

Keyword(s):

Abstract:

©

Efficiently Generating k-Best Solutions to Procurement Auctions

Andrew Byde, Terence Kelly, Yunhong Zhou, Robert Tarjan

HP Laboratories
HPL-2009-163

procurement, auctions, decision support, combinatorial optimization, knapsack problems, k-shortest paths

Procurement executives often find it difficult to articulate their preferences and constraints regarding
auctions, making it difficult to cast procurement decisions as straightforward optimization problems. This
paper presents an efficient algorithm to aid decision support in such situations. Instead of trying to compute
a single optimal solution for the auction winner determination problem, we generate many candidate
solutions in ascending order of buyer expenditure. Standard techniques such as clustering and dominance
pruning can then trim this list to a compact yet diverse menu of alternatives; other analyses can illuminate
the cost of constraints and the competitive landscape. Our efficient solution-generation algorithm addresses
sealed-bid procurement auctions with multiple suppliers and multiple types of goods available in multiple
units. It supports multi-sourcing and volume discounts/surcharges in bids. Our algorithm may optionally
incorporate certain classes of hard constraints, generating only solutions that satisfy them.

External Posting Date: July 21, 2009 [Fulltext] Approved for External Publication
Internal Posting Date: July 21, 2009 [Fulltext]

Presented at AAIM 2009, San Francisco, June 15, 2009

Copyright AAIM 2009

Efficiently Generating k-Best Solutions to

Procurement Auctions

Andrew Byde, Terence Kelly, Yunhong Zhou⋆⋆, and Robert Tarjan

Hewlett-Packard Laboratories
Palo Alto, California, USA

{andrew.byde, terence.p.kelly, robert.tarjan}@hp.com,
yunhong.zhou@gmail.com

Abstract. Procurement executives often find it difficult to articulate
their preferences and constraints regarding auctions, making it difficult
to cast procurement decisions as straightforward optimization problems.
This paper presents an efficient algorithm to aid decision support in such
situations. Instead of trying to compute a single optimal solution for the
auction winner determination problem, we generate many candidate so-
lutions in ascending order of buyer expenditure. Standard techniques
such as clustering and dominance pruning can then trim this list to
a compact yet diverse menu of alternatives; other analyses can illumi-
nate the cost of constraints and the competitive landscape. Our efficient
solution-generation algorithm addresses sealed-bid procurement auctions
with multiple suppliers and multiple types of goods available in multi-
ple units. It supports multi-sourcing and volume discounts/surcharges in
bids. Our algorithm may optionally incorporate certain classes of hard
constraints, generating only solutions that satisfy them.

1 Introduction

The problem of clearing a sealed-bid auction—i.e., determining how goods and
payments change hands among participants as a function of auction rules and
bids—is conventionally known as the winner determination problem (WDP).
For most kinds of auctions it is easy to define the WDP as a straightforward
optimization problem, e.g., an integer linear program [1]. In practice, however,
it can be difficult for auction participants to supply all of the inputs required to
solve the WDP, particularly the constraints that define the space of permissible
solutions and the preferences that allow a WDP solver to select the best solution.

Our primary focus in this paper is on the buyer’s decision problem in sealed-
bid procurement auctions, also known as reverse auctions. A procurement exec-
utive given seller bids in such an auction might “know the right solution when
she sees one.” However if she cannot articulate its properties in terms of hard
constraints and soft tradeoffs among conflicting desiderata, a straightforward
optimization formulation of the WDP does not by itself allow the auction to be
cleared.
⋆⋆ Currently at Rocket Fuel, Inc.

Existing decision-support techniques such as scenario navigation and prefer-
ence elicitation extend an optimization framework by requiring additional inputs
from the decision maker, e.g., replies to elicitation queries. This paper considers
an alternative framework that provides the buyer in a procurement auction with
additional outputs rather than demanding additional inputs. Specifically, we use
seller bids to generate a large list of alternatives from the most promising region
of the solution space: the solutions that entail minimal buyer expenditure.

The key to our approach is generating k-best (i.e., k-cheapest) solutions to
the auction WDP. An earlier paper described experiments based on real bids sub-
mitted to a real procurement auction; the results demonstrated the usefulness of
our k-best solutions approach [2]. The present paper presents a far more efficient
solution-generation algorithm, shows how to incorporate into the same decision
framework the risk of supplier failure to deliver, and theoretically analyzes the
relationship between solution rank k and buyer expenditure.

Our overall approach is in principle applicable to auctions other than pro-
curement auctions (see Section 2), but its efficiency depends on the precise form
of the WDP considered—an unavoidable fact due to the NP-hardness of solving
general WDPs [3]. When specialized for procurement auctions, in which portions
of a procurement order must be assigned among sellers such that the total order
is filled exactly, our algorithm can scale to practical problem sizes. We can incor-
porate certain kinds of hard constraints to prevent unacceptable solutions from
being generated, and our approach allows multi-sourcing and the expression of
volume discounts and surcharges in bids.

Once generated, the k-cheapest solutions to a procurement auction can be
post-processed in several helpful ways. Ordinal preferences over solution at-
tributes enable dominance pruning that yields a smaller Pareto frontier of so-
lutions. The buyer may also reduce the number of candidate solutions by clus-
tering them and considering only the cheapest in each cluster. Furthermore, the
k-best solutions define prices on bundles of constraints: The price of any bundle
of constraints satisfied by a generated solution is the cost difference between
the cheapest satisfying solution and the cheapest unconstrained solution. These
prices can focus the buyer’s attention on the auction’s most pressing tradeoffs.
No restrictions on the mathematical form of constraints or preferences are neces-
sary; arbitrary non-linearities pose no special difficulties. Finally, the k-cheapest
solutions admit a wide range of informative visualizations. See [2] for a more
detailed discussion of post-processing, including empirical results.

