0;
and λ = 0.2 corresponds to r = 1− 0.2(1− 1/P )(T max

∞ /D).
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Fig. 21. Performance ratio vs. MaxCPL with lcpf and r = 1 − λ(1 − 1/P )(Tmax
∞ /D),

for three λ values.

Figure 21 shows that for dispatching policy lcpf, the curve corresponding
to λ = 0.2 consistently performs better than the curve corresponding to λ = 0.0,
i.e., r = 1.0. Furthermore, both λ = 0.2 and λ = 0.0 perform much better
than λ = 1.0. This is because r0 is too conservative; it is appropriate only for
worst-case inputs. For the class of workloads studied and for our lcpf dispatcher
policy, a good selection parameter is around r = 1− 0.2(1− 1/P )(Tmax

∞ /D).

4.5 Tradeoff Between Parallelism and Performance

Parallelism is an important technique in scientific computing and parallel com-
puting to improve system utilization and job throughput by breaking long se-



quential tasks into multiple parallel tasks. For a multi-processor system, if there
is only one long-running task, then only one processor is fully occupied and all
other processors are left idle. Breaking long tasks into multiple short tasks will
definitely increase system utilization. Remarkably, however, for dssp paralleliza-
tion is not necessarily helpful even if it entails no overhead. In other words, if
we have an opportunity to parallelize tasks in a particular instance of dssp and
thereby reduce critical path lengths, it is not always advantageous to do so.

Consider, for instance, the workloads with Tmax∞ /D ≈ 0.8 in Figures 19
and 20. If by parallelizing tasks we reduce Tmax

∞ /D to roughly 0.55, performance
will be worse for both lcpf and stcpu even though parallelization does not
increase total processing demand. If lcpf is the task dispatching policy, then
parallelism is beneficial only if the given workload has Tmax

∞ < D/2. Finally,
if T max∞ /D is small, then the two-phase scheduling method produces a solution
with near-optimal performance regardless of the dispatcher policy used; even if
parallelism incurs no extra cost, it cannot yield large performance improvements.

5 DreamWorks Animation Engagement Experience

In August 2003, HP Labs embarked on a challenge to provide remote rendering
services to DreamWorks Animation. In early February 2004, we went into full
production for the movie Shrek 2. We learned that the utilification [22] process of
bringing the customer’s workload up on a remote facility was not straightforward,
and had many unexpected challenges.

We went through four stages in utilification. First a feasibility stage where we
determined whether or not a remote service was feasible. Second, an instantiation
stage where we brought up the service. Third, a confidence-building stage where
we demonstrated to the customer’s satisfaction that the remote service could
correctly support their workload. Fourth, an ongoing maintenance stage where
we optimize our delivery of the service, and keep the service up to date for the
customer needs. In the following we describe these stages in detail.

5.1 Feasibility Stage

Our evaluation started in August 2003. We needed to determine whether we
would be able to place a remote facility about 20 miles away from the primary
site. We found that there were four feasibility questions:

1. Schedule - the proposed schedule said that we needed to be in production in
only five months, by January 2004. Could we acquire all of the equipment
and implement the system in that time?

2. Bandwidth and latency - will the 1 Gbit/s network connection between the
sites be sufficient to support a cluster of 1,000 2.8 GHz CPUs?

3. Software and configuration - will we be able to install, configure, and adapt
the existing software and configuration to work with a remote cluster?

4. Business Model - can the lawyers agree on an appropriate contract for the
project?



While we expected (3) to provide the most difficulty, we in fact discovered
that (4) presented the most substantial difficulties, in particular because the
Shrek 2 franchise had a large estimated monetary value, and DreamWorks Ani-
mation therefore had an understandable concern about exposing content outside
of their company. Hence, we negotiated protections such as sanitization of gath-
ered data for analysis, an isolated network to protect their content, a double-
stage firewall to protect access from the HP network, and a camera to monitor
the physical installation.

