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Abstract

Many systems design, configuration, runtime and man-
agement decisions must be made from a large set of pos-
sible alternatives. Ad hoc heuristics have traditionally
been used to make these decisions, but they provide no
guarantees of solution quality. We argue that operations
research-style optimization techniques should be used to
solve these problems. We provide an overview of these
techniques and where they are most effective, address
common myths and fears about their use in making sys-
tems decisions, give several success stories and propose
systems areas that could benefit from their application.

1 Introduction

Decision-making problems abound in systems research,
including questions of resource provisioning [6, 16], re-
source allocation and scheduling [17, 20, 23, 24, 30, 31],
system administration and management [8], and applica-
tion and system design [3, 5, 15, 25]. These problems are
characterized by a large space of potential solutions, with
complex tradeoffs between system performance, avail-
ability, reliability, manageability and cost. Given the
large solution space, it’s hard to keep the alternatives
straight, let alone find the best solution. Even when a
“good enough” or merely feasible solution (i.e., one that
meets constraints) is desired, it can be hard to find. Fur-
thermore, getting the answer wrong can be costly (e.g., in
the time to recover from a disaster or in the monetary ex-
pense of over-provisioning physical resources), so there
is a strong incentive to choose wisely.

Traditionally, systems researchers have used ad hoc
domain-specific heuristics to solve these decision-
making problems. Unfortunately, heuristics don’t pro-
vide the best solution, nor do they provide any bounds
on how close their solution is to the best. Recently,
a new paradigm has emerged, where systems decision
problems are cast as formal optimization or constraint

satisfaction problems, allowing the use of operations re-
search (OR) solution techniques, from mathematical pro-
gramming to meta-heuristics.

In this paper, we argue that the systems community
needs to leverage the more principled approach of formal
optimization to solve design, configuration, runtime and
management decision-making problems [26]. By opti-
mization, we mean first formally specifying the prob-
lem, and then using any of several techniques to solve
it. Specifying the problem means explicitly defining the
objective, the constraints on a valid solution, and how
input parameter values impact the goodness of a candi-
date solution. Formulating these aspects of the decision-
making problem forces us to understand the underlying
problem and the tradeoffs that we’re trying to capture.
This knowledge is useful, whether the problem is ulti-
mately solved by standard OR techniques or by domain-
specific heuristics.

Standard OR solution techniques provide many ben-
efits. In many cases, these techniques provide optimal
answers, which means that researchers don’t need to
worry that a heuristic might perform poorly for an as-
yet-unseen corner case. The speed of current desktop
machines makes it possible to use these techniques on
many problems that would have been intractable even ten
years ago. OR techniques encourage a clean separation
between the problem statement and the solution method.
Furthermore, the availability of commercial off-the-shelf
solvers means that we as systems researchers can focus
on specifying the problem at hand, rather than worrying
about how to solve it.

In the remainder of the paper, we provide an overview
of popular OR techniques and debunk common myths
preventing their usage in the systems community. We
discuss when to choose an optimization technique in-
stead of an ad hoc heuristic. Finally, we give several
success stories where optimization has been applied to
systems problems and list several areas that are ripe for
optimization in the future.



2 Optimization techniques

The OR community presents a variety of techniques to
find optimal and approximate solutions to decision prob-
lems. To use any of these techniques, the first step is
to describe the problem formally: what decisions must
be made, which alternatives are feasible, and what the
“goodness” metric is for comparing solutions. Decisions
might include which outgoing link to use to transmit a
message in a wireless routing environment, or whether
to allocate a server to workload A or workload B. Con-
straints on alternatives may be either hard constraints,
which cannot be violated, or soft constraints, where vio-
lations of the constraint incur penalties. The specific for-
malism varies with the technique, as described in the rest
of this section. One common thread, however, is that all
tradeoffs must be expressed in the same currency, such as
execution time, throughput, monetary cost, or a “utility”
composed from such metrics.

