
Discrete Control for Safe Execution of IT Automation
Workflows

Yin Wang
∗

University of Michigan
Ann Arbor, Michigan, USA
yinw@eecs.umich.edu

Terence Kelly
Hewlett-Packard Laboratories

Palo Alto, California, USA
terence.p.kelly@hp.com

Stéphane Lafortune
†

University of Michigan
Ann Arbor, Michigan, USA

stephane@eecs.umich.edu

ABSTRACT
As information technology (IT) administration becomes increas-
ingly complex, workflow technologies are gaining popularity for
IT automation. Writing correct workflow programs is notoriously
difficult. Although static analysis tools are available, fixing de-
fects remains manual and error-prone. This paper applies discrete
control theory to IT automation workflows. Discrete control de-
tects flaws in workflows just as static analysis does, and more im-
portantly it also allows safe execution of flawed workflows by dy-
namically avoiding run-time failures. Our approach can guarantee
compliance with certain requirements and can partially decouple
requirements from software, reducing the need to modify the lat-
ter if the former change. We have implemented a discrete control
module for a real IT automation system. Experiments with work-
flows from a real production system and with randomly generated
workflows show that our approach scales to workflows of practical
size.

Categories and Subject Descriptors
H.1 [Models and Principles]: Miscellaneous; H.4.1 [Information
Systems Applications]: Office Automation—Workflow manage-
ment; D.4.5 [Operating Systems]: Reliability

General Terms
Management, Reliability

Keywords
Workflow, Discrete Control, Deadlock Avoidance

1. INTRODUCTION
Information technology (IT) administration is increasingly auto-
mated. Automating routine procedures such as software deploy-
ment can increase infrastructure agility and reduce staff costs [6].
Automating extraordinary procedures such as disaster recovery can
reduce time to repair [15]. Human operator error is a major cause

∗Y.W. acknowledges support from HP Labs.
†S.L. acknowledges support from NSF grant ECS-0624821.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EuroSys’07, March 21–23, 2007, Lisboa, Portugal.
Copyright 2007 ACM 9781595936363/07/0003...$5.00

of availability problems in large data centers [24], and automation
can reduce such problems.

Workflows—concurrent programs written in very-high-level spe-
cial languages—are an increasingly popular IT automation technol-
ogy. Like conventional scripting languages, workflow languages
facilitate composition of coarse-grained IT administrative actions,
treated as atomic tasks. However workflow languages differ in
several ways: they impose more structure, emphasize control flow
rather than data manipulation in their language features, and pro-
vide far better support for concurrency. Production workflow sys-
tems include stand-alone products [13] and extensions to legacy
offerings [25]. Recent research explores workflows for wide-area
administration [1], storage disaster recovery [15], and testbed ex-
periments management [10].

Like multi-threaded programming, workflow programming is no-
toriously difficult and error prone. Concurrency, resource con-
tention, race conditions, and similar issues lead to subtle bugs that
can survive software testing undetected. Subtly flawed disaster-
recovery workflows are particularly alarming because they can ex-
acerbate crises they were meant to solve. For example, Keeton
discovered priority-inversion deadlocks in storage-recovery work-
flows only after scheduling their tasks [14]. Some workflow lan-
guages trade flexibility, convenience, and expressivity for safety
by restricting the language in such a way that certain pitfalls, e.g.,
deadlock, are impossible. In most cases, however, responsibility
remains with the programmer: An extensive study of commercial
workflow products found that deadlocks are possible in the major-
ity [17].

Fortunately, the restricted expressivity of workflow languages en-
ables very powerful static analysis. Existing tools can determine if
a workflow can reach user-specified undesirable states and can de-
tect many other defects (e.g., deadlock/livelock). Such tools have
found bugs in production workflows that were thought to be cor-
rect [21]. Static analysis of workflows yields far fewer spurious
warnings and undetected flaws than static analysis of general pro-
gramming languages via heuristic methods [2, 32, 33] or model
checking [18, 37]. Static workflow analysis therefore provides a
reliable off-line way to validate IT administrative actions before
they are performed, complementary to dynamic validation [23] and
post-mortem root cause localization [16].

Static analysis, however, merelydetectsdefects; repair remains
manual, time-consuming, error-prone, and costly. Manually cor-
rected workflows are often less natural, less readable, and less effi-
cient than the flawed originals, especially when corrections address

bizarre corner cases. Furthermore maintenance costs can be high
if workflows themselves carry the full burden of compliance with
requirements: Manual maintenance is necessary for workflows that
were previously satisfactory but that fail to meet updated require-
ments. Finally, static workflow analysis is pessimistic in the sense
that it assumes worst-case execution and ignores opportunities for
dynamic failure avoidance.

