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Sensitivity Analysis of an Optimal Routing Policy in
an Ad Hoc Wireless Network

Tara Javidi and Demosthenis Teneketzis

Abstract—We examine the sensitivity of optimal routing policies
in ad hoc wireless networks with respect to estimation errors in
channel quality. We consider an ad hoc wireless network where
the wireless links from each node to its neighbors are modeled
by a probability distribution describing the local broadcast nature
of wireless transmissions. These probability distributions are esti-
mated in real-time. We investigate the impact of estimation errors
on the performance of a set of proposed routing policies.

fo

I. INTRODUCTION

AS THE SIZE of communication networks increases and
the applications of such networks spreads to various

fields, resource allocation issues such as connection admis-
sion control, routing, etc., become an increasingly important
component of communication research. The research in ad hoc
networks consists of a large body of work which addresses
these issues in the context of networks with no central con-
troller and an unspecified connectivity topology, where each
node can itself act as a store-and-forward router (see [1]). The
general routing problem in an ad hoc network is to define a
policy which, given the trajectory histories of all the messages,
chooses the nodes to transmit the messages next. Such a policy
must be implemented in a distributed fashion. There is an
extremely rich literature on routing in ad hoc networks (for a
summary, see [1]), where several centralized and distributed
routing algorithms are proposed and notions of shortest path
and minimum energy routing have been established. Various
objectives can be considered in a network routing optimization,
including capacity, timeliness, and energy consumption. Fur-
ther challenges are posed by wireless networks, where similar
goals must be achieved with unreliable, time-varying chan-
nels, and where new concerns, such as energy consumption
and channel interference impose additional constraints. It is
shown (see [2] and [3]) that in wireless networks due to the
unreliability of channels retransmission mechanisms have a
nonnegligible impact on the energy performance of routing
protocols. In other words, the proposed routing policies (e.g.,
MRPC in [3]) achieve a better performance by including the
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channel quality and expected number of retransmissions, both
functions of probability of successful transmission, in the def-
inition of each link’s length or each node’s transmission cost.
Furthermore, in [4]–[6], it is shown that the local broadcast
nature of wireless transmission, which usually causes interfer-
ence among neighboring nodes, can be used to our advantage.
This can be done if successful transmissions are acknowl-
edged by the nodes which receive the message. Using the
acknowledgments, sample-path-dependent optimal routes can
be constructed (see Section II). The construction of sample
path dependent routing as well as MRPC relies on the estimates
of channel quality to achieve an improved performance in ad
hoc routing. In other words, the routing in wireless systems
is best addressed by a stochastic model of the system. In gen-
eral, service provisioning and resource allocation issues (such
as admission control, routing, etc.) in wireless networks are
best modeled as stochastic scheduling and stochastic control
problems, where the wireless links are described by stochastic
processes. The statistic of any wireless link depends on the
physical channel (additive noise, path loss, shadowing, fading,
etc. [7]), the number of users that use the link simultaneously,
and the users’ transmission strategies. Generally, the overall
structure and statistical behavior of the system, e.g., the mar-
ginal and joint distributions of the processes involved, is studied
and modeled off-line, while the particular parameters of such
models, e.g., mean and covariance, are left to be estimated
in a real-time measurement-based fashion. For instance, the
channel quality of a single-hop wireless link over time might
be modeled as an independent identically distributed binary
symmetric channel, whose transmission error probability
is estimated online. The existence of online estimation adds
a new dimension to the question of optimal routing.

Ideally, routing as well as other resource allocation mecha-
nisms can potentially provide information on the statistics of
the wireless channels since any resource allocation mechanism
regulates the communications in the system. In fact, there exists
a tradeoff between identification and learning via communica-
tion versus minimizing the communication costs. Hence, even
in situations where the wireless system is controlled in a central-
ized manner, the estimation problem combined with the control
issues, should be ideally studied as a stochastic control problem
with imperfect information. Stochastic control problems with
imperfect information are dual control problems that address
joint estimation and control issues (see [8]). The information
state [8] for these problems lies in an infinite dimensional space
even when the state-space and action space are finite. This fea-
ture makes such dual control problems analytically and compu-
tationally difficult.
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An alternative approach to the aforementioned dual estima-
tion/control problem formulation is to decouple the estimation
and control issues in these problems. Such an approach provides
a parameter estimation algorithm which operates independently
of the control decisions and feeds the estimated parameters into
a controller designed under the perfect information assumption.
Following such an approach, wireless ad hoc routing can be
addressed by the following three step procedure: 1) Offline
modeling of the overall statistical behavior of the wireless
links; 2) specification of the channel quality via real-time and
measurement-based estimation of probabilities of successful
transmissions at all nodes; and 3) determination of optimal
decision (e.g., routing) strategies assuming that the results of
steps 1) and 2) describe the true stochastic behavior of the
broadcast channels (referred to as broadcast model). The con-
struction of optimal sample path dependent routing strategies
as well as MRPC (see [2], and [4]–[6]) are examples of the
solution to step 3) of the wireless ad hoc routing problem.