2 General Approach

Before refocusing attention on procurement auctions in Section 3, we briefly con-
sider the fully general case of arbitrary sealed-bid combinatorial auctions/exchanges.
This very general context makes it easy to sketch the basic ideas underlying our
approach and explain why the restrictions of less general WDPs are necessary
to obtain a computationally efficient solution generator.

The basic recipe for generating k-best solutions to any WDP follows from
linking four observations [2]:

1. the WDP in combinatorial exchanges is a generalized knapsack problem [4];
2. dynamic programming can solve such problems [5];
3. dynamic programs are equivalent to shortest path problems [6]; and
4. we can generate the k shortest paths in a graph [7].

We can therefore construct a graph whose paths correspond to WDP solutions
and whose path lengths correspond to objective function values in the WDP
optimization problem (e.g., path lengths might represent buyer expenditure in a
procurement auction). By computing k-shortest paths on this graph we obtain
k-best solutions to the WDP.

Unfortunately, while this approach is straightforward, there is good reason
to believe that it cannot be computationally tractable for the fully general case
of arbitrary combinatorial auction/exchange WDPs: Merely computing the first-
best solution to a combinatorial auction is NP-hard [3]; computing k-best solu-
tions can be no easier.

We gain more detailed insight into the computational complexity of combi-
natorial exchange WDPs by considering four natural measures of problem size:
the number of types of goods, the number of units of each good available, the
number of participating agents, and the length of agent bids. The computational
difficulty of solving a fully general combinatorial exchange WDP is remarkably
modest in terms of three of these four measures: Practical solvers with pseudo-
polynomial time and memory requirements are available if the number of types
of goods is a small constant [4]. The parameter responsible for intractability in
the fully general context is the number of types of goods.

In this paper we present an approach that achieves computational efficiency
by restricting attention to a class of procurement auctions, defined precisely
in Section 3. The most important benefit of the restrictions that differentiate
our procurement auctions from the fully general case of arbitrary combinatorial
exchanges is that the procurement WDP admits efficient solvers whose com-
putational demands scale pseudo-polynomially in all problem size parameters,
including the number of good types. The k-best solution generation algorithms
that we present in this paper have computational demands quadratic in a granu-
larity parameter that divides the seller’s demand for each type of good into equal
shares. In practical procurement auctions this parameter is reasonably small, so
the quadratic cost is acceptable.

The remainder of this paper is organized as follows: Section 3 formalizes our
class of procurement auctions. Section 4 presents a k-best-solutions algorithm for
the case of unconstrained solutions. Section 5 expands the scope of our method
to incorporate constraints at the local level (e.g., no seller may supply more
than 80% of any one item) and at the global level (e.g., at least three sellers
must be involved in the global solution). Section 6 describes an extension of
the notion of “cost” from the obvious monetary interpretation to a risk-based
interpretation. Section 7 briefly summarizes the results of experiments on real
bids from an actual material-parts procurement auction [2], demonstrating that

our approach yields useful insights for procurement executives. Section 8 analyzes
the distribution of buyer cost among the k-cheapest solutions assuming that
supplier bids are random variables constrained in reasonable ways. Section 9
reviews related work, and we conclude in Section 10.

3 Procurement Auctions

Businesses increasingly obtain goods through procurement auctions. Such auc-
tions account for tens of billions of dollars of HP’s expenditures in recent years [8],
and US firms spend hundreds of billions of dollars via procurement auctions per
year. In practice, buyer preferences typically encompass non-price solution at-
tributes and side constraints, e.g., a desire to have 2–4 suppliers for each type
of good; XOR constraints on winners, e.g., “supplier B must be excluded if A is
chosen”; constraints on the total number of winning sellers; constraints on the
distribution of expenditure across sellers. Many of these constraints are moti-
vated by risk-management concerns related to delivery failure or delay, a topic
to which we shall return in Section 6. Furthermore many are “soft” in the sense
that the buyer would waive them in exchange for sufficiently large savings.

3.1 Definitions and Notation

Let S denote the number of sellers, a term that we will use interchangeably
with suppliers ; we assume that S ≥ 2. Let I denote the number of items (dis-
tinct types of goods) that the buyer wishes to acquire; the overall procurement
auction consists of I single-item sub-auctions that are cleared simultaneously.
Global granularity parameter Q specifies the number of quantiles (shares of an
item) that bids offer to supply. If Q = 4, for instance, then bids offer to supply
25%, 50%, 75%, or 100% of the total number of demanded units of each item.
In Section 4.3 we shall consider a more general case, in which the number of
quantiles depends on the item i; it makes no difference to the construction or
complexity, so for the sake of clarity we will assume until then that the total
number of quantiles is uniform across single-item auctions.

A vector of quantity assignments q = {qi,s} is a solution (or outcome) of the

auction if the constraint
∑S

s=1 qi,s = Q is satisfied for all items i. Our objective
will be to rank such solutions in order of some cost function:

c(q) =

I
∑

i=1

S
∑

s=1

Bis(qi,s), (1)

where Bis(q) is any non-negative function that is calculable from an assignment
of a given quantity of a given item to a given seller, and for which Bis(0) = 0. The
canonical example is the amount of money that seller s demands for providing
q quantiles of item i, but others definitions are useful (see Section 6). When we
refer to “cheapest” we will implicitly mean cost in this general sense.