This paper shows howdiscrete control theorycan allow safe ex-
ecution of unmodified flawed workflows by dynamically avoiding
undesirable execution states, e.g., states that violate dependabil-
ity requirements. Our approach can reduce both development and
maintenance costs: By externally enforcing compliance with some
requirements, it allows programmers to write straightforward work-
flows instead of perfect ones. By partially decoupling workflow
software from requirements, it reduces the need to alter the former
when the latter change. Whereas static workflow analysis assumes
Murphy’s Law, discrete control recognizes that anything that can
bepreventedfrom going wrong need not be repaired.

Classical control theory has been applied to several performance-
related IT problems recently [12]. Whereas classical control con-
siders continuous-state systems whose dynamics are described by
differential equations, discrete control theory deals withdiscrete
event systems, i.e., dynamic systems with discrete state spaces and
event-driven dynamics [28]. Thus it is better suited to problems sur-
rounding qualitative functional requirements, e.g., safety and de-
pendability problems. Discrete control theory has been applied in
domains ranging from manufacturing [5] to telecommunications [7].
However, to the best of our knowledge, it has never before been im-
plemented for any IT automation or CS systems problem.

The contributions of this paper include: i) the introduction of a
new body of control theory into the CS systems area; ii) a new
method to address software defects and changing requirements in
the workflow domain; iii) a novel architecture for incorporating dis-
crete control with a workflow execution engine that guarantees safe
execution at the workflow level of abstraction; and iv) experiments
demonstrating that the discrete control logic synthesis algorithms
at the core of our method are sufficiently scalable to be practical in
the workflow domain.

The remainder of this paper is organized as follows: Section 2 in-
troduces discrete control theory and its capabilities. Section 3 re-
views complementary techniques for achieving similar goals, and
explains how discrete control gives us greater capabilities than ex-
isting methods either individually or in combination. Section 4 de-
scribes the workflow control architecture that we are implement-
ing and how discrete control theory operates within it. Section 5
presents examples that illustrate how discrete control dynamically
avoids run-time failures in workflows for IT automation. Section 6
presents our performance evaluation demonstrating that our imple-
mentation of discrete control logic synthesis scales to workflows of
practical size. Section 7 concludes with a discussion.

2. DISCRETE CONTROL THEORY
Over the past two decades a large body of research on the control of
discrete event systems has emerged. This section outlines discrete
control theory and describes the capabilities that we exploit in the
present paper.

2.1 Framework & Capabilities
Discrete control requires a model of the system to be controlled.
Several modeling formalisms are used in the literature; we use a
finite state automatonG representing all workflow execution states
reachable from the initial state, and we automatically generateG
from a workflow. Workflow control structures and the correspond-
ing state transitions inG are labeled as either controllable or uncon-
trollable; the former can be prevented or postponed at run time, but
the latter cannot. Examples of controllable transitions in workflows
include attempts to install software or migrate data. The times at
which such attempts conclude, and whether they succeed or fail,
are uncontrollable transitions.

In the most general discrete control methods, undesirable behav-
iors are specified as sublanguages of the regular language associ-
ated with automatonG. We expose a simpler mode of specifica-
tion: The workflow programmer definesforbidden statesrepresent-
ing undesirable execution states, e.g., states that violate depend-
ability requirements. In our current implementation, the control
flow of a workflow is described by a Petri net [22]. An execu-
tion state corresponds to a marking of the Petri net, and forbidden
states may be defined straightforwardly and conveniently as a func-
tion of the marking. Furthermore some undesirable states, such as
livelock and deadlock states, are automatically labeled forbidden
during workflow-to-automaton translation, as areterminal states
corresponding to satisfactory workflow completion.

The goal of discrete control is to ensure that the system reaches a
terminal state without entering forbidden states, even if worst-case
sequences of uncontrollable state transitions occur. This goal is
achieved in two stages: First, anoffline control synthesisstage uses
the system modelG and the specification of terminal and forbidden
states to automatically synthesize a discrete controller. Then during
online dynamic controlthe controller selectively disables control-
lable transitions based on the current execution state.

The synthesized controller should have two properties: First, it
should be minimally restrictive, disabling transitions only when
necessary to avoid forbidden states and livelock/deadlock. Second,
it must not prevent successful termination. A controller with these
properties restricts the system to its uniquemaximally permissive
controllable non-blocking sublanguage, and existing methods can
synthesize such a controller [28]. If no such controller exists, i.e., if
it is impossible to ensure safe execution, then the system is funda-
mentally uncontrollable and control synthesis returns an error mes-
sage. In this case, the programmer may fix the workflow, or an
operator may choose to execute it anyway if she believes the prob-
ability of reaching forbidden states via uncontrollable transitions to
be small. In the latter case, once the workflow enters a state where
forbidden statescanbe avoided, the controller’s safety guarantees
are restored.

Control synthesis requires time quadratic in the size ofG in the
worst case. However, control synthesis is an offline operation; in
the workflow domain, it does not increase execution time. Fur-
thermore in our experience with both real and randomly-generated
workflows, the time required for control synthesis is roughlylinear
in the size ofG. Online dynamic control adds negligible constant-
time overheads during workflow execution. Although it is possible
to construct worst-case workflows whose state spaces are exponen-
tial in the number of tasks, our experience with real commercial
workflows convinces us that the worst case is not typical in prac-
tice. Our discrete control synthesis implementation scales to work-

flows of practical size; Section 6 presents quantitative results on
this question.