In the approach described previously, there are errors associ-
ated with the estimation techniques used in 2), and the accuracy
of the estimated parameters is limited to the error margin of the
employed estimation algorithm. Furthermore, the optimal deci-
sion (e.g., routing) strategy resulting from 3) is guaranteed to
be optimal only for the particular values of parameters given
by 2); and it generally varies when these parameters change.
Hence, it is vital to perform sensitivity analysis in order to quan-
tify the loss in performance of the proposed decision strategy, in
the presence of the aforementioned estimation errors. This fact
implies that a major component of design and analysis in any
wireless system is the sensitivity analysis with respect to errors
in channel modeling and channel estimation.

In this paper, we present a sensitivity analysis of a known
optimal (with respect to an energy consumption criterion)
routing policy in a stochastic ad hoc network. Our analysis is
based on the model and results of [4], [5], and [6]. In these
papers, the authors investigate a network routing problem
where a probabilistic model for wireless local broadcasts is
used. Under the assumption that the transmission probabilities
of the local broadcast model for each node are time-invariant
and precisely known, the existence of an optimal priority policy
with time-invariant indices is shown in [4]–[6]. As expected,
these indices depend on the parameters of the local broadcast
model. We investigate the sensitivity of this priority policy
with respect to errors in the knowledge of the aforementioned
transmission probabilities, and analytically determine the
impact of errors in the broadcast model on the performance
of the optimal policy. We quantify this impact as follows: 1)
We first establish appropriate distance measures between two
probabilistic broadcast models, and between two policies in
terms of their performance; 2) we construct policies and

that are optimal for the true broadcast model and the
estimated broadcast model , respectively; and 3) we bound
the distance between the performance of the two policies and

by a term proportional to the distance between the broadcast
models and (estimation error).

As noted earlier, the key feature of an ad hoc network
is that there exists no central control or computation unit
to supervise the implementation and calculation of routing

decisions. This feature underlines the importance of providing
a distributed algorithm for the computation and implementation
of an optimal policy. The authors in [4] and [5] provide
algorithms in which each node computes its optimal local
routing actions in a distributed fashion, i.e., each node only
uses the local information available to it to make routing
decisions. It is shown that under certain technical conditions
(see [4] and [5]), which hold almost in all real scenarios,
these algorithms all converge to an optimal stationary policy
which is consistent with the optimal index policy computed
centrally. Combining this result with our sensitivity analysis
for the centralized control problem, we extend our sensitivity
results to optimal routing strategies that are computed in a
distributed fashion.

The remainder of this paper is organized as follows. In Sec-
tion II, we present a stochastic dynamic routing problem and the
corresponding result that have appeared in [4]–[6] and are rel-
evant to this paper. Specifically, in Section II, we first present
the formulation of the routing problem in an ad hoc networks,
provide some useful notation and definitions and state the re-
sult given by [4] and [5] on the structure of the optimal sample
path dependent routing (SPDR) strategy. Sections III and IV
contain the main contribution of our paper. Specifically, in Sec-
tions III-A and III-B, we formulate the problem of sensitivity of
routing policies with respect to errors in channel estimation and
establish the desirable goals of such study. In Section III-C, we
construct examples to illustrate that such goals may not always
be achievable. In Section IV, we present the main results of our
sensitivity analysis. In Section IV-A, we establish the mathe-
matical relationships between loss of performance and the error
in the estimation of the local broadcast models. In Section IV-B,
we discuss the essence of our sensitivity results through exam-
ples and numerically compare the robustness of optimal SPDR
with that of other known routing strategies. In Section IV-C, we
extend our results to the optimal routing policies which are com-
puted and constructed in a distributed fashion. In Section V, we
conclude the paper.

II. BACKGROUND

In this section, we revisit a stochastic dynamic routing
problem, formulated in [4]–[6], and state the result developed
in [4]–[6] that are necessary for our sensitivity analysis.

A. Model , Notation, and Preliminaries

Model , as presented in [4], is described by: 1) of a set
of nodes; and 2) the connectivity among nodes, indicated by the
probability of successful transmission of a message from one
node to its “neighbors” (defined later). The network is used for
message routing; message routing can be viewed as a stochastic
control problem where the objective is to determine optimal
routing strategies that minimize the average energy required for
the transmission of a set of messages from their sources to their
destinations.

A description of the elements of the network is given as
follows:

number of nodes in the network;
set of all nodes; so ;
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state of the system, defined as the set of
nodes which have received the message.

refers to the state at time .
We define .
Model , as described in [4], has the following proper-

ties: 1) Transmissions over time at each node are independent
identically distributed (i.i.d); 2) successful transmissions are in-
dependent among nodes; and 3) the network has the decoupling
property defined as follows.

Definition 1 (Decoupling Property): is said to have the
decoupling property if successful transmission from a node to
a set of neighbors at a given time is unaffected by which other
nodes already have the message.

As a result of the aforementioned properties we can define
the following notions.