Performing the bandwidth and latency analysis was the hardest technical
challenge we faced during the feasibility stage. The sustained and burst packet
rates we needed to handle normally would require specialized network analyzer
hardware, but we needed general purpose, full-packet capture for weeks of data.
We developed a solution based on commodity hardware that used improved
software for packet capture, buffering to local memory to handle bursts of data,
parallel use of multiple disks spread across multiple trays, and opportunistic
compression of data to increase the effective disk space and increase the time-
periods for contiguous captures. The solution could handle traffic for hours at 30-
50MB/s and bursts above 100MB/s with negligible drops on the tracing machine.

Our second challenge was to analyze the data. We have collected billions of
NFS requests and replies, so putting this in a database or directly processing
the raw traces would be either too slow or too expensive. Luckily we had previ-
ously developed a new, highly efficient trace storage format called “DataSeries”
for handling block I/O traces and process traces. The format was general, and
provided streaming access to database-like tables. We therefore developed a con-
verter from the raw tcpdump traces into DataSeries, and built our analysis on
the converted files. This has provided us with a flexible, extensible data for-
mat and structure for our analysis. Multiple people have been able to add new
analysis in to our existing structure within a few days.

We did not hit the original schedule because of the length of time it took
to negotiate the legal agreements and the unexpected length of the confidence-
building stage. Both of these parts were originally scheduled as taking at most
a few weeks, and in fact both took months. Luckily, the need for the service was
not excessively strong until early February 2004, so we were able to provide the
service on an appropriate schedule, just one different than we expected.

5.2 Instantiation Stage

The primary difficulty that occurred during the instantiation stage was installing
and configuring all 500 machines. When our racks of machines arrived, we dis-
covered that some of them were configured both physically and logically wrong.
The physical mistakes involved cabling errors, which were straightforward if te-
dious to repair. The logical mistakes were more difficult because they involved
incorrect firmware versions. After a little study, we developed a tool for automat-
ically updating the firmware and firmware configuration on all of our machines
automatically. We wrote an extensive document about the problems with the
order fulfillment process for rack systems which was presented back to the HP



order fulfillment team. The key lesson was that many traditional tools that are
used involve per-machine human effort. While those tools are acceptable if you
have 1-10 machines, they become unusable at 500. We needed to automate many
of these actions, and found moreover that it was important to write idempotent
tools: any time we ran a task across 500 machines (even one as simple as remov-
ing a file), a few machines would fail to execute the task correctly. Our solution
was to design our automation to take a machine to a particular state and re-
port on changes it made, which meant that we could simply execute global tasks
multiple times until we received a report of no changes.

5.3 Testing Stage

Once we had instantiated the rendering service, we then had to verify that it
worked to the satisfaction of various people responsible for making the movie.
Moreover, we wanted to perform these read-write tests with no risk to the pro-
duction data. Our problem therefore was to clone an appropriate subset of the
total 15-20 TB of data such that we could show that our cluster rendered frames
correctly, and so that there would be minimal changes from testing to produc-
tion.

While we solved this problem by using a DreamWorks Animation specific
feature in their rendering system of having a few variables to change expected
file locations, and setting the source file systems to read only, we found a better
solution by having a write-redirector that snapshot the backend file systems to
isolate us from underlying changes and store our writes in a second location. This
solution enables us to test and verify our solution much faster. Then moving into
production would merely have required removing the write redirector to send all
of the accesses directly at the file systems.

5.4 Maintenance and Optimization

We moved into production in two stages, first on a movie that was not due to
release until 2005, and then on Shrek 2. When we moved into production we
identified some reporting and job submission issues that we had not addressed
during the instantiation phase that we needed to solve. Once we entered into
full production, our goal was really to optimize and maintain the cluster. We
made many small, but cumulative improvements to our service: simple service-
specific host monitoring to detect failed hosts, automatic job retry for failed jobs,
farm usage analysis and reporting, tracing through render job executions, and
NFS performance analysis. Specifically, we found an interesting aspect to explore
scheduling improvements over this multi-processor rendering environment, and
that motivated our current work.

