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ABSTRACT
Auction participants often cannot easily articulate their require-
ments and preferences. The buyer in a procurement auction,
for instance, may hesitate to quantify the value of non-price
solution attributes, and she may have difficulty delineating be-
tween hard and soft constraints. Consequently it can be dif-
ficult to formulate the winner determination problem (WDP)
as a straightforward optimization problem. Existing decision-
support aids for such situations, including scenario navigation
and preference elicitation, address this difficulty through ex-
tensions to an optimization framework.

This paper presents a complementary approach that frames
the procurement decision problem as one of exploration rather
than optimization. The foundation of our approach is an al-
gorithm that generates k best solutions to auction WDPs. Our
algorithm can scale to practical problem sizes for an interest-
ing class of procurement auctions, and furthermore can in-
corporate hard constraints into the generation process. We
describe ways of extracting useful guidance for the decision-
maker from k-cheapest WDP solutions. We evaluate our method
using real bids submitted by real suppliers in an HP material
parts procurement auction.

1. INTRODUCTION

Goodness is easy to recognize but hard to define.
— W. H. Auden [3]

Winner determination problems (WDPs) in auctions are com-
putationally difficult for many interesting auction types, e.g.,
combinatorial auctions [19]. In practice, WDPs can further-
more pose cognitive challenges to participants. For instance,
agents may be unsure of the value they place on non-price at-
tributes of solutions, or unsure of whether to express various
business considerations in the objective function or constraints
of a formal optimization problem. These issues can be vexing
even in single-agent decision problems such as that faced by
a bid-taking buyer in a reverse (procurement) auction. The
buyer’s preferences and constraints may be so difficult to ar-
ticulate as to preclude even the formulation of the WDP as
a proper optimization problem. In many such situations the
buyer essentially reports, “I know a good solution when I see
one,” but can’t precisely and explicitly state the properties of
a good solution.
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Two existing decision-support techniques can be applied in
such cases. The buyer in a reverse auction may resort to sce-
nario navigation, repeatedly running a price-optimizing WDP
solver with different sets of constraints in the hope of finding
an attractive solution. More sophisticated preference elicita-
tion methods attempt to assist or even automate scenario nav-
igation by allowing the expression of imprecise preferences
over non-price allocation features and/or by systematically in-
terrogating the decision-maker to progressively refine a model
of her latent utility function [6]. Preference elicitation offers
numerous advantages over ad hoc scenario navigation, but it is
not without shortcomings: It typically imposes strong assump-
tions on the functional form of preferences, it can require an
excessive number of queries, and revealed preferences can be
intransitive or otherwise problematic [7, 20].

This paper presents a very different complementary approach
to decision support in auctions. The foundation of our method
is an algorithm that generates k best solutions to an auction
WDP in descending order of objective function quality. In
the most general case, our algorithm can generate solutions
that maximize gains from trade in a combinatorial exchange,
albeit with limited scalability. When specialized for reverse
auctions, our method can scale to practical problem sizes. Our
method supports multi-sourcing of items, and bids may ex-
press volume discounts and volume surcharges. Hard con-
straints can be incorporated to prevent unacceptable solutions
from being generated.

Once computed, the table of k-cheapest solutions to a pro-
curement auction can be post-processed in a variety of ways
to aid the decision-maker. If the buyer defines ordinal pref-
erences over solution features, the Pareto frontier of undomi-
nated solutions may be computed. More importantly, the table
of solutions can be used to associate prices with bundles of
constraints, which can focus the buyer’s attention on the most
pressing tradeoffs in a WDP instance. This in turn can inform
decisions about which considerations are best regarded as con-
straints vs. aspects of the objective function in an optimization
formulation of the WDP. Finally, we show how the k-cheapest
solutions table supports a variety of informative visualizations.

In summary, the main contribution of this paper is an al-
gorithm that allows us to cast the procurement decision prob-
lem as one of exploration rather than optimization. Both sce-
nario navigation and preference elicitation are grounded in
optimization: They use samples of the decision-maker’s con-
straints or estimates of her preferences and they seek to com-
pute a single optimal solution. By contrast, we require only
seller bids and we systematically extract a large set of candi-
dates from the most promising region of the solution space:
the solutions that entail minimal expense. The table of k best



solutions allows us to leverage a wide range of existing analy-
sis methods including clustering, data visualization, and dom-
inance pruning. In addition to revealing satisfactory WDP so-
lutions, such exploration can yield valuable qualitative as well
as quantitative insight into the cost of constraints and the na-
ture of the competitive landscape. “Mining” large databases of
candidate solutions is an increasingly popular paradigm in au-
tomated design [23], and our algorithm opens the possibility of
applying similar strategies to procurement decision-making.

2. GENERAL APPROACH
This section describes how to generate k best solutions to

any combinatorial auction or exchange. The scalability of this
method is limited in the most general case. However the gen-
eral method is easy to explain and it illustrates principles that
we later exploit in a specialized variant that scales to procure-
ment auctions of practical size. Our approach follows from
four observations:

1. The WDP in sealed-bid combinatorial auctions and ex-
changes is a generalized knapsack problem [15].

2. Dynamic programming can solve such problems [14].
3. Any dynamic program can be expressed as a longest- or

shortest-path graph search problem [1].
4. We can generate the k shortest paths in a graph [10].

Individually, these observations are well known. However
to the best of our knowledge they have never been composed to
yield a general method for computing k best solutions to any
sealed-bid combinatorial auction or exchange. The method
proceeds as follows: We express the dynamic program corre-
sponding to the auction WDP as a shortest- or longest-paths
problem on a graph in which path length corresponds to the
value of our objective function (e.g., aggregate surplus in an
exchange or buyer expenditure in a reverse auction). We then
apply a suitable k-shortest paths algorithm to generate a table
of k best solutions to the WDP.