2.2 Extensions
We assume throughout this paper that all state changes are observ-
able to the run-time controller, i.e., we restrict attention tofully
observablediscrete event systems. However, it is worth mention-
ing that extensions to the discrete control methods that we employ
in this paper exist to addresspartially observablesystems. In a
partially observable system, transition labels in the system model
G are eitherobservableor unobservable; the former are directly
and explicitly visible to the run-time controller but the latter are
not. In the workflow domain, examples of observable transitions
might include successful termination of tasks and exogenous inputs
to the system such as request arrivals. Examples of unobservable
transitions might include silent data corruption in disks and silent
software failures.

Partial observability raises interesting challenges. One problem is
to infer the occurrence of unobservable transitions from observable
ones; this is known as thediagnosisproblem [31] in discrete event
systems. Discrete-event diagnosis methods have been applied to
commercial printer/copier machines to infer failure events during
system operation [30]. Diagnosis problems become more chal-
lenging in distributed environments, where the information (e.g.,
observable transitions) is distributed. Diagnosis of distributed sys-
tems is an active area of research in discrete control theory [35].

Another challenge raised by partial observability is to extend con-
trol synthesis algorithms to partially-observable systems [19]; the
problem here is to avoid forbidden states even though we cannot
observe every transition and thus are uncertain about the current
system state. The solution is to build an observer automaton1 that,
based on observable transitions, estimates the set of states the sys-
tem could possibly be in. Then, for every state in the estimate set,
the controller disables transitions that can lead to forbidden states
unavoidably. Similarly to the case with only uncontrollable tran-
sitions, we desire non-blocking execution, permissive control, and
other properties. After building the observer, the complexity of
control synthesis is polynomial to the number of observer states.
With partial observability, the maximally permissive controllable
non-blocking sublanguage is no longer unique. Different control
actions may result in different incomparable sublanguages. Due to
the need of building an observer automaton, discrete control syn-
thesis for partially observable systems can be computationally chal-
lenging [8].

3. RELATED METHODS
This section surveys techniques aimed at problems similar to those
that we address using discrete control theory, e.g., dynamic failure
avoidance, and describes how our approach differs from them.

Rinardet al. have proposed “failure-oblivious computing” to im-
prove server availability and security [29]. This approach manufac-
tures values for invalid memory reads in C programs, potentially
introducing new behaviors into the program. Our application of
discrete control to workflows can only restrict the space of possible
workflow execution states but cannot expand it.

1Building an observer automaton is similar to the process of build-
ing a deterministic finite-state automaton from a non-deterministic
finite-state automaton.

Figure 1: Workflow control architecture.

Allocating resources among concurrent computing processes can
lead to deadlock, and methods such as the “banker’s algorithm”
of Dijkstra [9] can dynamically avoid deadlock by postponing or
denying resource requests. In contrast to the hard-coded control
logic used in these methods, discrete control automatically synthe-
sizes control logic from a system model and a behavioral specifi-
cation. The banker’s algorithm addresses resource allocation prob-
lems in which all state transitions are controllable and observable.
Discrete control is applicable to a wider range of problems and can
cope with partial controllability and/or partial observability.

Bar-David and Taubenfeld have explored methods for automati-
cally generating solutions to mutual exclusion problems [3]. Their
approach exhaustively generates all syntactically correct algorithms
up to a specified size limit and uses a model checker to eliminate
incorrect ones. By contrast, the control logic synthesis methods of
discrete control theory handle a far broader range of problems and
do not rely on brute-force generation of candidate solutions.

Qin et al. have developed a software run-time control system that
can survive software failures by rolling back a program to a recent
checkpoint and re-executing the program in a modified environ-
ment [27]. One limitation of this approach is that not all aspects of
program execution are invertible, especially in a distributed envi-
ronment. In addition, as there is no system model, the re-execution
must exhaustively search all possible environment modifications.
Our approach builds the modeloff-line and designates portions of
it unsafe. The run-time controller can then avoid unsafe states effi-
ciently without on-line trial-and-error that risks non-invertible state
transitions.

4. CONTROL ARCHITECTURE
Figure 1 depicts the architecture of a workflow control system. We
begin with a workflow consisting of atomic tasks organized via
control-flow structures. Typical structures include sequence, iter-
ation, AND-forks to spawn parallel executions, controllable OR-
forks analogous to if/else statements, uncontrollable OR-forks that
model uncontrollable state transitions, and AND/OR joins that “re-
connect” control flow following a fork. Some workflow languages
offer extensions, e.g., BPEL includes structures to define prece-
dence constraints among tasks, which are calledcontrol links.