We write to indicate the probability of reaching
state from state when choosing node for transmission,

. We write as shorthand for .
We refer to as the broadcast model.
We define .
Node is called a neighbor of node if . Note that

is permitted.
Given the local broadcast model is the set of all

neighbors of , together with itself.
As a consequence of properties 1)–3), determining the op-

timal routing of a set of messages is equivalent to determining
the optimal route for each message. It is shown in [4]–[6] that
the optimal routing of each message can be treated as a Markov
decision problem with state–space , action space

, ( indicates retirement), transition probabilities given by
defined above, reward function , and

transmission cost at node . A stationary Markov policy
is then defined as a function on the state space onto the action
space, i.e., .

In this paper, we use the following shorthands:
denotes the reward when retiring at node . Also

.
We write to indicate policy transmits at node

when in state .
We write to indicate policy retires and receives

reward when in state . For convenience we write
as shorthand that policy retires and receives .

When we say that policy retires and receives the
reward of node .

By , we mean both and .
By , we mean either , or

, for some .
We also assume that has the following increasing prop-

erty.1

Definition 2 (Increasing Property): is said to have the
increasing property if for any system realization under any
policy we have .

1The increasing property is only needed to prove the structure of an optimal
dynamic routing policy. It is not necessary for the implementation of an optimal
centralized routing algorithm as well as for the distributed implementations of
the algorithm that are proposed in [4]–[6]. This can be seen from the result in
[4]–[6] and will also become apparent in Section II-D of this paper.

We next present the centralized version of the stochastic
routing problem with time-invariant parameters as formulated
in [4]–[6].

B. Statement of Problem {

We consider the transmission of a single message, from
a given initial state (i.e., a given set of nodes) to
a set of destination states, in a wireless ad hoc net-
work of nodes described by in which the transi-
tion probabilities are given by the broadcast model .
Transmission instances occur at discrete time points.
Each transmission from a given node incurs a fixed
cost . According to : 1) At each transmis-
sion instance, the transmitting node is chosen among
all those who have received the message by a central
controller that always knows the current state of the
system (i.e., the set of nodes that have the message);
2) node transmissions are local broadcasts, that is, mul-
tiple neighbor nodes may all simultaneously receive
the message; 3) given a node is chosen to transmit,
the probability that a given set of nodes re-
ceives the message is known and fixed; 4) The central
controller is informed, without any cost, as to which
nodes receive the message. Control information flow
between the nodes and the controller is considered free
of energy and instantaneous in time; 5) each transmis-
sion event is assumed independent of those before and
after; and 6) a reward function is specified. At any
instance, the central controller can terminate the trans-
mission process or choose to continue transmitting.
The objective is to choose: 1) The node to transmit
at each transmission instance, and 2) the instance to
terminate the transmission process, so as to maximize
over all Markov policies

(1)

where is the transmission/termination policy the con-
troller follows, is the time when the transmission
process is terminated under policy is the state at

is the node chosen by the transmission policy at
time , and is the expected reward when starting
in state under policy under local broadcast model

.
Restriction to Markov policies does not entail any loss of

optimality because is a stochastic control problem with
perfect observations [8].

Mathematically, is parameterized by a tuple
, where .

C. The Transmission Control Problem

Consider an ad hoc network in which control of transmission
type (in terms of power, antenna directionality, and addressing)
is allowed. In such a network, at each time step the central
controller chooses a node for transmission, among the nodes
with the message, and a transmission type, among a finite
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set of allowable types, is chosen for that node. To each node
and transmission type , a transmission cost and a

probability distribution, denoted by , describing the
probability that a given set of nodes receive the message are
assigned. The objective for the controller in such a network is
to determine a policy which maximizes a total reward similar
to that of (1). Such a policy specifies the optimal number and
coverage of hops, along each realization of the operation of
network.

The authors in [4]–[6] have shown that such a network can
be modeled by and can be formulated as with a par-
ticular structure on the probability of successful transmission,
i.e., a particular structure on the broadcast model. We summa-
rize their argument and results here. It is possible to study the
networks with transmission control as a special case of
since in no particular assumption regarding the statistical
correlation among the transition probabilities has been made.
We seek to construct a particular network described by ,
which satisfies the conditions required by the addition of mul-
tiple transmission types resulting from the use of multiple power
levels. In order to do so we represent each node as a set of sister
nodes with cardinality , where refers to the number of
transmission types available at node . Each sister node in such
a set represents a transmission type for node , and is identified
by the pair , where and . We define

to be the collection of these sets of sister nodes. Transmis-
sions in the space are based on the corresponding events in ,
as follows. Each transmission at node with transmission
type corresponds to a control decision which chooses node

. Such a transmission incurs a cost . If such
a transmission leads to a set of nodes, say , receiving
the message, all nodes such that receive
the message. This implies that all sister nodes receive the mes-
sage simultaneously, or in other words, message receptions for
sister nodes in are deterministically coupled. Finally, each
sister node of receives the same reward described by the re-
ward function.

The problem of optimal routing in the ad hoc wireless
network described by is a special case of , when
transmission probabilities have a particular coupled structure
to accommodate different transmission types as sister nodes
at which the message receptions are deterministically coupled
(for more details, see [4] and [5]). Hence, the sensitivity results
derived in this paper apply to a wireless ad hoc network with
power control and multiple transmission types.