The data (I, S, Q, B) specifies a procurement auction WDP. For a given auc-
tion we will construct a weighted, directed acyclic graph G with special source
and sink vertices s and t such that the k-shortest paths from s to t correspond
to the k cheapest solutions to the WDP. Eppstein [7] demonstrates that given
a graph G with n vertices and m edges, the k shortest paths can be calculated
implicitly in time O(m + n log n + k). The n log n term comes from Dijkstra’s
algorithm [9] for constructing the tree of shortest paths from s to each other
vertex; if such a tree has already been constructed Eppstein’s algorithm takes
time O(m + k). Happily, since our graph is directed and acyclic, it is possible
to construct the shortest-path tree in time O(m), so that our graph’s k shortest
paths can be found implicitly in time O(m + k). To extract explicit represen-
tations takes additional time proportional to the number of edges in each path,
for which we will derive good bounds in Section 4.2.

Graph construction is significantly simpler in the unconstrained case, so we
discuss this first; a full discussion of the constrained case is presented in Section 5.

4 Unconstrained Solutions

It is natural to decompose the problem by item, constructing a sub-graph for each
item (with the appropriate correspondence between shortest paths and cheapest
solutions), and then chaining the sub-graphs together; a concatenation of paths
will correspond to a multi-item solution, and its length to total cost.

4.1 Single-Item Sub-Graph

To construct a single-item graph G, we consider a set of vertices with coordinates
(s, q). We choose the source s to be the vertex (0, 0), the sink t to be (S, Q),
and the intermediate vertices to be all those for which s = 1, . . . , S − 1 and
q = 0, . . . , Q. Given these vertices for G, we add an edge from (s, q) to (s+1, q+q′)
with label q′ and length Bs+1(q

′), whenever both of these vertices are in G. This
edge corresponds to an assignment of quantity q′ to seller s + 1.

The graph for S = Q = 3 is shown in Figure 1. Each edge corresponds to
assigning 0, 1, 2 or 3 of the 3 available quantiles to a particular seller; the “length”
of each edge is the corresponding bid Bis(q). The reader can verify that there are
exactly ten paths from s to t (edges are directed, left to right), corresponding
to the ten ways of allocating 3 quantiles among 3 sellers. In general the total
number of distinct paths through the unconstrained single-item graph can be
shown to be R(S, Q) = (Q + S − 1)!/(Q!(S − 1)!), which is well known to be the
number of ways of placing Q indistinguishable balls into S distinguishable cells.

Lemma 1. Each path in G from s to t corresponds, via the edge labeling, to
a non-negative integer solution q of the equation

∑S

s=1 qs = Q, and vice-versa.
Furthermore the length of this path is exactly the cost to the buyer of the outcome
q.

Fig. 1. Individual-item solutions graph for
S = Q = 3. Each edge is directed, left to
right. Finely dashed edges have label q = 0;
roughly dashed edges have label q = 1; solid
edges have label q = 2 and dash-cut edges
have label q = 3. Edge lengths are shown
next to each edge.

q=0

q=1

q=2

q=3

source

sink

0 0

0

0

0 0

Bi1(1)

si

ti

Bi1(2)

Bi1(3)

Bi2(3)

Bi2(1)

Bi2(1)

Bi2(1)

Bi2(2)

Bi2(2)

Bi3(1)

Bi3(2)

Bi3(3)

1,0

1,1

1,2

1,3 1,3

1,2

2,1

2,0

s=1 s=2 s=3s=0

Proof. Suppose a path in G has edge labels qs. By induction on s, any path
starting at s with the labels qs, k = 1, . . . , s must end at (s,

∑

k≤s qk), so the
fact that the sink vertex has label (S, Q) proves the equation. For the converse
statement, the equation implies that the vertices (s,

∑

k≤s qk), s = 0, . . . , S are
all necessarily in G; the path that links these vertices in order of s clearly has
edge labels qs by the definition of edge labels in G.

4.2 Multi-item Graph

Having understood the intuition behind a single-item subgraph, we present the
formal definition of the unconstrained multi-item graph, as a concatenation of
single-item graphs for each item:

Definition 1. Let (I, S, Q, B) be a WDP; the unconstrained solutions graph

Gu(I, S, Q, B) is defined as follows: The set of vertices is the set of tuples (i, s, q),
where i = 1, . . . , I and either

– (s, q) = (0, 0); or
– s = 1, . . . , S − 1 and q = 0, . . . , Q; or
– (s, q) = (S, Q).

The set of edges is constructed by adding an edge from (i, s, q) to (i, s+1, q+ q′)
with label q′ and length Bis+1(q

′) whenever both vertices are in Gu; we also add
connecting edges from (i, S, Q) to (i + 1, 0, 0) for each i = 1, . . . , I − 1, with no
label and length 0. We identify (1, 0, 0) as the source s of Gu, and (I, S, Q) as
the sink t.

Proposition 1. There is a one-to-one correspondence between solutions to the
WDP of an auction (I, S, Q, B) and paths in Gu(I, S, Q, B) from s to t.

Proof. The proposition is a simple consequence of Lemma 1, since Gu is a con-
catenation of single-item graphs.