First, a translator converts the workflow into an automaton that
models its control flow and reachable state space. Transitions in
the automaton represent task invocation/completion, control struc-
ture entrance/exit, and resource acquisition/release; states represent
the results of these transitions. The translator identifies uncon-

trollable transitions by high-level workflow features (e.g., uncon-
trollable OR-forks) and can automatically detect livelock/deadlock
states in the automaton and flag them as forbidden. The program-
mer may define additional application-specific forbidden states, e.g.,
via program annotations and logical predicates on execution states.

In our current implementation, the flow of control in a workflow
is represented by a Petri net, and execution states in the automa-
ton correspond to markings of the Petri net. Forbidden states may
be defined by specifying a function that maps the Petri net mark-
ing vector to a designation of “forbidden” or “not forbidden.” The
relationship between a high-level workflow and the Petri net that
describes its control flow is straightforward, and the use of Petri
nets to model the control flow of workflows is widespread [34].
It is convenient and natural to specify forbidden states in terms of
Petri net markings. For instance, it is easy to forbid one of two
concurrently-executing branches from completing before the other
has begun; such a restriction allows us to handle the example prob-
lem described in Section 5.1.

Discrete control theory provides more general modes of specifi-
cation (which we have not implemented) corresponding to more
general restrictions on workflow execution: In principle, discrete
control theory allows us to restrict execution to an arbitrary sub-
language of the regular language associated with the automaton
representing control flow in the workflow. Conceptually, such a
restriction may be represented by a regular expression.

After we have obtained the annotated automaton describing reach-
able execution states, a control synthesis algorithm from discrete
control theory uses the automaton and the associated sets of ter-
minal and forbidden states to generate control logic that specifies
which controllable transitions should be disabled as a function of
current execution state. Both workflow→automaton translation and
control synthesis are offline operations.

At run time, the workflow execution engine tracks execution state
and refrains from executing controllable transitions that the con-
trol logic disables in the current state. The result is that the sys-
tem will never enter a forbidden state, regardless of uncontrollable
transitions that may occur during execution. If a workflow is fun-
damentally uncontrollable, i.e., if it is impossible for any controller
to guarantee safe execution, we will learn this as a by-product of
control logic synthesis. If an uncontrollable workflow is executed
anyway and good luck leads it to a state from which safetycanbe
ensured, the controller’s safety guarantees are restored.

The specific workflow execution engines that inspired our research
execute workflows without human intervention. In principle, how-
ever, nothing prevents the application of our approach to situations
where workflow execution is partially or completely manual. Re-
gardless of whether the execution engine is a computer program or
human operator, discrete control plays the same role: it tells the ex-
ecution engine what subset of the controllable state transitions that
arepossiblein the current state aresafe.

Our workflow control architecture allows the incorporation of sta-
tic analysis, dynamic validation, and post-mortem debugging tools.
However discrete control offers advantages beyond what these com-
plementary techniques can provide individually or in combination.
By guiding workflows to successful conclusion without traversing
forbidden states, discrete control strives to reduce the need for post-
mortem debugging at the workflow level (run-time failure remains

Figure 2: Data migration workflow.

possible within constituent tasks, of course). By permitting safe ex-
ecution of unmodified flawed workflows, dynamic control relieves
programmers of the burden of writing flawless workflows. By de-
coupling behavioral specifications from workflows, it reduces the
need to modify workflows when requirements change.

All of the components depicted in Figure 1 are fully implemented,
but not yet integrated. We hope to integrate our discrete control
synthesis module into a workflow execution engine developed at
HP Labs that is used in experimental IT automation projects, e.g.,
for the back-end resource provisioning in thin-client desktop sys-
tems [11]. We are also exploring the possibility of applying dis-
crete control to a second workflow execution environment used for
IT automation. In both cases progress has been slow largely due
to organizational issues, e.g., uncertainty surrounding the project
roadmaps of these workflow systems.

5. EXAMPLES
This section presents two examples that illustrate how discrete con-
trol can allow safe execution of flawed workflows and avoid the
need to revise workflows when requirements change.

5.1 Data Migration Workflow
Figure 2 shows a simplified data migration workflow that moves
two original copies of a data set, O1 and O2, to destinations D1
and D2. The two branches of the AND-fork represent concurrent
copy-erase operations. Uncontrollable “failure” transitions model
the possibility that copy operations may fail; other uncontrollable
events include task completions. If the O1→D1 copy in the left
branch fails, the workflow will retry from O2 or D2. However the
workflow does not specify which; this decision is made by the ex-
ecution engine, perhaps guided by performance considerations. If
the second attempt to create D1 also fails, the workflow will end
in global failure. The right branch, responsible for creating D2, is
symmetric. Tasks require exclusive access to copies of data, e.g.,
the D2→D1 copy must wait until O2→D2 has finished. For read-
ability Figure 2 omits resource management aspects of the model.