In the previous section, we presented the stochastic model
of an ad hoc network proposed in [4]–[6] and the stochastic
dynamic routing with transmission control problem formulated
in [4]–[6]. We refer the reader to [5] for a careful critique of

and .

D. Preliminary Results: Optimal Routing in

We conclude Section II by summarizing the results in [4]–[6]
that are relevant to our work. For that matter, we need the fol-
lowing definitions.

Definition 3: A Markov policy is a priority policy if there
is a strict priority ordering of the nodes s.t. we have

or , where is the set
of nodes of priority lower than under .

Definition 4: For priority policy , we write when
has higher priority than under .

Definition 5: For priority policy and node , we denote by
the class of higher priority subsets of neighbors of , i.e.,

. Similarly, we define
.

Now, we state the following facts from [4] (for more details,
see [5]).

Fact 1: For priority policy we have
, when .

This fact holds by the decoupling property and the definition
of a priority policy.

Fact 2: For priority policy and any state where
or we can write the expected reward as shown in (2), as shown
at the bottom of the page.

Fact 3: There is an optimal Markov policy for
which is a priority policy and whose expected reward has the
following property:

(3)

Fact 4: Under the optimal Markov policy the expected
reward for each node defines an index shown in (4) as shown
at the bottom of the page. This index, in turn, defines an optimal
ordering of the nodes and the actions taken at these nodes, i.e.,

(5)

All these facts which are proved in [4] establish that, under the
assumption that the network parameters are fixed and known,

if transmits
if retires

(2)

(4)



JAVIDI AND TENEKETZIS: SENSITIVITY ANALYSIS OF AN OPTIMAL ROUTING POLICY 1307

there exists an optimal routing priority ordering of nodes. The
authors in [4] propose a centralized algorithm (see [5, Alg. 1])
with complexity which computes the optimal priority
listing of nodes in when all the network parameters are
known and available at the same location (this algorithm is sim-
ilar in nature to standard Dijkstra in open shortest path first
(OSPF) [9]). Furthermore, three distributed algorithms to com-
pute the optimal priority listing of the neighbors at each node
are proposed in [5]. Note that due to the nature of the optimal
priority policy, there is a natural distributed implementation of
such policy; such an implementation requires that: 1) successful
receptions at neighboring nodes are acknowledged to the trans-
mitting node, and 2) each node keeps a priority list of the node
itself and its neighbors. A node transmits until another node of
higher priority successfully receives the message. Thus, the net-
work layer does not dictate the route, and in fact there is no one
route, but the actual route a message takes between source and
destination is sample path dependent. This characteristic of the
solution is distinctly different from that of other proposed algo-
rithms (see [1]–[3], [9], and [10]).

III. SENSITIVITY ANALYSIS: PROBLEM FORMULATION

The model and result presented in Section II assume perfect
knowledge of the transmission probabilities . To actually
implement the algorithms, methods to estimate these proba-
bilities should be employed (see the discussion in [5]). On the
other hand, such methods introduce various levels of error.
Thus, in reality is not known but has to be estimated. The
presence of estimation errors raises the important issue of the
sensitivity of the results in [4]–[6], with respect to (small)
variations in . This motivates the formulation of Problem

as follows.

A. Statement of Problem

Consider associated with two sets of system parameters,
and , describing the true and estimated

models of the system, respectively. According to the results
given in Section II-D there exists an index policy which is an
optimal routing policy for with parameters .
At the same time, the optimal solution to the estimated model,

, is an index policy that is not optimal for the
true model , in general. Policy is applied to the
system with the true broadcast model (distribution) . We
are interested in: 1) Determining/quantifying the difference
between the performance of policy in such a system and
the best possible performance, achieved by . 2) Relating
the aforementioned difference to a quantity describing the
estimation error in the (true) broadcast model.

To quantify the difference specified in 1) we define an appro-
priate metric on the space of all routing policies. We define the
distance between policies and in the context of distribu-
tion as

(6)

To relate the difference specified in 1) to the estimation error in
the (true) broadcast model we first quantify this error by defining

a distance measure between the true broadcast model and
the estimated model . We use the total variation metric for
this purpose (see [11] and [12]). The total variation distance
between two local broadcast models, and , describing the
probabilities of transmission success for node , is defined as

(7)

We extend this measure to define the total variation distance
between broadcast models and as

(8)

Note that if at each node transmissions to different neighbors
are independent and the maximum error on each link is , i.e.,
for . and , then

. Hence, the total variation distance is an appro-
priate metric to specify the estimation errors.

Based on this, we formulate the following sensitivity analysis
problem.

Consider for two sets of parameters,
and , describing the true and estimated
models of the system, respectively. Let be an
optimal routing policy for with parameters

, and be an optimal routing policy for
with parameters . The objective is

to determine the distance between policies and
in the context of , and relate this distance to the total
variation distance between the estimated model and
the true system model , i.e., .

Routing policy is said to be robust with respect to errors
in channel quality estimates, if is bounded by a finite
term proportional to error .