The table of k best WDP solutions then invites a wide range
of analyses. For instance, if ordinal preferences are defined
over solution attributes, we might eliminate dominated solu-
tions to obtain solutions on the Pareto frontier. Furthermore,
the table implicitly defines prices on bundles of constraints:
For any bundle of constraints that is satisfied by a solution in
the k-best table, its price is simply the difference in objective
function value between the best solution that satisfies the con-
straints and the best unconstrained solution. Note that we im-
pose no restrictions whatsoever on the mathematical form of
constraints; in particular, arbitrary non-linear constraints pose
no special difficulties. Finally, a number of informative deci-
sion aids and visualizations can be extracted from the table;
Section 5 presents several examples. Of course, the k best
solutions are useful only to the extent that they differ in “inter-
esting” ways; solution diversity is an empirical question con-
sidered in Section 5.

Computing k-best solutions is obviously no easier than com-
puting the first-best solution, so the inherent computational
difficulty of WDPs applies to the general method sketched in
this section. The WDP of a multi-unit combinatorial auction
or exchange is a multidimensional multiple-choice knapsack
problem. If the dimensionality of the problem is small—i.e.,
if the number of types of goods is small—dynamic program-
ming solvers with modest pseudo-polynomial time and mem-

ory requirements are available [15]. Such solvers are usable
in many practical low-dimensional WDPs, and they may be
extended to compute k best solutions using the approach of
this section. However if the number of types of goods is large,
merely to find the first-best solution is computationally pro-
hibitive: The WDP of most combinatorial auction variants is
NP-hard [19] and approximation results for multidimensional
knapsack problems are not encouraging [14].

In summary, while it is conceptually straightforward to com-
pute k best solutions to the most general sealed-bid combina-
torial exchanges, in practice this is computationally infeasible
for auctions involving many types of goods. To scale in the
number of good types we must restrict the auction. The re-
mainder of this paper considers a class of procurement auc-
tions and presents a k-best solutions algorithm that can scale
to important real-world problems.

3. PROCUREMENT AUCTIONS
Businesses increasingly rely on procurement auctions to ob-

tain needed goods, e.g., material inputs to manufacturing pro-
cesses. Hewlett-Packard alone has spent roughly $21 billion
over the past four years via online procurement auctions, and
US firms will collectively spend hundreds of billions of dol-
lars through such auctions in 2006 [4]. Winner determination
in procurement auctions can be conceptually trivial and com-
putationally easy if the buyer seeks only to obtain goods at
minimal overall cost. However, sophisticated decision sup-
port is needed in practice because buyer preferences typically
encompass non-price solution attributes and because side con-
straints are often present [6]. For example, the buyer might

1. constrain the number of sellers included in the solution;
2. insist on between two and four suppliers for each item;
3. impose “XOR” constraints across winners, e.g., if sup-

plier A is chosen, then supplier B must be excluded;
4. wish to spread expenditure evenly across sellers, in or-

der to preserve diversity in the marketplace or to main-
tain a perception of fairness.

Furthermore, any of these constraints may be “soft” in the
sense that the buyer would willingly relax them in exchange
for sufficiently large savings.

This section presents a k-best-solutions algorithm for pro-
curement auctions with a single buyer, multiple sellers, and
multiple items (types of goods) available in multiple units.
Seller bids may encode volume discounts and volume sur-
charges. Multi-sourcing is permitted, i.e., the buyer may ob-
tain units of a single item from multiple suppliers, and the
buyer may constrain multi-sourcing on individual items be-
fore k best solutions are generated. We present computational
complexity analyses showing that our technique scales well in
terms of problem size parameters. Section 4 extends our algo-
rithm to include global constraints on solutions, and Section 5
applies the algorithm to real bids from an actual material-parts
procurement auction.

3.1 Definitions and Notation
Let I denote the number of items (distinct types of goods)

that the buyer wishes to acquire; we may think of the over-
all procurement auction as consisting of I sub-auctions that
are to be cleared simultaneously. Global granularity param-
eter Q specifies the number of quantiles (shares of an item)



item i1 item i2 item i3
seller 50% 100% 50% 100% 50% 100%

sA $3 $6 $4 $7 $5 $11
sB $2 $7 $5 $8 $4 $10

Table 1: Bids in example problem.

that bids offer to supply. If Q = 4, for instance, then bids of-
fer to supply 25%, 50%, 75%, or 100% of the total number
of demanded units of each item. Let S denote the number of
sellers. For each item i, seller s submits a bid Bis that is a list
of (q, p) pairs, where q is a quantity in the range 1 . . .Q and
p is the payment that the seller requires for supplying q/Q of
the buyer’s demand for item i. In an acceptable solution to the
auction WDP the buyer obtains exactly Q units of each item.

The practical problems that motivate our work typically in-
volve well under a dozen sellers but can include scores of
items. Small values of Q, e.g., Q = 4 quantiles, permit suf-
ficiently expressive bids in most cases. We show that these
parameter values imply that the number of acceptable solu-
tions to each individual-item sub-auction is small enough to
consider exhaustively. However, the number of acceptable so-
lutions to the overall procurement auction is far too large to
generate. Therefore we generate all acceptable solutions to
individual-item sub-auctions, but generate only the k best ac-
ceptable solutions to the overall auction using a specialized
k-shortest paths algorithm. Before describing the algorithms
respectively used for these purposes in Sections 3.3 and 3.4,
we introduce an example used throughout the remainder of
the paper.

3.2 Example Problem
Consider a procurement auction with I = 3 items (i1, i2, and

i3) and S = 2 sellers (sA and sB). Bid granularity parameter
Q = 2, so sellers may supply 0%, 50%, or 100% of the quantity
of each item that the seller wishes to acquire. Table 1 shows
the bids in our example. Seller sA offers a volume discount
on item i2 and imposes a volume surcharge on i3. Seller sB
imposes a volume surcharge on items i1 and i3 but offers a
volume discount on i2.

The number of acceptable solutions to each sub-auction is
obviously three: The buyer may acquire 100% from sA, 100%
from sB, or 50% from each. Three possible solutions in each of
three sub-auctions implies a total of 33 = 27 acceptable solu-
tions to the overall clearing problem. Table 2, computed using
our prototype solver, lists these solutions and the total payment
associated with each. In the table, solutions to sub-auctions
are encoded as two-character strings where “AA” means that
seller sA supplied 100% of the item, “AB” means that each
seller supplied 50%, etc. The best solution, AB AA AB, costs
$21. However, if we must satisfy a side constraint that seller sB
must supply at least 50% of each item, then the best solution
is AB BB AB and costs $22. We therefore say that the price
of this side constraint is $1. If we further require that seller sB
must supply all of item i1, then the best solution (BB BB BB)
costs $25 and the price of both constraints together is $4.