The problem with this workflow is that if both O1→D1 and O2→D2
tasks fail, and if the response to these failures are attempts to copy
D2→D1 and D1→D2 respectively, then the workflow deadlocks
with each branch waiting for the other to complete. Static analy-
sis alone can detect this problem, requiring a programmer to re-

pair the flaw manually. However even for this simple bug in this
small workflow, repair can be a tedious and error-prone affair if
the solution must be safe (no new deadlocks), efficient (recycle
storage as soon as possible), and flexible (allow several data copy
sources). Discrete control allows us to safely execute the flawed
workflow without modification. The controller will avoid the dead-
lock state by disabling either D2→D1 or D1→D2 if both O1→D1
and O2→D2 fail. Figure 3 depicts the state-space automaton for
our example workflow. There is one deadlock state corresponding
to the above double failure. By disabling one of the copy operations
after failures, discrete control can avoid the deadlock.

safe state

deadlock state

forbidden state

unsafe state

terminal state

controllable

transition

uncontrollable

transition

Figure 3: State-space automaton for workflow of Figure 2. The
deadlock state corresponds to double failure. Forbidden states
contain neither two origin nor two destination copies. Unsafe
states may reach forbidden states via sequences of uncontrol-
lable transitions.

Now suppose that a new requirement is imposed on the workflow:
At any instant in time, either both origin or both destination copies
must exist. The workflow does not satisfy this new requirement
because it may erase O1 before the O2→D2 copy completes. With
discrete control, the new requirement can be satisfied simply by for-
bidding states that violate it and then synthesizing a new controller.
The controller satisfies the new requirement by appropriately post-
poning erase operations.

Six states in Figure 3 are forbidden because they violate the new
requirement. Control synthesis identifies six additional “unsafe”
states from which a sequence of uncontrollable transitions can lead
to a forbidden state. For example, an unsafe state results if erase-O2
and O1→D1 are in progress simultaneously, because an uncontrol-
lable event (the completion of the former) can lead to a forbidden
state. Discrete control synthesis yields a controller that avoids both
unsafe and forbidden states by disabling the start of erase oper-
ations where appropriate. This scenario shows that discrete con-
trol can accommodate new requirements without workflow mainte-
nance.

5.2 Software Installation Workflow in BPEL
Suppose that the goal of a workflow is to install an application on
one of two hosts. First we check resource availability on both hosts
and pick one on which to install the application. We have no pref-

Figure 4: IT installation workflow in BPEL.

erence over the two hosts if both have sufficient resources, so the
purpose of the workflow is to install the application as soon as one
host reports availability. Figure 4 depicts one way to realize this
workflow in BPEL. It is a standard BPEL architecture for select-
ing among multiple options. First we check availability on both
machines concurrently using an AND structure, then the execution
engine selects either one that is available to install the application.
The AND structure requires the completion of both branches before
it goes to the next step, which may delay the installation process
even if one host has been checked successfully.

To achieve better performance, we redesign the above workflow as
shown in Figure 5. The modified workflow increases parallelism by
allowing the selection of hosts at the outset. It uses a special BPEL
structure called acontrol link to guarantee that the application is
installed only if the check task has completed successfully. With
the new workflow design, if the availability check on the selected
host succeeds, all goes well and the installation proceeds on the
selected host. However if the selected host is unavailable but the
other host is available, the installation task is skipped even though
it would succeed on the unselected host.

Figure 5: Modified IT installation workflow in BPEL. A “con-
trol link” is a special BPEL structure that defines dependency
between two tasks. In the above example, “install on H1” must
wait until “check H1” has been completed. If “check H1” is
successful, “install on H1” will be executed, or skipped other-
wise.

safe state

deadlock state

forbidden state

unsafe state

terminal state

controllable

transition

uncontrollable

transition

Figure 6: Automaton for workflow of Figure 5.

The problems associated with the two above designs stem from the
limited task dependency allowed in the BPEL workflow language:
There is a fixed partial order relationship among all tasks.

We can apply discrete control to properly execute at run-time the
modified workflow in Figure 5 by specifying as forbidden those
states where the installation task is skipped. The synthesized con-
trol logic is displayed in Figure 6. The controller must avoid forbid-
den states. As a result, both installation transitions in the OR fork
are disabled from the beginning, because the controller foresees the
danger of entering a forbidden state unavoidably if the transition is
allowed and the selected host is unavailable. If one of the check
tasks completes with a positive result, then the corresponding in-
stallation transition is allowed. By disabling potentially dangerous
transitions at the appropriate time, the controller guarantees safe
execution whenever possible.

Note that in this example the initial state itself is unsafe, i.e., it may
lead to a forbidden state unavoidably. This is because it is possible
that both hosts are unavailable and the installation simply cannot
be performed. The controller, however, guarantees that installation
will occur as long as one host is available. This demonstrates one
advantage of online control: When it is not possible to program a
workflow that always succeeds, discrete control can avoid dynamic
failure where possible.

6. IMPLEMENTATION ISSUES
In this section we discuss implementation issues regarding work-
flow translation and control synthesis in the context of our work-
flow control architecture in Figure 1.