B. Basic Assumption on Convergence Rate of Estimation
Algorithm

As mentioned before, the estimated local broadcast model
is constructed through an online parameter estimation algo-

rithm. Denote by the time scale for operation of the estimation
algorithm.

We assume throughout the following analysis that
, where is the time scale for computing the indices as well

as for disseminating the updated (optimal) ranking of the nodes
through the network, and is the time scale for significant vari-
ation in network topology. This implies that our result can be ex-
tended to a dynamic setting if the changes in topology occur at a
much less rate and larger time scale relative to the rate of channel
estimation, communication, and computation of priority rank-
ings in the network.

C. Example

The following example shows that, in general, optimal
routing can be extremely sensitive to estimation errors, i.e.,
there exist scenarios where a small error in estimation can
unboundedly deteriorate the performance of the constructed
priority policy.
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Consider the simple network given by Fig. 1. We as-
sume that transmission success probabilities are given by the
true model and the estimated values of these probabili-
ties are given by model . The value of these transmission
probabilities are

,
and finally . Furthermore,
we assume while . As-
sume that node has transmission costs ; . Rewards
are zero for the first two nodes, and it is equal to
at the destination. The cost of transmission at node 2 is much
larger than the cost of transmission at node 1, i.e., .

In this example, the total variation distance between the two
broadcast models and , i.e.,
is . There are two priority policies and possible in this
network. Under these policies, we have and .
The distance between these two policies in the context of is
infinite, since . We show that even for a small
distance between models and , i.e., small , policy can
be selected as the optimal policy (due to its optimality in the
context of ). To prove this, we write the expected rewards

Since , there exists a (small) for which is selected
as the optimal priority policy when the estimated distribution
is assumed to describe the transmission success. On the other
hand, . Therefore, we have even
though .

This example illustrates that in general a small error in
channel estimation can cause an unbounded decrease in
performance.

IV. SENSITIVITY ANALYSIS: RESULTS

A. Analysis of

In this section, our goal is to bound the distance between two
policies and by a term proportional to the distance between
the broadcast models and . As illustrated in Example III.C,
this is not possible in general. Thus, to obtain a positive result,
we make the following assumption on the nature of the estima-
tion error.

Assumption 1: For any node such that , that is,
does not retire at node , there exists such that

(9)

Intuitively Assumption 1 implies that the magnitude of the
estimation error at each node can not be larger than the total
estimated probability of routing the message “closer” to the
destination. In other words, even under the suboptimal routing

Fig. 1. Example 1.

policy the transmission at each node has a true (according to
) positive probability of reaching a node of higher priority.
Under the aforementioned assumption, we seek to bound the

loss of performance by a term proportional to the estimation
error. To do so, we first present the following definition which
will simplify our notation.

Definition 6: For any measurable function which
is -integrable, we define the Markov operator

(10)

Using this definition, we can write the expected reward for pri-
ority policy at state , assuming or , as

if transmits
if retires

(11)

We begin by establishing Lemma 1 which relates the overall
distance between two policies and to the distance between
the policies at each singleton .

Lemma 1:
.

Proof: Let and . Then

(12)

The second equality in (12) is true since is optimal in the
context of , and the first inequality holds because policy is
optimal in the context of .

The proof is complete after using the fact that
.

To bound the performance loss, we develop upper bounds on
each of the maxima that appear in Lemma 1. Bounds on the first
term, i.e., , are obtained via Lemma
2. Bounds on the second term, i.e., ,
are obtained via Lemmas 3 and 4. The proofs of Lemmas 2 and
3 are given in Appendix I.

Lemma 2 establishes at each node a relationship between
and the distance between broadcast models

and .
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Lemma 2: Assume that is the nodes’ strict
priority ordering under policy , i.e., . Then, we
have

(13)

where is increasing in and satisfies the recursion

Lemma 3 establishes, at each node , a relationship between
and the distance between the broadcast

models and .
Lemma 3: Assume that is the nodes’ strict

priority ordering under policy , i.e., . We have

(14)

where is increasing in and satisfies the recursion

Remark: In Example III.C, we have
which implies the unboundedness of the right-hand side of

(14). This is consistent with the result provided in Section III-C,
establishing that . Note that Lemmas
2 and 3 do not require Assumption 1; hence, they can be applied
to Example III.C.

Lemma 4: Under Assumption 1, we have

(15)

where is increasing in and satisfies the recursion
as shown in the equation at the bottom of the page.

Proof:

Case 1) If , then .
Hence

(16)

On the other hand, the right-hand side of (15) is always a
positive number. Hence

(17)

This completes the proof in Case 1).

Case 2) If , then Assumption 1 implies that

(18)

On the other hand, we have

(19)

where the first equality holds since for
. This is due to the fact that

, hence, for , then ,
which implies . The third inequality follows the
definition of total variation metric, and the last inequality holds
because of (18). The assertion of the lemma follows from (19)
and Lemma 3.

Combining Lemmas 1, 2, and 4 we establish the following
theorem, which summarizes one of the two main results of this
paper.