2.1 Techniques to find optimal solutions

Techniques such as mathematical programming (MP)
provide an optimal answer to a decision problem.
Among the approaches we consider, MP requires the
most detailed knowledge of the decision problem. In
an MP formulation, decision variables correspond to the
choices to be made, objective functions quantify a can-
didate solution’s “goodness,” and constraints describe
which solutions are feasible [11, 29]. The solver then
determines an optimal solution, the top N solutions, a
solution within x% of optimal, the best solution possible
within a time budget, or simply a feasible solution.

Mixed integer programs (MIPs) are math programs
with linear objective functions, constraints defined by
linear inequalities, and decision variables that take on
continuous or discrete (often binary) values. MIPs where
all decision variables have continuous values are called
linear programs (LPs). MIPs are appropriate for prob-
lems characterized by contention for additive resources
and additive measures of system goodness.

2.2 Techniques to find feasible solutions

The OR community also provides techniques for find-
ing feasible solutions to decision problems, such as con-
straint programming [12]. Constraint programming (CP)
is an appropriate technique when the constraints can only
be expressed by rules — logical statements such as “if
you choose option A, you must also choose B, C and
D.” A constraint satisfaction problem consists of decision
variables, each with a domain of valid discrete values,
and a set of constraints governing feasible solutions. A
solution is a complete assignment of variables that meets

all of the constraints. CP is predominantly used to find
feasible, rather than optimal, solutions.

2.3 Techniques for approximate solutions

Meta-heuristics are algorithms for finding near-optimal
solutions, which are inspired by naturally-occurring phe-
nomena, such as genetic algorithms [21], simulated an-
nealing, and auctions. In a genetic algorithm (GA), an
individual represents a feasible solution, and the genes
of the individual represent decision variables. The most
“fit” individuals are selected for the next population
based on a fitness function, which is roughly equivalent
to the objective function in a MIP. These techniques re-
quire less detailed knowledge of a problem’s structure
because they rely on a procedure, or “oracle,” to deter-
mine the feasibility and goodness of a candidate solution.
This oracle can be an analytic model, a lookup table, or
even a simulation. Meta-heuristics provide few, if any,
guarantees on the optimality of their solutions. How-
ever, it is sometimes possible to state probabilistically
how close to optimal a solution is.

3 Myths and realities

Although optimization techniques are powerful, systems
researchers are often skeptical about applying them to
solve decision problems. In this section, we refute sev-
eral common myths about optimization.

Myth: A simple heuristic is “good enough.” If an
easy-to-implement and quick-to-run heuristic exists, why
not use it? If the problem doesn’t require an optimal so-
lution, is formal optimization overkill?

Reality: If a simple heuristic provides “good enough”
answers, then it may be the appropriate choice. The chal-
lenge lies in quantifying what “good enough” means and
determining if a solution meets it. In many cases, it’s
hard to determine what “good enough” is, without know-
ing the best that can be achieved. Even if the goal is bal-
ancing tradeoffs between conflicting goals, rather than
finding an optimal solution, we still need to understand
the relative costs of the alternatives, so that we know
whether the appropriate balance is achieved. Without a
formal specification, it can be hard to estimate how close
to optimal a solution lies; with ad hoc approaches, it can
usually be determined only empirically. Techniques like
math programming provide a systematic solution with
bounds on how close that solution comes to the opti-
mal one. Furthermore, even if optimization techniques
work only for small problem instances, their results can
be compared with those of domain-specific heuristics,
to help understand the heuristic’s behavior for larger in-
stances.



Myth: Problem formulation takes too much time.
Formulating problems is often challenging, and it re-
quires both domain expertise and knowledge of the opti-
mization technique. Employing ad hoc domain-specific
heuristics doesn’t generally require such up-front, inter-
disciplinary effort.

Reality: The hardest part of problem formulation is
understanding the problem — its goals and tradeoffs, as
well as how to capture the underlying system’s behavior.
This first step is required whether the ultimate solution is
a standard optimization technique or a domain-specific
heuristic. Unfortunately, in the latter case, the explicit
formulation step is often ignored, and researchers end up
gradually “discovering” aspects of the problem as they
successively refine their heuristic. The effort in formula-
tion is well-spent, because it’s easier to adapt the formu-
lation as the decision question or constraints change than
to adapt an ad hoc heuristic.