3.3 Generating Individual-Item Outcomes
The number of acceptable solutions to each sub-auction is

given by a classic occupancy problem: How many ways can
Q indistinguishable balls (representing quantiles) be placed in
S distinguishable boxes (representing sellers)? Formally, what

auction ∑ p auction ∑ p auction ∑ p
i1 i2 i3 ($) i1 i2 i3 ($) i1 i2 i3 ($)

AA AA AA 24 AB AA AA 23 BB AA AA 25
AA AA AB 22 AB AA AB 21 BB AA AB 23
AA AA BB 23 AB AA BB 22 BB AA BB 24
AA AB AA 26 AB AB AA 25 BB AB AA 27
AA AB AB 24 AB AB AB 23 BB AB AB 25
AA AB BB 25 AB AB BB 24 BB AB BB 26
AA BB AA 25 AB BB AA 24 BB BB AA 26
AA BB AB 23 AB BB AB 22 BB BB AB 24
AA BB BB 24 AB BB BB 23 BB BB BB 25

Table 2: Solutions in example problem.

are the solutions to q1 + q2 + · · ·+ qS = Q where all qs are
non-negative integers? The number of solutions is given by
the multiset formula (see [11, p. 38] or [5, p. 32]):

R(S,Q) =

(

Q+S−1
Q

)

=
(Q+S−1)!
Q!(S−1)!

(1)

For the example problem of Section 3.2, R(S = 2,Q = 2) = 3.
For problem sizes of practical interest, R(S,Q) is remark-

ably small, e.g., R(12,10) = 352,716. By contrast, the number
of solutions including unacceptable ones is (Q+1)S, which is
far larger. Therefore in order to generate all acceptable solu-
tions we cannot employ the naı̈ve expedient of generating all
solutions and eliminating the unacceptable ones.

We generate all acceptable solutions to individual-item sub-
auctions using a recursive algorithm, IISAGEN, presented in
pseudocode in Figure 1. It generates exactly those acceptable
solutions enumerated by the multiset formula of Equation 1,
i.e., it fills the output table solutionswith the R(S,Q) ways
of allocating Q quantiles among S sellers. Note that the algo-
rithm assumes that seller IDs range from zero to S− 1. The
meaning of an (initial or recursive) invocation “iisagen(q,
s)” is: “generate all ways of allocating q remaining quan-
tiles among sellers zero through s, and store them starting
in element solno of the solutions[] table.” Alternative
generation methods are available; see the discussions of com-
positions and multicombinations in Knuth’s recent volume on
combinatorial generation [16, 17].

The asymptotic time and memory requirements of IISAGEN
as presented in Figure 1 are both O(R(S,Q)). We could easily
eliminate the storage requirement entirely and simply output
solutions as they are completed. Our implementation inter-
nally stores an array of individual-item sub-auction solutions
because the array is used by the k-shortest paths algorithm de-
scribed below. Our ongoing research is developing more so-
phisticated and more computationally efficient ways of incor-
porating individual-item outcomes into the process of generat-
ing k-best solutions to the overall auction.

3.4 Generating k Best Overall Solutions
The number of acceptable solutions to our overall procure-

ment auction WDP is R(S,Q)I , which is far too large to gen-
erate exhaustively for problems of practical size. This section
describes how we selectively generate overall solutions in as-
cending order of expense to the buyer.

We construct a solutions graph in which paths correspond to
acceptable solutions to our overall WDP; Figure 2 illustrates
the construction for the example of Section 3.2. We introduce
source and destination nodes s and t and intermediate dummy
nodes d1,d2, . . . ,dI−1. Directed edges from s to d1 represent
acceptable solutions to the sub-auction for item i1, edges from



1: input:S: integer; number of sellers
2: Q: integer; number of quantiles
3: output: solutions[][]: 2-D array of ints;
4: element [n][s] contains number of
5: quantiles supplied by seller s in
6: the nth solution
7: global variables:
8: solno = 0: # of solutions generated so far
9: qstk[]: array of ints, initially zero; holds
10: partial solution during search
11: solver function:
12: iisagen(qty: integer, seller: integer) {
13: local variable: q: integer
14: if (qty = 0 OR seller = 0) {
15: local variable: s: integer
16: if (seller = 0)
17: qstk[seller] ← qty
18: for (s ← 0; s < S; s++)
19: solutions[solno][s] ← qstk[s]
20: solno++
21: }
22: else {
23: for (q ← 0; q ≤ qty; q++) {
24: qstk[seller] ← q
25: iisagen(qty - q, seller - 1)
26: qstk[seller] ← 0
27: }
28: }
29: }
30: solver invocation:
31: iisagen(Q, S-1)

Figure 1: Algorithm IISAGEN for generating all solutions
to an individual-item sub-auction.

d21d
s tAA
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Figure 2: Solutions graph for example of Section 3.2.

d1 to d2 represent solutions to the second sub-auction, etc. In
the figure, edges are labeled as in Table 2. Edge weights (not
shown) represent the cost of the corresponding sub-auction so-
lution, e.g., edge “AA” from s to d1 has weight $6 from Ta-
ble 1. There is a one-to-one correspondence between paths
from s to t in the solutions graph and acceptable solutions to
the overall WDP, and path lengths correspond to total buyer
expenditure. The problem of generating k-cheapest acceptable
solutions to the procurement auction WDP then becomes the
problem of computing k-shortest paths in the solutions graph.
We avoid much of the complexity of published k-shortest paths
algorithms because our solutions graph is acyclic and we can
safely ignore the possibility of cyclic paths during the genera-
tion process.

The foundation of our k-shortest paths algorithm is a memory-
efficient representation of solution graph paths as a length-
ordered heap. This representation is based on the concept of
deviations, first introduced by Hoffman & Pavley [12]. First,
let a shortest-paths tree be superimposed on the graph.

DEFINITION 3.1 (HOFFMAN & PAVLEY [12]). A devia-
tion from a path p is a path p′, having the same origin and
destination as p, which is initially part of the shortest-paths
tree, which then contains exactly one link, called the deviation
link, which is not a link of p, but whose terminal node is the
terminal node of a link of p. The final portion of p′ coincides
with p.