Theorem 1: Under Assumption 1, we have

(20)

where the function denotes the optimal probabilistic
connectivity for a broadcast model , its corresponding optimal

if

if



1310 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 49, NO. 8, AUGUST 2004

priority policy , and the vector of bounds on estimation error
denoted by and is defined as

(21)

Proof: Combining Lemmas 1, 2, and 4, we have

(22)

where the first inequality holds because of Lemma 1, the second
inequality is a result of Lemmas 2 and 4, the first equality result
from the definition of functions and and their monotonicity
in the index , and the last equality follows from the definition
of the function .

The term in (20) depends on the
topology of the network under the true and the estimated
broadcast models. This dependency provides insight into the
study of sensitivity of the optimal routing policies with respect
to the estimation error under various topological structures. It
can be seen that loss of performance for networks where each
transmission reaches a large set of higher priority nodes is
smaller than for networks with “hot links,” where the condition
of a few links is critical in determining the ability of the routing
policy to transfer the message to the destination. This is an
important feature of the proposed optimal priority routing
policy. We will elaborate on this in Section IV-B.

On the other hand, sensitivity analysis may be used to pro-
vide guidelines in designing online estimation algorithms with
acceptable margin of error. In such applications, the dependency
of our bounds on the true and estimated structures and topology
of the network can create difficulty. In general and in a practical
setting, such models are not known and cannot be exploited to
design appropriate algorithms. Furthermore, in an ad hoc net-
work it is undesirable to assume any particular topological struc-
ture. For these applications, we provide Theorem 2 to eliminate
the dependency of our bound on the particular (and unknown)
topology of the network. To do so, we need Lemma 5 and Corol-
laries 1 and 2 that follow.

Lemma 5 is a direct consequence of the results given in [4].
Lemma 5: Let and be two optimal priority routing poli-

cies under broadcast models and , respectively. Assume that
(respectively, ), that is, policies and

do not retire when the state is . Then

(23)

(respectively, .

Proof: implies that

(24)

On the other hand, for and any policy we have
. Hence

(25)

This implies that
.
Similarly, if

. The proof of Lemma 5 is now
complete.

Corollary 1 of Lemma 2: Assume that is the
nodes’ strict priority ordering under policy . Then, we have

(26)

where is increasing in and satisfies the recursion

(27)

Proof: The assertion of the corollary follows directly from
Lemmas 2 and 5.

Corollary 2 of Lemma 2: Under Assumption 1, we have

(28)

where is increasing in and satisfies the recursion

(29)

Proof: The assertion of the corollary follows directly from
Lemmas 4 and 5.

We now use Corollaries 1 and 2 to prove Theorem 2, which
provides a bound on the error independently of the topology.

Theorem 2: Under Assumption 1, we have

(30)

where

(31)

Proof: Combining Lemma 1 and Corollaries 1 and 2, we
have
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(32)

where the first inequality holds because of Lemma 1, the second
inequality is a result of Corollaries 1 and 2, and the first and
second equalities result from the definition of functions and

and their monotonicity in the index .
1) Sufficient Conditions for Assumption 1 to Hold: As-

sumption 1 is the minimum requirement needed to guarantee
and obtain a finite bound on the sensitivity of the optimal index
routing policy to the estimation error in the broadcast model.
This assumption depends on the nature of the optimal policies
(under the true model and estimated model ), hence, the
topology of the network. Nevertheless, there are stronger con-
ditions which are independent of the network topology, which
are sufficient to guarantee Assumption 1, are easy to verify, and
are given here.

Condition 1: For any node , there exists such that

(33)

Condition 1 guarantees that there exists
for which Assumption 1 is satisfied. Intuitively, Condition
1 has two significant implications. First, it implies that
the network topology under the estimated broadcast model

does not contain links which do not really exist, i.e.,
. Second, the condition

implies that, whenever there is a link between nodes and ,
i.e., , there is a finite bound on the percentage
of error in over-estimation of the quality of the link, i.e.,

. In other words, specifies the
maximum error percentage in the estimation of the quality of
links connected to node .

Condition 2: The estimation error is bounded by the fol-
lowing expression:

(34)

From Lemma 5 it follows that Condition 2 guarantees that
Assumption 1 holds. Although Condition 2 is too restrictive,
it can be checked without any knowledge of the probabilistic
topology of the network and/or the structure of the optimal
policies. Intuitively, this is a sufficient condition to guarantee
a Lipschitz-type continuity of the performance, which in turn
implies a bounded gradient around the true model . Unlike
Condition 1, Condition 2 bounds the absolute value of error
in estimation rather than the error percentage.

B. Examples and Discussion

In this section we present three networks given
by Figs. 2–4 to illustrate how topology affects the sensitivity of
the optimal routing policy with respect to the estimation error.