Myth: Formulating the problem requires too many
simplifying assumptions. If too many simplifications
are made, then the decision is not realistic, and the re-
sulting solution may be meaningless.

Reality: Our collective experience is that simplifica-
tions are problematic only when we try to force a prob-
lem into a particular framework (e.g., force non-linear
behavior into an LP). If one technique doesn’t work, we
need to try another one, or to break the problem down
so that different techniques can be used for different por-
tions of the problem (e.g., a MIP for resource provision-
ing and a heuristic for resource scheduling). Ultimately,
if no optimization technique works, the formal descrip-
tion is still useful for understanding the problem and de-
veloping an ad hoc domain-specific heuristic.

Myth: Optimization techniques are too slow. Stan-
dard optimization techniques take too long to be useful
for runtime management decisions.

Reality: The execution times of these techniques are
highly dependent on the size of the problem and its struc-
ture. (For instance, linear programs can be solved more
efficiently than non-linear ones.) Execution times can be
under a second. Given that many decisions will be in ef-
fect for days or months, many decision-making problems
can tolerate the execution times of OR techniques.

Myth: Inaccurate input data may result in bad de-
cisions. Variations in the input values may cause varia-
tions in optimal solutions.

Reality: Sensitivity to the input values is a character-
istic of the problem domain, rather than the solution tech-
nique. If we can’t estimate input values with high accu-
racy, for example, because they are estimates of business
utility, then it’s important to do a sensitivity analysis to
understand how the optimal solution varies with different
input values.

Myth: Optimal solutions may not be easy to sup-
port. Optimal solutions may use non-standard configu-
rations for a large hardware or software system, which
may be hard to maintain.

Reality: It’s difficult to capture intangible goals such
as “manageability” in an objective function. If they can’t
be represented quantitatively in the objective function,
it may be possible to restrict the space of candidate solu-
tions to only those that fit the intangible criteria. Another
possibility is to present a family of possible solutions to
the user, who can then choose one based on the intangi-
ble goals.

4 When should I use optimization?

Four criteria must be met for a math programming or
constraint solver to be useful. These criteria are: desire
for a better solution than an ad hoc heuristic can provide,
enough knowledge of the decisions to be made to express
them formally, accurate and available input data so that
the solver can compare alternative solutions, and suffi-
cient time to run the solver. If only the latter two are met,
then meta-heuristics may be appropriate. Otherwise, an
ad hoc heuristic may be the only choice. If the answers
to all four questions are all yes, then using optimization
is the best bet.

Does this problem need an optimal solution? The
stronger the desire to find the best solution, the more
worthwhile it is to employ math programming or con-
straint programming techniques. These approaches can
find feasible or, in the case of math programming, op-
timal solutions. Meta-heuristics and domain-specific
heuristics don’t provide any optimality guarantees.

Can the decisions and constraints be modeled for-
mally? Math programming is appropriate if the sys-
tem constraints can be modeled as sets of inequalities.
If constraints can be specified only in Boolean terms,
then constraint programming is a better choice. If sys-
tem behavior can only be understood through simulation
or black-box measurement, perhaps because of complex
interactions between components, then a meta-heuristic
or domain-specific heuristic is most appropriate.

Is enough input data available? Is it accurate
enough? For math programming and constraint pro-
gramming, complete input data must be available to
evaluate all possible alternatives; unavailable data must
be estimated with reasonable accuracy. Meta-heuristics
may be able to get by with partial input information, be-
cause they can incorporate new or changed data at each
step of the search space exploration. If input data is ar-
riving continuously or can’t be accurately measured or
modeled, then an ad hoc heuristic is easier to use.