111

211 311 121 131

221 321 231 331 212 312 122 132 213 313 123 133

222 322 232 332 223 323 233 333

112 113

Figure 3: Heap ordering of paths from example problem.

1: compute tree of shortest paths
2: insert shortest path into PQ
3: while fewer than k paths have been generated
4: p = extract-min(PQ) /* next shortest path */
5: if p is NULL
6: terminate /* fewer than k paths exist */
7: output p
8: for each deviation d of path p
9: if PQ contains fewer than k paths

10: insert d into PQ
11: else /* PQ full, w/ exactly k paths */
12: if d is longer than longest path in PQ
13: discard d
14: else
15: remove & discard longest path in PQ
16: insert d into PQ

Figure 4: The SKSP algorithm. Priority queue PQ holds
paths, ordered by length.

Because edge weights are non-negative, the length of a de-
viation p′ is not less than the length of its “parent” path p. Fur-
thermore any path in a graph is uniquely defined by a parent
and a deviation edge (the parent of the shortest path is null).
We can therefore represent all paths in our solution graph as
a heap-ordered tree in which the shortest path is the root, and
the children of each node are its deviations.

Figure 3 illustrates the heap of paths for our example prob-
lem. Node numbers represent the rank of the solutions chosen
for individual-item sub-auctions, e.g., “312” is the path corre-
sponding to the third-cheapest solution to auction 1, the cheap-
est solution to auction 2, and the second-cheapest solution to
auction 3. Underscores in child nodes represent the deviation
edge; the “3” is underlined in “312” because that is the edge
that differs from its parent node, “112.” The root of the tree,
and the top of the heap, is “111,” representing the minimal-cost
solution obtained by choosing the cheapest solution in every
auction.

The heap-ordered tree of paths defined by deviations is com-
putationally useful because it can be constructed incrementally
by generating paths in ascending order of length. Figure 4
sketches our algorithm, SKSP. Step 1 is trivial for our prob-
lem: The shortest path consists of the shortest edge at each
“hop” (see Figure 2). The loop starting at line 3 incremen-
tally constructs the tree of paths, and the loop starting at line 8
explores the children (deviations) of paths that are known to
be among the k shortest. The algorithm is memory efficient
because lines 12–16 maintain the loop invariant that priority
queue PQ contains at most k paths. If PQ is full (i.e., contains



k paths already), any new path that is longer than the longest in
PQ may safely be discarded; neither it nor any of its children
can be among the k shortest paths. Likewise, if a new path is
discovered that is shorter than the longest already in PQ, the
latter may safely be discarded.

Numerous improvements to SKSP are possible but we omit
them for the sake of simplicity. E.g., if i paths have already
been output, then PQ need not contain more than k− i paths.

3.5 Computational Complexity
Memory Referring to the simple solutions graph of Fig-

ure 2, we require O(1) memory for each of N nodes and E
edges, where N = O(I), E = O(IR), and R = R(S,Q) is the
multiset expression of Equation 1. Storing the shortest-paths
tree computed in step 1 requires O(1) memory per node, so
it does not increase overall asymptotic memory requirements.
Finally, we also need constant memory for every record in pri-
ority queue PQ, for a total memory requirement of O(I + IR+
k) = O(IR+ k).

Time Due to the special structure of our outcome graph,
we require only E = O(IR) time to compute the shortest paths
tree in step 1 by simply finding the shortest edge at each “hop.”
Because we must be able to extract both the shortest and longest
paths from priority queue PQ (steps 4 and 15), we implement
PQ as a pair of binary heaps; all heap operations require O(log(k))
time. The main loop (step 3) iterates k times, and each iteration
requires a constant number of heap operations. Each iteration
also generates all child deviations of a path and computes their
lengths. The number of child deviations is at most the num-
ber of edges, E = IR. Generating a deviation requires O(1)
time but computing its length requires worst-case O(k) time
in our current implementation. In summary, SKSP requires
O(IR(1+ k log(k))) = O(k log(k)IR) time in the worst case.

Single seller per item In the special case where the num-
ber of quantiles/shares Q = 1 (i.e., multi-sourcing is forbidden
and the buyer acquires all units of each item from a single
seller), SKSP requires O(IS + k) memory and O(k log(k)IS)
time, because R(S,Q) = S in this case.

The k-shortest paths literature contains a wide variety of so-
phisticated algorithms; some have better asymptotic time and
memory complexity than SKSP. Our goal in this paper is to
explore an interesting new application of k-shortest paths al-
gorithms rather than to advance or even to fully exploit the
state of the art; we believe that the development of improved
k best solutions algorithms for WDPs is a promising area for
future research. We find that SKSP is more than adequate for
our present purposes, and the fact that it admits convenient
implementation and analysis weighs heavily in its favor.

4. GLOBAL CONSTRAINTS
Some constraints on a full solution can be imposed within

the framework described in Sections 3.3 and 3.4 by restrict-
ing the set of outcomes of each individual-item sub-auction.
For example, to produce solutions for which no single seller
provides more than 30% of an item, it is clearly sufficient to
remove individual-item outcomes that violate this constraint;
any combination of remaining individual-item solutions must
also obey the constraint.

Hard constraints on a full solution are those whose satisfy-
ing global solutions are not the product of restricted sets of
individual-item outcomes. This section describes an approach

for modifying the simple graph representation of Section 3.4 to
incorporate certain types of hard constraints, in the sense that
solutions that violate the constraints are not generated when
the k-shortest paths algorithm operates on the modified graph.
We call the expanded graph that encodes global constraints a
constrained solutions graph, to distinguish it from the simple
linear solutions graph depicted in Figure 2. The method of this
section is not generally efficient, but several useful global con-
straints do have efficient representations; we enumerate some
in Section 4.4.

In the process of expanding the graph to permit structural
representation of complex constraints we inevitably increase
the complexity of the k-shortest paths algorithm, and so the
question arises as to whether it is better to do so, or to gener-
ate a larger list of candidate solutions more quickly and filter
out those that violate the constraints. In practice the approach
described in this section scales best when the constraint is most
stringent—i.e. when the proportion of all paths failing the con-
straint is significant. This is in contrast to approaches in the
literature, such as in Villeneuve & Desaulniers [22], that rely
on forbidding a relatively small set of paths, whose computa-
tion time scales with the set of forbidden paths rather than the
set of permitted paths.