Consider these three networks. We assume that successful trans-
missions along different links are independent. Hence, for
network , can be defined by
where is a transition matrix whose th element repre-
sents the probability of successful transmission from node to
. We assume

, and
. Consider routing a message from nodes 1 to 5 in

networks . We assume that the estimated value of the
transmission probabilities are

and

Furthermore, we assume that the probabilities of successful
transmission between each pair of nodes are known except
for the link between nodes 2 and 3 in each network where
there is an error in the estimation of the quality of the
link. Hence, for any error value and , we have

, where represents the true broadcast
model for Network , and is a matrix whose only nonzero
element is the th element which is equal to 1. Notice
that . We vary the error from
0% to 100% of the estimated value of the link’s transmission
probability , and compare (1) the loss of performance
in the three different networks, and (2) the bounds provided by
Theorem 1 in each case. Furthermore, for comparison purposes,
we provide the performance of a OSPF-type routing algorithm
(see [1]–[3], [9], and [10]) where some form of shortest route
is established as the minimum energy route. In this OSPF-type
routing algorithm a full route with minimum expected energy
is identified and set up, and all information between source
and destination is transmitted on this fixed route. It can be
shown [2] that, under the estimated model , the “minimum
energy” route from node 1 to node 5 in all three networks
is constructed as . Note that as the
error percentage at link increases, the true cost of
routing via this “minimum energy” route increases.
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Fig. 2. Network 
 .

Fig. 3. Network 
 .

Before discussing the sensitivity of routing policies in these
examples, we would like to point out a known advantage of
using the sample-path-dependent routing policy (SPDR) pro-
posed by [4]. As mentioned before, an important feature of the
proposed optimal routing policy given in [4] is the fact that the
route a message takes between source and destination depends

Fig. 4. Network 
 .

on the particular realizations of channels and transmission suc-
cess. In other words, when implementing the proposed SPDR,
the network layer avoids establishing a fixed route. It is known
(see [4]) that due to this property, in well-connected networks
the optimal SPDR policy shows an advantage in achieving lower
expected cost over strategies which set up fixed routes. This is
mainly because in well-connected networks, due to the presence
of multiple alternative routes between source and destination,
the optimal SPDR strategy avoids unnecessary retransmissions
by choosing the best neighbor among those which have received
the message. The graphs provided by Figs. 2–4 illustrate the
aforementioned advantage.

We use networks to discuss the nature of our sen-
sitivity analysis. We have set up these examples to illustrate the
effect of the network topology on the sensitivity of the perfor-
mance of the optimal SPDR policy (network has the lowest
connectivity, while is the most connected). In each case, we
study the performance of the optimal SPDR strategy when the
estimated probabilistic model includes an % estimation error
over a particular link on the minimum energy route. In addition,
we assume that such error occurs in the form of over-estima-
tion. For each network we plot the performance of policy

, which is the optimal (SPDR) priority policy associated with
the estimated model . We provide the optimal
cost, had the true model been known, as a bench-mark. Further-
more, we plot the bounds provided by Theorem 2.

The results (summarized in Figs. 2–4) can be summarized
as follows. Network consists of a single route between the
source and the destination, hence it is expected for all policies
to demonstrate identical performance and robustness. In such
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a scenario, all routing policies rely on the failing link for their
routing decisions. As the quality of the link decreases all poli-
cies fail to successfully transport the message from the source
to the destination. Hence, as the quality of the link drops the
cost of routing the message from nodes 1 to 5 grows due to the
retransmission efforts. Notice that due to the retiring option the
optimal cost, had the true model been known, is slightly below
the cost of other policies. In network , there are more than
one route from source to destination. This feature of the net-
work has no effect on the performance of OSPF-type routing
strategies, since such strategies always select the route which,
under model , is assumed to be the minimum energy route,
i.e., . The optimal priority (SPDR)
policy shows better performance even in the presence of esti-
mation error. Notice there is still only one route from node 2 to
the destination, hence as the error goes to 100%, goes to zero
and the right hand side of (20) becomes unbounded. In network

where there exist alternative routes around the failing link,
the optimal SPDR policy shows a high degree of robustness. In
addition to capturing the effect of topology on the sensitivity
of the optimal policy, these examples provide a rough idea on
the tightness of the bounds provided by the right-hand side of
(20). It can be seen that the obtained bound becomes tighter as

increases.

C. Distributed Computation of the Optimal Policy

As mentioned in Section I, the key feature of an ad hoc
network is the absence of a central control or computation unit,
and this underlines the importance of providing distributed
algorithms for computation and implementation of an optimal
routing policy. The authors in [4] and [5] provide various
algorithms in which each node uses its local information in
order to compute a local priority list of its neighbors. To a
great extent these algorithms are, in their information structure,
similar to the distributed Bellman–Ford algorithm (see [13]
and [14]), and can be thought of the sample-path dependent
extensions of the distributed Bellman–Ford algorithm. In all
the distributed algorithms presented in [4] and [5], the priority
list for each node is determined based on the node’s local
information. The local information at each node consists of
the local broadcast model for the node, an (updated) estimate
of its own expected reward, and (updated) estimates of its
neighbors’ optimal expected rewards. Each node communicates
asynchronously and infinitely often with its neighbors. Through
this communication process, each node transmits to its neighbors
its own newly recomputed estimate of its optimal expected
reward and generates its own priority list. The computation of the
node’s estimate of its own optimal expected reward is performed
according to an update equation specified by the distributed
algorithm. Thus, according to all the distributed algorithms in
[4] and [5], a node can compute its (local) priority list based
on the estimates it receives from its neighbors provided that it
has an estimate of its local broadcast model. We are interested
in studying the loss in performance of these algorithms when
there are estimation errors at the local broadcast model.