Complexity Each single-item sub-graph of Gu has (Q+1)(S−1)+2 = O(SQ)
vertices and

(S − 2)

(

(Q + 1)(Q + 2)

2

)

+ 2(Q + 1) = O(SQ2)

edges. It follows that n = O(I S Q), and m = O(I S Q2), so that the complexity
of implicitly finding the k-shortest paths is O(I S Q2 + k). To explicitly extract
a path requires additional computation in proportion to the number of edges in
the path [7], which is I×S, so explicit enumeration of the k-shortest paths takes
time O(I S(Q2 + k)).

4.3 The General Problem

For real-world auctions, instead of a fixed number of quantiles for all items, there
is an exact number of units to acquire for each item. Quantile is a heuristic we
use to obtain reasonable approximate solutions by dividing the number of units
for each item into the same number of quantiles (rounding if necessary). In
this section we consider the general problem where items have various desired
number of units, and denote the procurement problem where all items have the
same number of quantiles as the simplified problem.

For item i, let Qi denote the total number of units desired, for i = 1, . . . , I. If
Qi = Q for all i the general problem degenerates into the simplified problem. For
each item i, Qi is no longer very small, and it could be exponentially large (e.g., a
large computer firm usually needs to procure millions of units for each computer
part). For the general problem, we can solve it as in Section 4. We now require
∑S

s=1 qi,s = Qi for each item i. We construct the single-item subgraph Gi for each
item i, identical to the construction in Section 4.1. Thus Gi has O(SQi) vertices
and O(SQ2

i) edges. The multi-item graph G is a concatenation of single-item
subgraphs Gi for all i, thus it has O(S

∑

i Qi) vertices and O(S
∑

i Q2
i) edges.

Using Eppstein’s algorithm, we obtain:

Theorem 1. The general procurement problem (demanding Qi units of item i)
is pseudo-polynomial-time solvable. We can compute the k-cheapest solutions in
time O(S

∑

i Q2
i + k) implicitly and time O(S

∑

i Q2
i + kSI) explicitly.

5 Constrained Solutions

Some constraints on a full solution can be imposed within the framework de-
scribed in Section 4 by simply removing some edges from graph. Because the full
graph is a chain of single-item graphs, any constraint that can be incorporated
in this way can be factorized into constraints on each single-item auction, and
for this reason we call them “local”. An example of a local constraint is that no
seller provide more than 80% of any item; this can be represented by removing
all edges whose label q is greater than 0.8Q.

Since the incorporation of local constraints is so straightforward, we will turn
our attention to hard constraints, whose satisfying global solutions are not the
product of restricted sets of individual-item outcomes; the canonical example,
which has great practical importance for risk management, is that of restricting
the number of sellers involved in the global solution.

5.1 Hard Constraints

This section describes an approach for modifying the simple graph representation
of Section 4 to incorporate certain types of hard constraints, in the sense that
solutions that violate the constraints are not generated when the k-shortest
paths algorithm operates on the modified graph. We call the expanded graph
that encodes global constraints a constrained solutions graph. The method of
this section is not generally efficient, but several useful global constraints do
have efficient representations; we enumerate some in Section 5.3.

In the process of expanding the graph to permit structural representation
of complex constraints we inevitably increase the complexity of the k-shortest
paths algorithm, and so the question arises as to whether it is better to do so, or
to generate a larger list of candidate solutions more quickly and filter out those
that violate the constraints. In practice the approach described in this section
scales best when the constraint is most stringent—i.e. when the proportion of
all paths failing the constraint is significant. This is in contrast to approaches in
the literature, such as in Villeneuve & Desaulniers [10], that rely on forbidding
a relatively small set of paths, whose computation time scales with the set of
forbidden paths rather than the set of permitted paths.

5.2 Constrained Solutions Graph

In this section we consider the problem of constructing a graph all of whose
paths correspond to solutions satisfying some constraint C. Our method is, as in
Section 4, to construct a graph Gc with vertices indexed by item-seller-quantity
triples, but now with an auxiliary variable, x ∈ X , which represents the “state”
of the solution so far constructed. By restricting those edges that are added to
Gc on the basis of their state, we can exclude paths that are bound to violate the
constraint. X will therefore represent the intermediate states in the evaluation
of the acceptability of an outcome as the outcome is constructed by assigning
quantities to suppliers.

We can formalize this description in the following way. We consider the edges
edges(Gu) of the unconstrained graph, and because of the need to bootstrap
the evaluation of the auxiliary variable, pay particular attention to those edges
edges(s) that originate at the source vertex s. A representation function is de-
fined to be a tuple (X, f), such that f : edges(s)∪

(

X ×
(

edges(Gu) \ edges(s)
))

→
X is a function mapping a source edge, or a non-source edge and a state value,
to another state value. A representation function can be extended from edges to
paths starting at s, by repeated application: for any sequence of edges e1, . . . , em

starting at s we define

f(e1, . . . , em) := f(f(. . . f(f(e1), e2), . . . , em−1), em) (2)

By construction, paths in the unconstrained graph from s to t are in one-to-
one correspondence with solutions to the WDP; we say that a function (X, f) and
the set of final states Xt represents a constraint C if the set of solutions obeying
the constraint corresponds in this way to exactly the set of paths (e1, . . . , em)
such that f(e1, . . . , em) ∈ Xt.