4.1 Constrained Number of Winners
In this section we will demonstrate how to expand the so-

lutions graph to form a constrained solutions graph G f whose
paths correspond to outcomes with a fixed number S f of sellers
receiving non-zero allocations. We choose this constraint for
several reasons: it is useful, being a common concern of pro-
curement executives; it is clearly only globally computable;
and it has a relatively straightforward representation.

Define σinc(oi) to be the set of sellers that receive non-
zero quantiles (that are included) in some auction given the
outcome oi, let σinc(o1, . . . ,oi) likewise be the set of sellers
that are included in the outcome (o1, . . . ,oi) of a collection of
auctions. The graph we construct is essentially a product of
that defined in Section 3.4 with a state-transition graph whose
states are the sets of sellers included after evaluation of the
first i−1 individual-item auctions, and whose transitions cor-
respond to adding additional sellers whose bids win in the ith

auction. We ensure that the constraint is satisfied by removing
transitions that would include more than S f sellers.

Let Σ f be the set of sets of S f or fewer sellers. The set of
nodes V (G f ) is

V (G f ) = {s,t}∪
(

{1, . . . I}×Σ f
)

.

The nodes s and t are a convenient source and sink for the
k-shortest paths algorithm. For each vertex (i,σ) and out-
come oi+1 of the individual-item auction i+1 (1≤ i < I) such
that σ∪σinc(oi+1) ∈ Σ f we add a directed edge from (i,σ)
to (i + 1,σ∪σinc(oo+1)), labeled with oi+1, and with length
c(oi+1) equal to the cost of outcome oi+1. In addition, for each
outcome o1 to the first auction we connect the source node s to
(1,σinc(o1)) with an edge of length c(o1) labeled with o1, and
we connect every node of the form (I,σ) for which |σ|= S f to
the sink node t via an edge of length zero.

PROPOSITION 4.1. The labeling of edges establishes a 1–
1 mapping from paths in G f connecting s to t, to global out-
comes o satisfying the constraint |σinc(o)|= S f .



Figure 5: Constrained solutions graph G1: S = 2, I = 3,
Q = 2.

Figure 6: Constrained solutions graph G2: S = I = Q = 3.

Proof. Consider a global outcome o = (o1, . . . ,oI). If this
outcome is represented by a path in G f from s to t then
by construction the sequence of nodes traversed must be s,
(1,σinc(o1)), (2,σinc(o1,o2)), . . . , (I,σinc(o1, . . . ,oI)), t. The
only vertices connected to t are of the form (I,σ) with |σ| =
S f , so it follows that if o is represented by a path from s to t
then |σinc(o)|= S f .

Conversely, if o is a global outcome satisfying the constraint
then |σinc(o1, . . . ,oi)| ≤ |σinc(o)|= S f , so that σinc(o1, . . . ,oi)
is in Σ f , which implies that the vertices (i,σinc(o1, . . . ,oi)) are
all in G f . Clearly the edges labeled σinc(o1), . . . , σinc(oI) are
all in G f , and the fact that o obeys the constraint implies that
the final node (I,σinc(o)) is connected to t.

�

Since the length of a path in G f is the cost of the correspond-
ing global outcome, the k-shortest paths of G f correspond to
the k-cheapest solutions to the winner determination problem.
Figure 5 shows G1 for the example in Section 3.2 (I = 3, S = 2,
Q = 2). A more complicated example, G2 given I = S = Q = 3,
is shown in Figure 6. Note that G f may contain vertices and
edges that are not on any path from s to t—for example (I,σ)
with |σ|< S f , as shown in Figure 6.

The complexity of G f relative to the unconstrained solu-
tions graph depends on the size of Σ f . For S f fixed, but S
varying,

|Σ f |=

(

S
S f

)

= O(SS f ).

4.2 Incremental Function Representation
In general, what we are doing in Section 4.1 is evaluating

a function at each step whose value (set of sellers included in
first i auctions) depends on the value at the previous step (set of
sellers included in first i−1 auctions) and the outcome in the
ith auction. Any chain of functions of this form such that the
suitability of a global outcome can be determined by examin-
ing the output of the last function provides a way of restricting
the k-best algorithm to generate only those global outcomes
(paths) that satisfy the global constraint. In the following defi-
nition, Oi is the set of outcomes to the ith single-item auction,
and O = ∏i Oi is the set of global outcomes.

DEFINITION 4.1. Suppose that Ocons ⊆O is a global con-
straint represented as a subset of the space of global outcomes
(those that are acceptable). An incremental representation
of Ocons is defined as a sequence of sets Xi, i = 0, . . . , I with
X0 = {∗}, functions fi : Xi−1×Oi→ Xi, i = 1, . . . , I, and a sub-
set Xcons ⊆ XI , such that the function F : O→ XI defined by

F (o1, . . . ,oI) = fI( fI−1(. . . f2( f1(∗,o1),o2), . . .oI−1),oI)

satisfies F −1(Xcons) = Ocons. Given such a representation, the
sets Xi will be referred to as the partial values, the functions
fi are the incremental functions, and Xcons the final values.

In these terms, the constraint in Section 4.1 is represented
by partial values equal to the set of subsets of sellers, Xi = Σ f ;
the incremental function is the union of the partial value at
step i−1 with the set of sellers included in step i, f1(∗,o1) =
σinc(o1), fi(x,oi) = x∪σinc(oi), i > 1; and the final values are
Xcons = {x ∈ Σ f : |x|= S f }.

4.2.1 Constrained Solutions Graph
For any incremental representation we can construct a cor-

responding constrained solutions graph G as in Section 4.1.
We let the nodes of G correspond to the partial values, with a
source and sink node added,

V (G) = {s,t}∪
I�

i=1
{i}×Xi.