Is there enough time to compute an optimal an-
swer? For optimization to be effective, the time to make



a decision should be shorter than the time frame for re-
visiting the decision with new data. Storage-related and
wide area distributed run-time management decisions re-
quire answers in under a second, and MIPs can some-
times provide answers in under a second, depending on
the size of the problem and the set of constraints. Con-
figuration and capacity planning decisions that will take
hours to days to implement can tolerate much longer
decision-making latencies, from minutes to hours. Cur-
rent commercial MP solvers, such as ILOG’s CPLEX
solver [13], can solve LP problems with hundreds of
thousands of variables in minutes.

Applying formal optimization techniques may not be
worthwhile in all circumstances. Other approaches may
be more effective if: 1) the decision has only a minor
impact on the quality (e.g., the performance, availabil-
ity, power or manageability) of the overall solution; 2)
it’s easy to enumerate and evaluate all of the alterna-
tives; 3) the alternatives are roughly equivalent in cost
and benefit; 4) a formal technique won’t provide the an-
swer quickly enough to be useful; 5) the solution quality
or inputs are hard to quantify; or 6) it’s easy to change
the decision if the result is unsatisfactory.

5 Where and how to use optimization?

We believe that many systems decision-making problems
should be solved by standard optimization techniques.
These problems are complex (and thus not easily solv-
able by ad hoc methods), the solutions have long-lasting
impact (thus permitting longer solution times and requir-
ing good solutions), and in many cases, the system pa-
rameters can be measured to provide accurate inputs. We
summarize three areas where these techniques have been
successfully applied, provide references to additional ex-
ample success stories, and enumerate several classes of
problems where optimization will be useful in the future.

5.1 Data recovery scheduling

We have addressed the question of scheduling recovery
operations in a dependable storage system after a fail-
ure using MIP, genetic algorithm and domain-specific
heuristic formulations [17]. Dependable storage sys-
tems protect application data by making copies through
backup, snapshot and replication techniques. After a fail-
ure, applications must decide which copy to use for re-
covery. Some alternatives (e.g., restoring from a backup)
provide fast recovery with non-trivial loss of recent up-
dates, while others (e.g., restoring from a remote replica
across a low-bandwidth network) provide minimal data
loss at a potentially higher recovery time.

Applications incur financial penalties due to down-
time, recent data loss and vulnerability to subsequent

failures. Our objective is to minimize these penalties.
The inputs to the problem are a set of penalty rates (e.g.,
dollars per hour for outages) for each application, device
resource capabilities, and a recovery graph describing al-
ternate recovery paths for each workload, including their
operations, resource requirements and precedence rela-
tionships. The techniques choose a recovery path for
each workload and determine a schedule for the recov-
ery operations. Constraints govern the choices that can
be made: for each application, only a single recovery
path can be chosen, and the chosen schedule must satisfy
the precedence constraints specified in the input recov-
ery graph. Constraints also govern resource usage: the
sum of all resource demands for a given device must not
exceed the capabilities for that device.

We began by formulating a MIP, which we solved us-
ing ILOG’s CPLEX solver [13]. However, we found that
the MIP implementation had limited scalability. Even
so, the MIP formulation gave us greater insight into the
recovery scheduling problem, which we applied to the
design of the GA and the domain-specific heuristic. We
also used the MIP to establish the optimal solution for
small problem sizes. We were even able to define larger
problems based on the smaller ones, where we could ex-
trapolate the optimal solution for the larger problem size.
We compared the solutions provided by the other tech-
niques against the MIP’s optimal solution.

5.2 Publish-subscribe system

Corona [23] is a publish-subscribe system that provides
asynchronous update notifications to its subscribers.
Users register URLs they’re interested in, and the sys-
tem asynchronously sends them updates about changes
posted to the URL. Changes are detected through coop-
erative polling by multiple nodes that periodically check
the same URL and share any detected updates. Using
more nodes for a URL improves update performance,
but increases network load. The precise tradeoff be-
tween performance and load depends on several factors,
including the number of clients requesting a URL, the
content size, the update frequency, etc. Corona resolves
the tradeoff by treating the number of nodes per URL as
an optimization problem. The authors define several dif-
ferent objectives: optimizing performance while limiting
load; minimizing load while bounding update delay; and
several other performance metrics that depend on both
the update rate and update delay per URL. The result-
ing non-linear optimization problem is solved quickly
through their decentralized Honeycomb optimizer. A
distinct advantage of this approach is that all the opti-
mization objectives can be achieved through a common
technique, as opposed to an ad hoc approach that would
have required a separate heuristic for each case.