6 Related Work

Scheduling is a basic research problem in both computer science and operations
research. The space of problems is vast; [4, 17] provide good reviews. In this



section we focus on non-preemptive multiprocessor scheduling without processor-
sharing.

6.1 Minimizing Makespan or Mean Completion Time

Much scheduling research focuses on minimizing makespan for tasks with ar-
bitrary precedence constraints. Variants of list scheduling heuristics and their
associated dispatching policies are the main focus of both theoretical and em-
pirical studies [8, 3, 9, 1]. See Kwok and Ahmad [14] for a recent survey of static
scheduling algorithms and Sgall [19] for online scheduling algorithms.

Another important optimization metric for job scheduling research is to min-
imize mean task completion time. The classic shortest job first (sjf) heuristic is
optimal in the offline case with no precedence constraints and each job consists
of a single task; sjf works well in many online scheduling systems.

The large queueing-theoretic literature on processor scheduling typically as-
sumes continuous online job arrivals and emphasizes mean response times and
fairness, e.g., Wierman and Harchol-Balter [21]. Kumar and Shorey analyze mean
response time for stochastic “fork-join” jobs, where fork-join jobs closely resem-
ble the stage-structured jobs of dssp [13]. Our work on dssp differs because we
are confronted with a fixed set of jobs rather than a continuous arrival process.
Deadline scheduling is therefore a more appropriate goal for dssp.

6.2 Grid and Resource Management

For heterogeneous distributed systems such as the Grid, job scheduling is a ma-
jor component of resource management. See Feitelson et al. [7] for an overview
of theory and practice in this space, and Krallmann et al. [12] for a general
framework for the design and evaluation of scheduling algorithms. Most work
in this space empirically evaluates scheduling heuristics, such as backfilling [15],
adaptive scheduling [10], and task grouping [20], to improve system utilization
and throughput. Markov [16] described a two-stage scheduling strategy for Sun’s
Grid Engine that superficially resembles our two-phase decomposition approach.
In fact there is no similarity: The first stage of Markov’s approach assigns static
priorities to jobs and the second stage assigns dynamic priorities to server re-
sources. Most of the work in the Grid space does not emphasize precedence
constraints among jobs/tasks.

6.3 Commercial Products

Open-source schedulers such as Condor manage resources, monitor jobs, and en-
force precedence constraints [6]. Commercial products such as LSF additionally
enforce fair-share constraints [18]. These priority schedulers have no explicit se-
lection phase, so they must handle overload and enforce fair-share constraints
through dispatching decisions. Our two-phase deadline scheduler for dssp can
employ a priority scheduler for task dispatching after an optimal solver has se-
lected jobs. Selection can enforce a wide range of constraints, thereby allowing



greater latitude for dispatching decisions. Furthermore, the completion rewards
of our framework are more expressive than ordinal priorities and thus better
suited to dssp.

7 Concluding Remarks

In this paper we evaluated the two-phase scheduling method for dssp through
parameter tuning and sensitivity analysis. Contrary to our intuition that the
performance of our scheduling method should decrease as the maximum criti-
cal path length of the input workload increases, our empirical results show that
even though there is a close correlation between performance ratio and MaxCPL
value, it is not monotonic for dispatching polices such as lcpf. More exploration
is needed to determine why the performance ratio decreases significantly when
T max
∞ ≈ D/2. We tentatively conjecture that when deadline is an integral mul-

tiple of MaxCPL, dispatcher policies such as lcpf that associate task priorities
with job properties suffer because many of the jobs narrowly fail to complete by
the deadline, thus achieving no reward and wasting processor resources.

Furthermore, contrary to the worst-case performance bound in our previous
work which is pessimistically bad if Tmax∞ ≈ D, our new empirical evaluation
shows that our algorithm performs very well for this special case, with a perfor-
mance ratio of more than 80%.

Based on these empirical evaluation results, we believe that MaxCPL alone
is insufficient to describe the workload and predict the performance of our sche-
duling methods. It will be interesting to explore the distribution of critical path
lengths for all the jobs in the workload and determine its impact on the perfor-
mance of the two-phase scheduling method.
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