We will identify the source node swith (0,∗) so as not to make
special cases for f1. For each i < I, xi ∈ Xi and oi+1 ∈ Oi+1
we add an edge to G to represent the transition that the out-
come oi+1 induces from the “state” xi to the new state xi+1 =
fi+1(xi,oi+1). This edge, which goes from the node (i,xi)
to (i + 1, fi+1(xi,oi+1)) is labeled with oi+1 and has length
c(oi+1). The same reasoning as for Proposition 4.1 gives

PROPOSITION 4.2. The labeling of edges establishes a 1–
1 mapping from paths in G connecting s to t to global out-
comes o satisfying the constraint o ∈Oconst .

�

4.3 Complexity
The complexity analysis of Section 3.5 extends naturally

to constrained solutions graphs. The number of nodes in the
graph is now 2+∑I

i=1 |Xi|, and the number of edges ∑I
i=1 |Oi|×

|Xi−1|+Xcons. Introduce the constant Xmax = maxi |Xi|. Clearly
the number of nodes is O(IXmax) and edges O(IRXmax), where
R = R(S,Q) is the multiset formula of Equation 1. Follow-
ing through the same logic as in Section 3.5, we get that the
storage requirements are O(IRXmax +k) and time requirements
O(k log(k)IRXmax). In other words, the problem has become
more complex by a factor of at most Xmax.



4.4 Examples
In this section we detail a selection of global constraints

of increasing complexity, and their corresponding incremental
representations and constrained solutions graphs.

4.4.1 Worst Case
The first thing to notice about incremental representations is

that every global constraint has an one: Let Xi = ∏i
j=1 O j , let

fi be the identity function on Xi = Xi−1×Oi, and let Xcons =
Ocons. This is a representation because F is the identity func-
tion on XI = O. However, it is not a useful representation,
because the number of new nodes and edges required to cre-
ate its constrained solutions graph scales very poorly: the size
of the partial value space Xi can in general be bounded above
only by ∏i

j |O j|, and there are |Ocons| edges between nodes of
the form (I,xI) and t.

4.4.2 Trivial Representation
Most simply we can consider the trivial constraint Ocons =

O, which generates the unconstrained outcome graph, as de-
scribed in Section 3.41. In terms of the formalism of Defini-
tion 4.1, Xi = {∗} for all i. In this graph there are I + 2 nodes
and 1+∑i |Oi| edges; it forms a complexity benchmark for the
more sophisticated constrained solutions graphs to come.

4.4.3 Monotonic Predicates
The most important feature of the example in Section 4.1

is that the global constraint is evaluated over predicates of
the form “is seller s assigned non-zero total volume?” Such
predicates have two very nice properties: Most importantly,
they can be evaluated incrementally at each step by a simple
OR over whether the seller has yet been included and whether
the seller is included at the current step. This implies that the
space of partial values need be no larger than 2|S

′ |, where S′ is
the set of sellers under consideration in the global constraint.
For example, an incremental representation of the constraint
“Either seller 1 is included, or seller 2 is included, but not
both” exists with |Xi|= 4.

Secondly, the value of the predicate is monotonic with re-
spect to step i; if it is true at step i it will be true in all subse-
quent steps. This fact sometimes gives straightforward upper
bounds on the partial value sets. For example, for the canoni-
cal representation of “Either seller 1 is included, or seller 2 is
included, but not both”, the partial value sets will clearly never
contain a partial value in which both seller 1 and seller 2 are
included: it is not necessary to wait until step I to realize this.
If the constraint had been “Either seller 1 is assigned an even
number of shares, or seller 2 is assigned an even number of
shares, but not both”, this would not have been possible. Sim-
ilarly, it is this monotonicity that allows the upper bound on Xi
in Section 4.1.

4.4.4 Price or Quantity Thresholds
Another slightly more complicated monotonic predicate from

which global constraints can be built is, “has the value (or the
quantity) assigned to seller s exceeded some threshold T”.

The case of a quantile threshold is the easiest to tackle, since
the total number of quantiles assigned to a seller necessarily

1G as defined in Definition 4.1 is actually the graph from Sec-
tion 3.4 with one extra node and one extra edge added.

takes one of only relatively few values2. Consider the con-
straint that the number of quantiles assigned to s be at least T .
We let Xi = {0,1, . . . ,T} be the number of quantiles assigned
to s in the first i auctions. The incremental functions aggregate
additional quantiles as they are assigned, up to a maximum of
T : fi(x,oi) = min(T,x + oi(s)), and there is a unique accept-
able final value, Xcons = {T}.

The same representation can clearly be used to constrain
the number of quantiles assigned to a seller above, so long
as the upper threshold T ′ is strictly less than T , by choosing
Xcons = {0, . . . ,T ′}. For a large upper bound this would be
expensive, and it might be cheaper to implement the constraint
by counting and bounding below the number of quantiles not
assigned to s.

When constraining value rather than quantiles, the situation
is trickier, since it may take far too many values. The obvi-
ous approach is to round value to the nearest of a set of rep-
resentative points. This will inevitably introduce errors into
the constrained solutions graph approach. However, irrespec-
tive of the quantization chosen, if we always round the total
value assigned so far down to the nearest quantum (for upper
bounds, up for lower bounds), then this will be an underesti-
mate, and hence we will never exclude from the constrained
solutions graph paths corresponding to valid outcomes. In-
stead the graph may contain paths corresponding to invalid
outcomes, having value close to but above the threshold, which
must be filtered out from the final list of the k cheapest.

4.5 Summary
We do not yet have a full characterization of the global con-

straints that are amenable to incremental representations in the
sense that they have tight bounds Xmax relative to the uncon-
strained graph; this is a topic of our ongoing work. Nonethe-
less this section has presented several useful examples, namely
constraints involving

1. upper or lower bounds on quantiles assigned to a seller;
2. the set of included sellers; and
3. bounds on the value assigned to a seller.

5. EXPERIMENTS
To explore the usefulness of the SKSP algorithm, we com-

pute k best solutions based on actual bids submitted by parts
suppliers to a procurement auction in which Hewlett-Packard
spent approximately $3.7 million. Our data set includes, for
each of several dozen items, the total number of units that HP
wished to acquire in the auction. We also have per-unit prices
on each item from each of six sellers who participated in the
auction. We define the minimal procurement cost of an item
to be the lowest cost of satisfying HP’s total demand for the
item, and we rank items in descending order of minimal pro-
curement cost.