Definition 2. Let (I, S, Q, B) be a WDP, and (X, f, Xt) a representation of
a constraint C on the set of acceptable solutions. The constrained solutions

graph for this WDP, Gc(I, S, Q, B, X, f, Xt), is defined as follows:

1. Let the vertices of Gc be s∪
(

X×Gu\{s}
)

, with a special sink vertex t added
(here Gu(I, S, Q, B) is the unconstrained graph defined in Definition 1);

2. For each source edge e in the unconstrained graph, from s to v′, add an edge
in Gc from s to (f(e), v′), with the label and weight of e;

3. For each non-source edge e in the unconstrained graph, from v to v′, and
each state x, add an edge in Gc from (x, v) to (f(x, e), v′); and

4. Add an edge of weight zero between (I, S, Q, x) and t whenever x ∈ Xt.

Proposition 2. If (X, f, Xt) represents a constraint C, then there is a one-to-
one correspondence between solutions to the WDP (I, S, Q, B) satisfying C, and
paths in Gc from s to t.

Proof. It is clear from 2 and 3 that any path in Gc from s to t corresponds
to a sequence of edges e1, . . . , em in Gu along which f is iteratively evaluated;
the penultimate vertex in Gc must therefore be (I, S, Q, f(e1, . . . , em)). By the
definition of the fact that f represents the constraint, a solution obeys the con-
straint if and only if the corresponding path in the unconstrained graph satisfies
f(e1, . . . , em) ∈ Xt, which by 4 is true if and only if the corresponding path in
Gc goes from s to t. Therefore there is a one-to-one correspondence between
paths in Gc from s to t, and solutions to the WDP satisfying the constraint.

Complexity It is obvious from the construction that the complexity of incor-
porating a constraint via a representation with state set X is a factor of |X |
worse than that in Section 4.2. Thus the implicit cost is O(|X | I S Q2 + k) and
the explicit cost is O(|X | I S(Q2 + k)).

5.3 Examples

In this section we detail a selection of global constraints of increasing complexity,
and their corresponding representations and constrained solutions graphs.

Worst Case The first thing to notice is that every global constraint has a
representation: Let X be the set of all paths originating at s in Gu, and define
f(x, e) to be the concatenation of the edge e onto the end of x, if it is defined, or
the empty path otherwise. Clearly every path starting at s is mapped by repeated
application of f to a unique element of X , namely itself. For an arbitrary set
of acceptable outcomes we can therefore let Xt be the set of corresponding
paths from the unconstrained graph; only these paths will be connected to the
sink vertex in Gc, and so only solutions obeying our arbitrary constraint will
be generated by the k-shortest paths method in Gu. This representation is not
useful, however, because the number of new vertices and edges required to create
its constrained solutions graph scales very poorly.

Constrained Number of Winners In order to clarify the general definitions
in Section 5.2 above, in this section we give an explicit representation of the
important constraint that the number of sellers allocated non-zero quantities in
the global solution should lie in some range.

Suppose that our goal is to bound this number above by some value Σf . We
proceed by letting X be the collection of sets of sellers with at most Σf elements,
with a special element fail to denote that the constraint is violated. We define
the representation functions f(e) and f(x, e) as follows:

– If e is a source edge, and has label q > 0 then f(e) := {s1}, otherwise f(e)
is the empty set.

– If e is not a source edge,
• If it has zero weight, then define f(x, e) = x;
• Otherwise the edge ends at a vertex of the form (i, s, q); if x ∪ {s} ∈ X

then define f(x, e) := x ∪ {s}; otherwise define f(x, e) := fail.

As quantities are allocated to sellers, the state keeps an accurate record of
the set of sellers so far allocated non-zero quantity, transitioning to state fail
if the number of sellers ever gets too high. To represent an upper bound on the
number of sellers it is sufficient to let Xt = X \ {fail}. A lower bound of σf is
representable by using Σf = σf − 1 in the above, and Xt = {fail} (only those
solutions that fail to use less than or equal to σf − 1 sellers are acceptable). We
can impose upper and lower bounds simultaneously by using the state set from
the upper bound, and choosing Xt = {x ∈ X : |x| ≥ σf}. Because lower bounds
thus have multiple representations, choosing a representation wisely is in general
a tricky matter.

Monotonic Predicates The most important feature of the cardinality con-
straint example in Section 5.3 is that the global constraint is evaluated over
predicates of the form “is seller s assigned non-zero total volume?” Such pred-
icates have two very nice properties: Most importantly, they can be evaluated
incrementally at each step by a simple OR over whether the seller has yet been
included and whether the seller is included at the current step. This implies that
the space of states need be no larger than 2|S

′|, where S′ is the set of sellers

������
���������������

��
sink

source

Fig. 2. A representation of the
constrained graph Gc(2, 3, 3, B, X)
for state variable x equal to the
set of suppliers so far included in
the solution. Dashed edges lead to
a fail state, not shown; a copy of
the unconstrained graph based on
concatenated copies of Figure 1 for
each element x ∈ X is shown,
grayed out, for reference.

under consideration in the global constraint. For example, a representation of
the constraint “Either seller 1 is included, or seller 2 is included, but not both”
exists with |X | = 4.

Secondly, the value of the predicate is monotonic in the sense that as quan-
tities are assigned to sellers, once the predicate is true, it will remain true in all
subsequent steps. This fact sometimes gives straightforward upper bounds on
the state sets. For example, for the canonical representation of “Either seller 1 is
included, or seller 2 is included, but not both”, the state sets will clearly never
contain a state in which both seller 1 and seller 2 are included: it is not necessary
to wait until step I to realize this. If the constraint had been “Either seller 1
is assigned an even number of shares, or seller 2 is assigned an even number of
shares, but not both”, this would not have been possible. Similarly, it is this
monotonicity that allows the upper bound on X in Section 5.3.