6.1 Oracle BPEL Workflows
As explained in Section 2, online control adds negligible constant
overheads to workflow execution since the execution engine tracks
the current state and enforces control actions by consulting a look-
up table. On the other hand, the offline operations of translating
workflows into automata and synthesizing the control logic are po-
tentially expensive. No other computational obstacles surround our
proposal. The only practical question is whether the state spaces of
real workflows can be handled by discrete control synthesis algo-
rithms. To understand the scalability issue we applied our control
synthesizer to real BPEL workflows bundled with Oracle BPEL de-
signer [25] and also to large randomly-generated workflows.

Most of the Oracle BPEL workflows automate IT aspects of busi-
ness operations such as loan offer processing, wire transfers, and
vacation request processing. Figure 7 shows an Oracle BPEL work-
flow implementing a loan application process. The workflow first
receives an application as input, then it invokes a credit rating ser-
vice to obtain the applicant’s credit report. Once the credit report is
ready, the process delivers the report to two loan service agencies
in parallel to solicit loan offers. Finally, the workflow presents both
offers to the client and completes the process after the client selects
one. This type of workflow is generic to many IT automation tasks.

We used a research tool [26] to translate BPEL into Petri nets and
then implemented standard reachability graph construction meth-
ods to obtain automata models of the workflows. Finally, we ap-
plied our discrete control synthesis algorithm to the automata. Of
164 Oracle workflows, five yielded malformed Petri nets due to er-
rors in the translator. Nine others had excessively large state spaces,
causing translation to automata to fail. Results of our scalability
tests for the other 150 workflows are displayed in Figure 8.

Figure 7: A BPEL workflow example consisting of 14 tasks and associated control structures.

Our implementation handles nearly all of the Oracle workflows
quickly. The largest Oracle workflow has more than 20 tasks and
is translated into an automaton of 1.5 million states in roughly
13 minutes on a SUN Ultra 20 (1.8 GHz processor, 2GB RAM).
The computational bottleneck is translation from BPEL to automa-
ton. We manually inspected several of the Petri nets generated by
the translator we are currently using and found that unnecessarily
lengthy and redundant structures are often present. We believe that
direct translation from BPEL to finite automata, or translation using
more concise intermediate Petri nets, is possible; this would reduce
computation time.

0 5 10 15 20
10

0

10
2

10
4

10
6

Number of tasks

N
um

be
r

of
 a

ut
om

at
on

 s
ta

te
s

(a) Model size, Oracle BPEL

0 5 10 15 20
10

−1

10
0

10
1

10
2

10
3

Number of tasks

C
om

pu
ta

tio
n

tim
e

(s
ec

)

(b) Computation time, Oracle BPEL

Figure 8: Control synthesis results for BPEL workflows.

6.2 Random Workflow Experiments
The Oracle BPEL workflows are the largest collection of commer-
cial workflows we could find, but they are somewhat limited in size
and variety. Therefore we also generated random workflows using
a simple probabilistic context-free grammar. The generator starts
with one task in the workflow. At each iteration, it randomly picks
a task and expands it using four basic structures—sequence, AND-
fork, OR-fork and while loop—with equal probability. The process
stops when enough tasks have been generated. The random work-
flows are represented in succinct Petri net format. They are trans-
lated into automata using the standard translation algorithm. We
also introduced two shared resource units in the random workflows
to create deadlocks and livelocks. Then we applied our control syn-
thesis algorithm to try to find safe execution paths.

Figure 9 displays results of random workflows with 1 to 50 tasks,
with 15 workflows generated for each number of tasks. Of 750 ran-
dom workflows, 21 had excessively large state spaces. Figure 9(a)
shows that automaton size is worst case exponential in the number
of tasks, but the translated automata are typically small. To test our
control synthesis algorithm, we also included one resource shared
among some tasks in each workflow. As a result, on average 7%
of the automata states are deadlock or livelock states. The control

synthesis algorithm then calculates the maximally permissive non-
blocking controllable sublanguage associated with each automaton.

The combined computation time is displayed in Figure 9(b). We
randomly picked 35 workflows with computation time raging from
2 second to 15 seconds; the detailed computation times of both
translation and control synthesis are displayed in Figure 9(c). As
can be seen, in our current implementation, translation to automata
dominates offline control synthesis; the latter accounts for under
10% of the total offline computational cost on average.

Production workflows are typically considerably smaller than our
random workflows in terms of the numbers of tasks they include.
A detailed analysis of over 9,000 workflows that implement real
production business processes in the SAP Reference Model found
that the average number of tasks is under two dozen [21]. However
this is a misleading measure of workflow complexity because, as
the examples of Section 5 show, concurrency can confound under-
standing even for very small workflows. Field experience bears this
point out: The same study of SAP workflows found thatat least
5.6% of these fully-debugged, business-critical production work-
flows contained statically-detectable defects. Our methods are both
valuable and feasible for workflows with state spaces large enough
to overwhelm human analysis yet small enough to admit control
synthesis. Our personal experience and detailed investigations by
other researchers convince us that the vast majority of real-world
workflows fit this description.