Table 3 summarizes the five subsets of bids used in our ex-
periments. The name of each bid set encodes its size and other
properties. For instance, B50,1 includes the top 50 items in
the auction and sets granularity parameter Q to 1 (i.e., multi-
sourcing items is forbidden). Table 3 shows that the top 50
items account for 99% of the buyer’s total cost, assuming that

2Note that in the case Q = 1, constraining quantiles is the same
as constraining the total number of items assigned to a given
seller.
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B50,1 50 1 N 99 33 5 1 0.461–0.545

B25,1 25 1 N 90 30 3,4,5 4 0.304–0.691

B25,4 25 4 N 90 35 4,5 2 0.417–0.548

B25,4,D 25 4 Y 90 26 3,4,5 5 0.307–0.674

B15,4,D 15 4 Y 75 46 2,3,4,5 8 0.096–0.756

Table 3: Summary of experiments and results.
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Figure 7: Total expenditure vs. solution rank.

the buyer acquires every item at its minimal procurement cost.
Bid set B25,4 includes only the top 25 items, which account
for 90% of the buyer’s minimal total expenditure. This data
set furthermore sets Q = 4, meaning that a seller may supply
0%, 25%, 50%, or 100% of the buyer’s demand for any item.
Two of our bid sets, B25,4,D and B15,4,D, include randomly-
generated volume discounts; seller bids for q = Q are still the
real-world bids, but we randomly generate bids for quantities
q = 1, . . . ,Q− 1 that charge more per unit for smaller pur-
chases.

Figure 7 plots total buyer expenditure as a function of so-
lution rank k for the top 100,000 solutions based on the B50,1
bid set. The figure shows that seller expenditure increases very
gradually with k (note the logarithmic horizontal scale); the
100,000th-best solution is only 0.054% more expensive than
the cheapest solution. This remarkable result is robust across
a wide range of experiments that we do not report in detail due
to space limitations: The top k solutions entail nearly equal
expenditure, even for large values of k.

But are the top k solutions diverse, i.e., do they differ from
one another in “interesting” ways? We address this crucial
question by first defining several summary measures of pro-
curement WDP solutions and then describing how they vary
among the top k = 25,000 solutions generated for each of our
five bid sets.

One important feature of a procurement WDP solution is the
way in which it distributes the buyer’s money across sellers.
Consider an expenditure vector, ~x = (x1,x2, . . . ,xS), where xs
is the fraction of the buyer’s total expenditure given to seller s.
We quantify uniformity of expenditure by treating~x as a proba-
bility vector and computing its information-theoretic entropy [9],
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Figure 8: Normalized entropy vs. expenditure.

normalized to lie in the range [0,1]: H = ∑S
s=1−xs log2 xs/M,

where M is a normalization constant. H = 1 when all sellers
receive an equal amount of the buyer’s money and it is zero
when a single seller supplies all of the buyer’s demand. Other
important WDP solution attributes include the number of sell-
ers included and also the specific subset of sellers who win.

The rightmost three columns of Table 3 present three views
of solution diversity among the top k = 25,000 solutions for
our bid sets. Column 7 shows the numbers of winners. For
instance, all of the top 25,000 solutions based on the B50,1
bids involve exactly five sellers, but the B25,1 bids generated
solutions involving three, four, or five sellers. Since we have
S = 6 sellers, one of 26−1 = 63 subsets of sellers are winners
in any particular solution. Column 8 shows the number of such
subsets that actually occur among the top 25,000 solutions. All
solutions to B50,1 involve the same subset of sellers, but four
subsets appear among the solutions to B25,1. The last column
in Table 3 shows the range of normalized entropy H across the
top 25,000 solutions.

The three diversity measures in Table 3 suggest similar con-
clusions: Comparing B50,1 with B25,1, and comparing B25,4,D
with B15,4,D, we see that including fewer top items increases
solution diversity. An analogy to road networks explains why:
The second-shortest path between two cities is likely to in-
volve a brief and trivial detour from the shortest path if the
network includes minor streets; we can ensure that paths dif-
fer substantially by including only major highways. The anal-
ogous operation for procurement auctions is to include only
the top-ranked items in terms of minimal procurement cost.

A comparison of B25,1 with B25,4 suggests that multi-sourcing
items by increasing granularity parameter Q may decrease so-
lution diversity. However the B25,4,D results suggest that vol-
ume discounts can restore the diversity lost by increasing Q.
Finally, B15,4,D shows that the combined effect of volume dis-
counts and a greatly reduced item count dramatically increases
diversity among the top solutions.

How useful are the k best solutions when the procurement
WDP is viewed as a multi-criteria optimization problem? For
instance, what if greater uniformity of expenditure across sell-
ers is always desirable (all else being equal), but the decision-
maker is reluctant to quantify the dollar value of increasing
H? Figure 8 is a scatterplot of H versus total expenditure for
over 250,000 of the top B50,1 solutions. The Pareto frontier



number of sellers in solution
H range 2 3 4 5

[ 0.0, 0.1 ) 0.819%
[ 0.1, 0.2 ) 0.772% 0.276%
[ 0.2, 0.3 ) 0.594% 0.098% 0.512%
[ 0.3, 0.4 ) 0.655% 0% 0.290% 0.883%
[ 0.4, 0.5 ) 0.053% 0.112% 0.638%
[ 0.5, 0.6 ) 0.172% 0.112% 0.416%
[ 0.6, 0.7 ) 0.284% 0.416%
[ 0.7, 0.8 ) 0.527%

Table 4: Percent premium vs. H and number of winners.

of undominated solutions appears to be remarkably small, and
column 6 in Table 3 confirms that this is indeed the case for all
of our data sets: For the bi-criteria problem involving expen-
diture and normalized entropy, the top 25,000 solutions con-
tain fewer than fifty undominated solutions. Experiments with
other criteria, not reported here, lead to the same conclusion:
For practical procurement problems, the Pareto frontier is con-
veniently small.3

Note that scenario navigation and preference elicitation tech-
niques based on off-the-shelf integer program solvers will en-
counter difficulty if preferences or constraints involve normal-
ized entropy, because the logarithmic terms in H turn the WDP
into a difficult non-linear mixed integer program. This obser-
vation illustrates an important and very general advantage of
our method: Our framework places no restrictions on the form
of preferences or constraints, and it does not force a tradeoff
between convenience of implementation and fidelity in mod-
eling the problem domain.