Constraints on a second metric We can impose an arbitrary constraint with
respect to a second cost metric c′ (i.e. one expressible as a sum of edge weights
B′, as in Equation 1) by maintaining it as a state variable x = c′: updates to the
state are calculable at the edge level by the fact that the cost is a sum of edge
values.

In this case X covers all reachable values of c′, and so might potentially be
very large. A constraint is enforced in the straightforward way, by letting Xt be
the set of values of the second metric that are acceptable.

Monotonic constraints on a second metric If the second cost metric is
monotonic in the sense that the edge weights B′ in Equation 1 are all of one sign,
and if the constraint is an inequality c′ ≤ C, c′ ≥ C, etc., then the representation
of Section 5.3 can be simplified.

Without loss of generality, assume that the second cost metric is positive.
For the case of an upper bound on a positive second cost metric, c′ ≤ C, we can
restrict X to be the reachable values of c′ that are also less than or equal to C,
and add a failure state fail as in Section 5.3. Then the constraint representation
either accumulates c′ in the expected way, or diverts to fail if the constraint is
violated: the monotonicity of c′ guarantees that once broken the constraint is
always broken. The set of final values Xt is equal to X \ fail.

Symmetrically, for the case of a lower bound on a positive second cost metric,
c′ > C, we can use the same state space, with the failure state replaced by a
success state, success: the set of final values is then just Xt = {success}.

Quantized thresholds as a solution filter In Section 5.3, most interesting
secondary cost metrics will have very many possible states. Even in cases where
this multiplicity makes the full constrained graph impractical to construct, we
can still construct a graph whose solutions all satisfy the constraint, but which
excludes some solutions that do not. This reduces the computational burden
on a final filtering stage, possibly at low cost in terms of the original graph
construction.

The basic idea is to quantize the secondary edge costs B′ by some step pa-
rameter δ. If c′ is a positive monotonic secondary cost metric, and the constraint
is an upper bound c′ ≤ C, then by rounding all values of B′ down to the near-
est multiple of δ, we can assure ourselves of a smaller space of possible second
metric values, while remaining confident that any path excluded corresponds to
a solution violating the constraint. For a lower bound we round bid values up
instead.

6 Pareto Optima Minimizing Both Cost and Risk

We have presented the objective function with respect to which solutions are
ranked as being the monetary cost of procuring a particular bundle of quantities
from various sellers, but another interesting example is provided by letting the
cost of such an assignment be the negative logarithm of the probability of failure:

Bis(q) = − log (Pr(seller s delivers|quantity = q, item = i)) . (3)

Then the total cost of an assignment is a measurement of the risk of failing to
obtain all quantities required (under the assumption of independence between
deliveries). If we care only about minimizing risk of delivery, then it is equiva-
lent to minimizing the total length of a path where Bis(q) is defined in Equa-
tion 3. And of course we can compute k-safest solutions using the same overall
approach that we have heretofore employed for computing k-cheapest solutions.
However, since both monetary cost (expenditure) and delivery risk are important
considerations in procurement auctions, it is natural to consider the bi-criteria
optimization problem minimizing both expenditure and risk, and to seek an al-
gorithm to enumerate the Pareto optimal solutions in order of one metric or the
other.

Next we show how to compute the Pareto optima path set. Write the uncon-
strained graph from Section 4 in terms of its vertices and edges: G = Gu(I, S, B, Q) =
(V, E). Recall from Section 4.2 that the number of vertices and edges are bounded
by n = O(ISQ) and m = O(ISQ2). For each edge e ∈ E, denote its cost c1(e)
and risk c2(e). For each vertex v ∈ V and any non-negative cost value c ≤ Vmax,
we use Lv[c] to store the minimum risk distance from the source to vertex v with
cost distance exactly c. Here Vmax is the maximum cost distance for any path
from the source, corresponding to the maximum procurement cost to satisfy de-
mand for all items. Lv is an array with length Vmax. It is easy to initiate Ls

for the source vertex s. Next we use dynamic programming to compute Lv[c] as
follows:

Lv[c] = min{Lu[c − c1(u, v)] + c2(u, v) | (u, v) ∈ E}.

The set of Pareto optima paths can be extracted from the array Lt, where t is
the destination vertex, through a linear walk of Lt from least to highest cost:
the first Pareto path is given by the minimum c value with Lv[c] defined; at step
c, if Lv[c] is defined and Lv[c] is smaller than the risk distance of any of the
stored Pareto paths, the path corresponding to Lv[c] is Pareto optimal, and we
store it.

The total running time to compute the set of Pareto optima is dominated
by the dynamic programming step to compute Lv[c] for all v ∈ V , c ≤ Vmax,
and it takes time O(mVmax) where m = |E| = O(ISQ2). This completes the
description of our algorithm, which runs in time O(ISQ2Vmax).

In general we cannot expect to do particularly well on the Pareto enumeration
problem, because the procurement auction problem minimizing both expenditure
and risk belongs to the bi-criteria shortest path problem, which is NP-hard
based on a reduction from the Partition Problem (see Garey & Johnson [11],
p. 214). The general multiple-objective shortest path problem is one of the most
intensively studied problems in multiple-objective combinatorial optimization;
here we mention only work most relevant to our setting. We are interested in
computing the Pareto optima path set in an acyclic graph with two cost metrics.
Henig [12] considered the bi-criteria optimization problem using a utility function
to combine both metrics. For an acyclic graph with n vertices, Warburton [13]
gives a pseudo-polynomial-time exact algorithm (based on DP) with running
time O(n2V̂max log n) where V̂max is the maximum possible path distance under
both metrics. Using standard scaling and rounding techniques, it is converted
into a fully-polynomial-time approximation scheme (FPTAS) to compute the
approximately efficient Pareto optima set in time O(n3/ǫ).