5.3 Web cache management

Web caches reduce network traffic and downloading la-
tency, and can affect the distribution of Web traffic over
the network through cost-aware caching. Web cache
replacement policies choose which documents to evict
when the cache is full, and this decision problem can be
addressed through an explicit objective function. For ex-
ample, Cao and Irani use objective functions based on
combinations of temporal locality, document size, and
network latency [5]. Kelly et al. propose a cache re-
placement algorithm that allows users to define the value
of cache hits and that strives to maximize aggregate user
value [19]. Both approaches can postpone the definition
of the objective function until run-time, rather than speci-
fying it at design time. Allowing users or run-time condi-
tions to define the objective has familiar systems analogs,
such as the qsort() function in the C library, which ac-
cepts an arbitrary client-supplied comparison function.
These precedents show that adopting an OR-style opti-
mization approach doesn’t require us to hard-wire an ob-
jective function into our optimization designs; the objec-
tive function can instead be a placeholder, to be supplied
by users.

5.4 Decision problems ripe for optimiza-
tion

Many systems decision-making problems beg the use of
optimization. Here we outline several such areas, provid-
ing references to published work that applies optimiza-
tion and articulating specific open questions.

Resource provisioning: Numerous issues arise in
provisioning server, network and storage resources to
meet service level objectives [2, 6, 7, 16, 22, 27, 28].
For example, how many servers, network links, and bytes
of storage are needed for competing workloads to meet
their performance goals? How much redundancy (and
what kind) is needed to guarantee the desired levels of
reliability and availability? How many devices can be
turned on, while still meeting power and cooling bud-
gets? If all machines are not in use, which ones should
be turned off? When a cooling unit fails, which machines
should be turned off so that the current workload is least
impacted, but the room doesn’t overheat?

Resource allocation and scheduling: Which servers
and storage devices should be assigned to which work-
loads and for how long, to meet performance [31] or
availability [15] goals? Other goals may include max-
imizing customer revenue, minimizing energy [30], or
meeting scheduling deadlines [3]. In a sensor net-
work [20], which sensors should be powered off, and
how should messages be routed to minimize energy con-
sumption?

System administration and management: Many
questions arise in managing system administration
changes [18], migrating data [10], and setting applica-
tion configuration parameters [8]. For instance, when
should servers be upgraded to minimize application per-
formance impact? How should data be migrated to newer
storage, given bandwidth and ordering constraints?

Application and system design: Interesting questions
emerge in contexts such as cache management for dis-
tributed data [5, 9, 14], distributed data replication strate-
gies [26], determining checkpoint intervals for long-
running computations [4], and database design [1]. For
instance, which data should be replicated in web servers
or distributed hash tables (DHTs) to minimize access
time, minimize write time, or meet reliability guaran-
tees? What is the right tradeoff between storing inter-
mediate results and repeating computations after a fail-
ure? Which indexes and materialized views will mini-
mize query execution time for a given query workload?

Although initial work has been done in these areas,
many opportunities remain. As systems grow increas-
ingly complex, we expect that the list will grow.

6 Conclusions

As system complexity increases, the number of decisions
to be made, as well as the number of potential choices,
increases. The key to solving these problems is to thor-
oughly understand the questions they ask – what should
be decided, what solutions are reasonable, how to com-
pare the alternatives, and what’s important for picking
the most appropriate solution. By formally formulating
decision problems, the researcher gains greater insight
into the problem’s tradeoffs, regardless of how the prob-
lem is finally solved.

Systems researchers shouldn’t settle for less than the
best answers to decision-making questions. We should
apply the principled approach of operations research
techniques like math programming, constraint program-
ming and meta-heuristics to obtain the best solutions.
Now that we’ve described when these techniques are
most useful, we hope you’ll consider using them for the
decision-making problems you face.
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