Now let us suppose that the decision-maker’s preferences
involve the number of sellers included in a solution as well as
the uniformity of expenditure across sellers. Table 4 shows
how to compactly summarize the 25,000 best solutions from
our most diverse solution set (based on the B15,4,D bids). For
each number of sellers and each range of H, the table shows
the additional cost of the best solution expressed as a percent-
age of the cheapest solution. For example, the cheapest so-
lution involving five sellers and H in the range [0.7,0.8) is
0.527% more expensive than the globally cheapest solution.
The prices of bundles of constraints can be read directly from
Table 4. For example, if the decision-maker insists on a solu-
tion involving five sellers and H ≥ 0.4, the cheapest solution
satisfying this bundle of constraints costs 0.416% more than
the globally cheapest solution.

The examples of this section show how an unwieldy table
of k-cheapest solutions can be condensed to a convenient size
to aid the decision-maker in a procurement auction. Our on-
going research explores other ways of summarizing the k best
solutions, e.g., via clustering. We do not report run times for
our SKSP prototype, but all of our experiments ran in a mat-
ter of seconds on an aging laptop computer. The entire solver
consists of under 700 lines of C, excluding comments.

The results of this section are based on real bids submitted
by parts suppliers to an actual procurement auction. By con-
trast, most published evaluations of WDP solvers and pref-
erence elicitation schemes rely on randomly-generated bids.

3If k and the number of criteria are large, finding the Pareto
frontier via naı̈ve algorithms is infeasible. However, sophis-
ticated and efficient algorithms exist for finding undominated
points in high-dimensional data [23].

One problem with random bid generators is that they often
inadvertently produce easy problem instances [2, 15]. We ex-
perimented with random bids and repeatedly encountered an
orthogonal difficulty: We found it remarkably difficult to gen-
erate sufficiently realistic random bids. In several cases, seem-
ingly reasonable random bid generators turned out to have sub-
tle deficiencies that became evident only when experimental
results were compared with those based on real bids.

6. RELATED WORK
Preference Elicitation A range of preference elicitation

techniques have been developed for general single-agent de-
cision problems. Applications to auctions are sometimes mo-
tivated by a desire to preserve privacy and shorten bids [18].
Conen & Sandholm describe an approach to elicitation in com-
binatorial auctions that employs queries such as, “In your pref-
erences, what is the rank of bundle A?”; the worst-case number
of required queries is exponential in the number of items [7].
Boutilier et al. explore elicitation to aid uncertain decision-
makers; their approach employs relatively user-friendly queries
(“do you prefer outcome x or x′?”) and they optimize a mea-
sure of minimax regret [6]. Sandholm & Boutilier review pref-
erence elicitation in combinatorial auctions [20]. They report
that most approaches place strong restrictions on preferences
and require exponentially many queries in the worst case.

Auctions & Knapsack Problems The relationship be-
tween winner determination in sealed-bid combinatorial auc-
tions/exchanges and generalized knapsack problems was noted
several years ago by Holte [13] but attracted little attention
until recently. Kellerer et al. provide the first extensive discus-
sion of the auction-knapsack connection [14]; see [15] for a
detailed literature review. Tennenholtz outlines a method for
solving a two-good-type combinatorial auction WDP by con-
verting it to a longest-paths problem, but does not explore the
relationship with knapsack problems or consider the applica-
bility of k-shortest paths algorithms [21].

k-Shortest Paths The literature on k-shortest paths al-
gorithms is extensive; see Eppstein [10] for an introduction.
Much of the literature is motivated by applications involving
multi-criteria or constrained optimization: The algorithms are
used to generate a large number of solutions that are post-
processed to eliminate dominated or unsatisfactory solutions.
Numerous problem variants are considered: computing cyclic
vs. simple (loopless) paths, directed vs. undirected graphs, and
single vs. multiple edges between node pairs. Our problem is
that of computing k-shortest simple paths in a directed acyclic
graph containing multiple arcs between node pairs.

Techniques for encoding constraints in graph structure in
such a way that a k-shortest paths algorithm generates only
those paths that satisfy the constraints have been explored.
For example, Villeneuve & Desaulniers describe an approach
based on string-matching algorithms [22]. Their method dif-
fers from ours in that its computational demands increase with
the number of forbidden paths; it is not well suited to the
global constraints that we consider in Section 4.

Coutinho-Rodrigues et al. explore a hybrid technique that
combines k-shortest paths computations with interactive elic-
itation queries to explore the Pareto frontier in bi-criteria op-
timization problems [8]. We believe that a similar fusion of
preference elicitation with our k-best solutions approach is a
promising topic for future research.



7. CONCLUSIONS
This paper has introduced a general method for computing

k best solutions to a large class of sealed-bid auction winner
determination problems. Applied to procurement auctions,
our approach scales to real-world problem sizes even if multi-
sourcing and volume discounts/surcharges are permitted. For
procurement problems with realistic bounds on multi-sourcing
(small fixed Q), our algorithm’s complexity scales polynomi-
ally with respect to the number of sellers S, less than quadrati-
cally with respect to k, and linearly with the number of items I.
Arbitrary non-linearities in constraints or in preferences over
solution attributes pose no special difficulties. In addition, via
the constrained outcome graph developed in Section 4, many
useful global constraints can be accommodated with only a
modest increase in computational complexity. Our algorithm
can be implemented from scratch with moderate effort and at
low cost; it does not depend on an integer program solver or
other third-party software.

Empirical results based on real bids from a real procurement
auction demonstrate that our algorithm can generate a large
number of solutions to practical auction WDPs. Additionally
we have shown that the analysis of k-best solutions can give
the decision-maker valuable qualitative as well as quantitative
insight into a promising region of the solution space.

Our approach complements existing preference elicitation
techniques and sidesteps several of their shortcomings, e.g.,
the possibility of intransitive revealed preferences, the need
for excessively numerous or vexing queries, and restrictions on
the functional form of constraints and utility functions. The set
of k best solutions that we compute provides rich opportunities
to leverage a wide range of existing data analysis techniques;
our ongoing research explores these possibilities.
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