For our contributions, first, we show that the procurement auction prob-
lem minimizing both cost and risk can be modeled as bi-criteria shortest path
problem in graph Gu(I, S, Q, B). Second, we show that a dynamic programming
approach simplifying the Walburton method can compute the set of Pareto op-
tima in time O(ISQ2Vmax).

7 Experiments

This section briefly summarizes the results of experiments described in detail in a
preliminary paper [2] that employed an inefficient solution-generation algorithm
inferior to the algorithm of the present paper.

We computed k-best solutions based on actual bids submitted to a multi-
million-dollar, multi-item, multi-supplier HP material-parts procurement auc-
tion. We then explored the following questions:

1. Are the top k solutions affordable?
2. Are the top k solutions diverse?
3. Does dominance pruning aid multi-criteria decision problems?
4. Can our method assign prices to bundles of side constraints?

In all cases, our results were encouraging: The 100,000th-cheapest solution is
only 0.054% more expensive than the 1st-cheapest solution, so considering k-best
solutions is not prohibitively expensive for the buyer in this real procurement
auction. Furthermore the k-best solutions are remarkably diverse in terms of how
they apportion the buyer’s expenditure across sellers, and moreover when we
add randomly-generated volume discounts to the bids, this measure of diversity
improves. When we consider the bi-criteria optimization problem in which the
buyer wishes to minimize expenditure and also spread expenditure as evenly as
possible across sellers, we find that the Pareto frontier of undominated solutions
is small enough to admit consideration by a human decision-maker. Finally,
our experiments show that our method can assign prices to bundles of side
constraints, e.g., constraints on both the number of sellers included in a solution
and the uniformity of expenditure across sellers.

8 Extreme Value Statistics

Our experiments have shown empirically that for a real auction, the k-cheapest
solutions have very similar expenditure [2]. In this section we examine the same
issue theoretically, by examining the important question of the probability, in
the face of randomly distributed bids, of the cost of the k-cheapest solutions
relative to the absolute cheapest. The question we therefore address is the likely
tradeoff between cost and diversity in solutions.

For items i = 1, . . . , I, let Xi denote a random variable representing the
total cost for item i; For Q = 1, Xi denotes a random selection of supplier j
for all units of item i with total cost pij . Let Y = X1 + X2 + . . . + XI , then Y
denotes the total procurement cost to obtain all the items with desired number
of units. Let ai ≡ min Xi, bi ≡ maxXi, then 0 < ai ≤ bi for each i, and
Ymin = a1 + a2 + . . . + aI , Ymax = b1 + b2 + . . . + bI . Here Ymin denotes the
minimum cost to purchase all items with desired number of units, and it is the
optimal solution for other solutions to compare with. We say a solution Y is
ǫ-approximately optimal if Y ≤ (1 + ǫ)Ymin. Here we abuse the notation and use
Y to denote both the solution and its corresponding total cost.

Assumption 1 bi ≤ 2ai for all items i.

Given that bids are normally competitive, it is reasonable to assume that
the highest unit-price for each item is at most twice as expensive as the lowest
unit-price for each item. This implies that Ymax ≤ 2Ymin. Suppose that items
are sorted according to their minimum cost, i.e., a1 ≤ a2 ≤ . . . ≤ aI , then

∑δ
i=1(Xi − ai)

Ymin

≤

∑δ
i=1 ai

∑I

i=1 ai

≤
δ

I
.

Pick δ such that δ ≤ ǫI, then any supplier selected for the first δ items together
with minimum cost for items i > δ consist of a solution with total cost at
most (1 + ǫ)Ymin. Recall that R = R(S, Q) is defined to be the total number of
solutions for each item; for the special case of Q = 1, R is equal to S, the total
number of suppliers.1 The total number of ǫ-approximately optimal solutions is
Rδ = RǫI = 2ǫI log R.

Assumption 2 There is an aggressive new entrant who matches the minimum
price for a significant fraction of all the items.

Suppose that new entrant j0 matches the min-price for a fraction f0 of all
the items. For each of these items, there are at least two choices of suppliers
with min-cost, thus the total number of min-cost solutions grows by a factor of
2f0I . Combining results using Assumptions 1 and 2, we obtain:

Theorem 2. There are at least RǫI2f0I = 2ǫI log R+f0I ǫ-approximately optimal
solutions assuming that for each item the max-cost bid is at most twice the min-
cost one, and a new entrant matches the min-cost bid of existing suppliers for a
fraction f0 of all items.

9 Related Work

Decision support in auctions is an important problem in practice and has inspired
much research, primarily on preference elicitation and scenario navigation.

Preference elicitation techniques typically represent a decision maker’s prefer-
ences as a latent utility function with a specified functional form and unknown
coefficients, and then repeatedly query the decision maker to refine estimates
of these coefficients (e.g., by asking her to choose between two alternatives).
Preference elicitation is applicable to auctions [14], and can preserve privacy
and shorten bids [15] and aid uncertain decision makers [16]. However, most
approaches place strong restrictions on the mathematical form of the utility
function and may require auction participants to reply to exponentially many
queries. Furthermore, revealed preferences may be intransitive. Our approach
does not suffer from any of these difficulties.