7. DISCUSSION
We have argued that online dynamic control of IT automation work-
flows is a useful complement to existing dependability techniques.
We have described how discrete control methods can synthesize
controllers from workflows and declarative specifications. These
controllers add negligible run-time overhead, and they prevent un-
desirable behavior while otherwise restricting execution as little as
possible. Our approach reduces costs and increases dependability
by allowing flawed workflows to be executed safely. It partially de-
couples workflows from requirements, reducing the need for main-
tenance programming when requirements change. Our ongoing
work integrates our discrete control module into a real workflow
execution engine.

The discrete control methods that we employ in our current work
perform offline pre-computations based upon explicit representa-
tions of workflow state spaces, and scalability is a potential concern
for these offline operations. Experience with real production work-
flows, however, convinces us that the features that elicit worst-case
state spaces are contrived pathologies and are not typical of work-
flows in the wild. Our performance tests on a large collection of
commercial workflows and on a large and diverse set of randomly-
generated workflows show that our discrete control logic synthesis
implementation scales to workflows of practical size. Although at
present we have no pressing need to implement them, there exist
extensions to discrete control techniques that could be employed
to accommodate state spaces too large to be represented explic-
itly. These extensions include symbolic methods for state space re-
duction [20], decomposition [36], and limited look-ahead [4] tech-
niques.

In our current implementation, we assume full observability, i.e.,
the controller knows exactly the current system state. Partial ob-
servability may exist when the system is distributed or the program
simply does not retrieve enough information to identify the system

0 10 20 30 40 50
10

0

10
2

10
4

10
6

Number of tasks

N
um

be
r

of
 a

ut
om

at
on

 s
ta

te
s

(a) Model size, random workflows

0 10 20 30 40 50

10
0

10
2

10
4

Number of tasks

C
om

pu
ta

tio
n

tim
e

(s
ec

)

(b) Computation time, random workflows

0 5 10 15 20 25 30 35
0

5

10

15

Workflow examples

C
om

pu
ta

tio
n

tim
e

(s
ec

)

workflow translation
control synthesis

(c) Translation time vs. control synthesis time, random work-
flows

Figure 9: Control synthesis results for randomly generated
workflows.

state. In principle, the techniques briefly described in Section 2.2
address the problem of safe execution under partial observability
as well as partial controllability. However, it is an open question
whether these extended techniques are sufficiently scalable to the
problem of safe execution of workflows in practice.

This paper discussed the problem of avoiding forbidden states in or-
der to achieve safety guarantees. There is a dual problem in discrete
control theory of reaching a desired state in the presence of uncon-
trollable state transitions and optimality criteria (e.g., reaching a
terminal state as quickly as possible). We leave the investigation of
this dual problem for future work.

Finally, we believe that discrete control methods could be applied to
a wide range of dynamic failure avoidance problems in computing
systems. We started with workflow systems because of their high-
level nature, simple structure, and relatively small state spaces. En-
couraged by our experiences in the workflow domain, we are in-
vestigating applications of discrete control theory to a wider range
of problems.

Acknowledgements
Sharad Singhal, Sven Graupner, and Peter Chen provided useful
suggestions when we started the project. We thank Arif Merchant,
Kimberly Keeton and Brian Noble for comments that helped us
improve the paper. We also thank the reviewers for their useful
comments and suggestions.

8. REFERENCES
[1] J. Albrecht, C. Tuttle, A. C. Snoeren, and A. Vahdat.

Planetlab application management using plush.SIGOPS
Oper. Syst. Rev., 40(1):33–40, Jan. 2006.

[2] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg,
C. McGarvey, B. Ondrusek, S. K. Rajamani, and A. Ustuner.
Thorough static analysis of device drivers. InProc. EuroSys,
Apr. 2006.

[3] Y. Bar-David and G. Taubenfeld. Automatic discovery of
mutual exclusion algorithms. InProc. 17th Int’l Sympos.
Dist. Comput (LNCS 2648), pages 136–150, Oct. 2003.

[4] N. Ben Hadj-Alouane, S. Lafortune, and F. Lin. Variable
lookahead supervisory control with state information.IEEE
Trans. on Automatic Control, 39(12):2398–2410, Dec. 1994.

[5] B. A. Brandin. The real-time supervisory control of an
experimental manufacturing cell.IEEE Trans. on Robotics &
Automation, 12(1):1–14, Feb. 1996.

[6] A. B. Brown and J. L. Hellerstein. Reducing the cost of IT
operations—is automation always the answer? InHotOS,
June 2005.

[7] Y.-L. Chen, S. Lafortune, and F. Lin. Resolving feature
interactions using modular supervisory control with
priorities. InFeature Interactions in Telecom. Networks IV,
pages 108–122. IOS Press, 1997.

[8] R. Cieslak, C. Desclaux, A. Fawaz, and P. Varaiya.
Supervisory control of discrete-event processes with partial
observations.IEEE Trans. on Automatic Control,
33(3):249–260, Mar. 1988.