1 The number of solutions for item i is Θ(SQ), thus much larger than S when Q > 1.

Scenario navigation typically employs mixed-integer program solvers to find
price-optimal solutions under different constraints. This approach requires the
buyer in a procurement auction to specify a different set of constraints for each
scenario—a potentially tedious exercise. By contrast, in its simplest form our
method does not require explicit modeling of side constraints.

The close relationship between combinatorial auction/exchange WDPs and
generalized knapsack problems is described in [4], which furthermore exploits
this connection to develop a general multi-unit combinatorial exchange WDP
solver that offers attractive computational properties. Specifically, the time and
memory required are pseudo-polynomial (indeed, linear) in all problem parame-
ters except that they are exponential in the number of good types. Our present
contribution exploits the special properties of procurement auctions to achieve
good scalability in terms of all problem-size parameters.

Eppstein [7] surveys k-shortest paths problems and algorithms, and indeed
applies his shortest paths algorithm to the solution of the 0-1 knapsack problem,
generating what can be seen as a special case of our single-item graph. Encoding
constraints in graphs so that a k-shortest paths algorithm generates only satis-
fying paths has also been explored. Villeneuve and Desaulniers [10] describe an
approach based on string-matching algorithms; as noted above, this method is
not suitable for our problem. Coutinho-Rodrigues et al. employ k-shortest paths
computations with interactive elicitation queries to explore the Pareto frontier
in bi-criteria optimization [17].

To the best of our knowledge, ours is the first systematic method of gener-
ating k-best solutions to auction WDPs. An early paper described an inefficient
solution generation algorithm that required exponential time and memory [2].
The present paper makes the overall method more practical by greatly improving
the computational efficiency of solution generation.

10 Conclusions

This paper has described an efficient method for computing k-cheapest solutions
to procurement auction WDPs. It supports multi-sourcing, volume discounts and
surcharges, and it scales pseudo-polynomially (in fact at most quadratically) with
respect to all problem size parameters. Furthermore, the constrained solutions
graph can accommodate many useful global hard constraints with only a modest
increase in computational complexity. We have presented analytical results on
the number of “reasonably cheap” solutions, complementing previous empirical
results addressing the same issue. Finally, we have shown that k-safest solutions
may be computed using the same framework as k-cheapest solutions, and we have
presented an algorithm for computing solutions on the Pareto frontier of the bi-
criteria cost/risk problem. Taken together, the contributions of this paper enable
a promising approach to decision support for practical procurement auctions.

Acknowledgments

We thank Kemal Guler for early support and encouragement. Alex Zhang and
Claudio Bartolini also provided valuable feedback.

References

1. Andersson, A., Tenhunen, M., Ygge, F.: Integer programming for combinatorial
auction winner determination. In: Proc. 4th Int’l Conf. on Multi-Agent Systems
(ICMAS). (July 2000) 39–46

2. Kelly, T., Byde, A.: Generating k-best solutions to auction winner determination
problems. ACM SIGecom Exchanges 6(1) (2006) 23–34 Presents an inefficient
generation algorithm and extensive experimental results; see [18] and the present
paper for an efficient algorithm.

3. Rothkopf, M.H., Pekec, A., Harstad, R.M.: Computationally manageable combi-
natorial auctions. Management Science 44(8) (August 1998) 1131–1147

4. Kelly, T.: Generalized knapsack solvers for multi-unit combinatorial auctions. In:
Proc. Agent Mediated E-Commerce (AMEC VI). (July 2004) Also available as HP
Labs TR HPL-2004-21 and Springer LNAI 3435.

5. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer (2004)
6. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows. Prentice Hall (1993)
7. Eppstein, D.: Finding the k shortest paths. SIAM Journal on Computing 28(2)

(1998) 652–673
8. Beckett, J.: The business of bidding: Reinventing auctions for better results

(September 2005) http://www.hpl.hp.com/news/2005/jul-sep/auctions.html.
9. Dijkstra, E.W.: A note on two problems in connection with graphs. Numerische

Mathematik 1 (1959) 83–89
10. Villeneuve, D., Desaulniers, G.: The shortest path problem with forbidden paths.

European Journal of Operations Research 165 (2005) 97–107
11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory

of NP-Completeness. W.H. Freeman (1979)
12. Henig, M.: The shortest path problem with two objective functions. European

Journal of Operational Research 25(2) (1985) 281–291
13. Warburton, A.: Approximation of Pareto optima in multiple-objective, shortest-

path problems. Operations Research 35(1) (1987) 70–79
14. Cramton, P., Shoham, Y., Steinberg, R., eds.: Chapter 10. In: Combinatorial

Auctions. MIT Press (January 2006)
15. Lahaie, S.M., Parkes, D.C.: Applying learning algorithms to preference elicitation.

In: Proc. ACM E-Commerce Conf. (May 2004) 180–188
16. Boutilier, C., Sandholm, T., Shields, R.: Eliciting bid-taker non-price preferences

in (combinatorial) auctions. In: Proc. AAAI. (2004)
17. Coutinho-Rodrigues, J., Climaco, J., Current, J.: An interactive bi-objective short-

est path approach: searching for unsupported nondominated solutions. Computers
& Operations Research 26 (1999) 789–798

18. Byde, A., Kelly, T.: Efficiently generating k-best solutions for procurement auc-
tions. Technical Report HPL-2006-145, HP Labs (October 2006) Presents a more
efficient generation algorithm than that of [2].