[9] E. W. Dijstra.Selected Writings on Computing, chapter The
Mathematics Behind the Banker’s Algorithm, pages
308–312. Springer-Verlag, 1982.

[10] E. Eide, L. Stoller, T. Stack, J. Freire, and J. Lepreau.
Integrated scientific workflow management for the emulab
network testbed. InUSENIX Annual Technical Conference,
Dec. 2006.

[11] K. Farkas, S. Iyer, V. Machiraju, J. Pruyne, and A. Sahai.
Automated provisioning of shared services. InProceedings
of the 10th IFIP/IEEE Symposium on Integrated
Management, May 2007.

[12] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury.
Feedback Control of Computing Systems. Wiley, 2004.

[13] jBPM. http://www.jboss.com/products/jbpm.
[14] K. Keeton. Personal communication.
[15] K. Keeton, D. Beyer, E. Brau, A. Merchant, C. Santos, and

A. Zhang. On the road to recovery: Restoring data after
disasters. InProc. EuroSys, Apr. 2006.

[16] E. Kiciman and L. Subramanian. A root cause localization
model for large scale systems. InHotDep, June 2005.

[17] B. Kiepuszewski, A. ter Hofstede, and W. van der Aalst.
Fundamentals of control flow in workflows.Acta
Informatica, 39(3):143–209, 2003.

[18] C. Killian, J. Anderson, R. Jhala, and A. Vahdat. Life, death,
and the critical transition: Finding liveness bugs in systems

code. Technical report, UC San Diego, 2006.
http://mace.ucsd.edu/papers/MaceMC TR.pdf.

[19] F. Lin and W. M. Wonham. On observability of
discrete-event systems.Information Sciences,
44(3):173–198, 1988.

[20] H. Marchand and S. Pinchinat. Supervisory control problem
using symbolic bisimulation techniques. InAmerican
Control Conference, pages 4067–4071, June 2000.

[21] J. Mendling, M. Moser, G. Neumann, H. Verbeek, B. van
Dongen, and W. van der Aalst. A quantitative analysis of
faulty EPCs in the SAP reference model. Technical Report
BPM-06-08, Business Process Management Center, 2006.
http://is.tm.tue.nl/staff/wvdaalst/BPMcenter/

reports/2006/BPM-06-08.pdf.
[22] T. Murata. Petri nets: Properties, analysis and applications.

Proceedings of the IEEE, 77(4):541–580, Apr. 1989.
[23] K. Nagaraja, F. Oliveira, R. Bianchini, R. P. Martin, and

T. D. Nguyen. Understanding and dealing with operator
mistakes in Internet services. InProc. OSDI, Dec. 2004.

[24] D. Oppenheimer, A. Ganapathi, and D. A. Patterson. Why do
Internet services fail, and what can be done about it? InProc.
USITS, Mar. 2003.

[25] Oracle BPEL workflows.http:
//www.oracle.com/technology/products/ias/bpel/.

[26] C. Ouyang, E. Verbeek, W. M. P. van der Aalst, S. Breutel,
M. Dumas, and A. H. M. ter Hofstede. Wofbpel: A tool for
automated analysis of BPEL processes. InICSOC, pages
484–489, Dec. 2005.

[27] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: Treating
bugs as allergies—a safe method to survive software failure.
In Proc. SOSP, Oct. 2005.

[28] P. J. Ramadge and W. M. Wonham. Supervisory control of a
class of discrete event processes.SIAM J. Control Optim.,
25(1):206–230, 1987.

[29] M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T. Leu, and
J. William S. Beebee. Enhancing server availability and
security through failure-oblivious computing. InProc. OSDI,
Dec. 2004.

[30] M. Sampath. A hybrid approach to failure diagnosis of
industrial systems. InAmerican Control Conference, pages
2077–2082, June 2001.

[31] M. Sampath, R. Sengupta, K. S. S. Lafortune, and
D. Teneketzis. Diagnosability of discrete event systems.
IEEE Trans. on Automatic Control, 40(9):1555–1575, Sept.
1995.

[32] Secure programming lint.http://wwww.splint.org/.
[33] Sun.WorkShop: Command-Line Utilities, chapter 24: Using

Lock Lint. Sun Press, 2006.
http://docs.sun.com/app/docs/doc/802-5763/.

[34] W. van der Aalst and A. ter Hofstede. Verification of
workflow task structures: A petri-net-based approach.
Information Systems, 25(1):43–69, 2000.

[35] Y. Wang, T.-S. Yoo, and S. Lafortune. Diagnosis of discrete
event systems using decentralized architectures.Discrete
Event Dynamic Systems, 17(1), 2007.

[36] W. M. Wonham and P. J. Ramadge. Modular supervisory
control of discrete event systems.Mathematics of Control of
Discrete Event Systems, 1(1):13–30, 1988.

[37] J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Using
model checking to find serious file system errors. InProc.
OSDI, Dec. 2004.