In [4] and [5], it is shown that under the proposed distributed
algorithms the estimates of the optimal expected reward of each

node converge to their true values. Furthermore, it is proved
that almost in all practical scenarios (i.e., when Assumption 3
is satisfied) this convergence occurs in finite time. Therefore,
in almost all practical cases a stationary and optimal local
index policy which is consistent with the optimal index policy
described in Section II-D can be constructed in finite time.
This implies that, given a sufficiently long time horizon, all the
algorithms of [4] and [5] demonstrate identical performance
loss in the presence of estimation errors in the broadcast model.
To see why this is true, assume that the true system model is

as before, and the vector
represents a collection of optimal local routing decisions at
nodes at time under distributed algorithm (one
of the three algorithms provided in [4]). Furthermore, assume
that each node estimates its local broadcast model, ,
for each in a local fashion, based on all its com-
munications, both control signals and messages, as well as its
channel measurements. Construct an overall local broadcast
model such that for and we
have

if
otherwise

(35)

Assume that vector , represents a collec-
tion of local routing decisions at nodes at time
under distributed algorithm and under the estimated model .
For almost all practical cases (where Assumption 3 is satisfied)
there exists a large horizon such that for ,
where is a stationary policy that is optimal for the central-
ized problem with model . This implies that, in the
context of true model , the performance of policy ,
constructed by distributed algorithm is independent of and
is equal to the performance of the stationary policy . On the
other hand, due to the optimality of the distributed algorithm ,
there exists a finite horizon such that policy is op-
timal in the context of the true model ; i.e., its performance
is identical to that of the stationary policy , where is an
optimal index policy for the centralized problem with the true
model . Hence, past horizon ,
under any of the distributed algorithms of [4] and [5], the loss
in performance due to estimation errors in the broadcast model
is equal to the loss in performance of policy . Such a loss has
been calculated in Section IV-A. It is shown that under Assump-
tions 2 and 3, the performance loss is bounded by a term pro-
portional to the estimation error, i.e., the distance between the
true model and estimated model .

Theorem 3, which follows, summarizes this discussion in a
precise fashion under the following assumptions.

Assumption 2: For any node such that , there exists
such that

(36)

This assumption is identical to Assumption 1.
Assumption 3: For any pair of nodes and such that

, .
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This assumption implies that no two neighboring nodes have
the same expected reward (i.e., optimal index) to route a mes-
sage to the destination. It holds in almost all practical scenarios.
Under this assumption, the policies constructed by any of the
three distributed algorithms in [4] and [5] converge to a sta-
tionary optimal index policy in finite time, i.e., for all
sufficiently large (see [5]).

Theorem 3: If Assumptions 2 and 3 hold and is sufficiently
large, then for and for any of the distributed algorithms
of [4], say

(37)

where the function is defined by (21).
For the proof of this theorem, see [17].
Notice that in Theorem 3 is the time to compute and dis-

seminate the local optimal policies. In other words
where is defined in Section III-B. In general, depends on the
values of , and algorithm . Therefore, the convergence rate
of an algorithm varies with the estimation error. This raises the
issue of sensitivity of the convergence rate of various algorithms
with respect to estimation errors in the local broadcast model.
The answer to this issue combined with the result of Theorem 3
can shed light on the transient behavior of the distributed algo-
rithms proposed by [4] and [5]. Hence, the effect of estimation
errors on the convergence rate can be considered an important
goal of future research.

V. CONCLUSION

In this paper, we examined the sensitivity of optimal routing
policies in ad hoc wireless networks with respect to estimation
errors in channel quality. We considered an ad hoc wireless net-
work where the wireless links from each node to its neighbors
are modeled by a probability distribution describing the local
broadcast nature of wireless transmissions. These probability
distributions are estimated in real-time. We investigated the im-
pact of estimation errors on the performance of a set of pro-
posed routing policies. Our results can be used as a guideline to
design online estimation algorithms with acceptable margin of
error. At the same time, our results provide a method to study
the effect of the network topology on the robustness of a routing
strategy with respect to errors in channel estimation. We pro-
vided a few numerical examples to illustrate such robustness
issues. We believe that such results combined with a study of
the statistical distribution of “typical” link estimation error can
provide a guideline in designing topologies with desirable ro-
bustness to estimation errors and link failures.

In summary, the proposed sensitivity analysis provides a
bound on the loss of performance as a result of a time-invariant
error in the estimation of the quality of broadcast channels.
In general, the estimation error is a dynamic variable whose
variation depends on the dynamics of the network topology, the
rate at which optimal routes are updated, and the convergence
rate and error margin of the online estimation algorithm. We
provided intuitive conditions on the time characteristics of the

network’s topological changes and the rate of convergence of
the estimation algorithm, hence the dynamics of the estimation
errors, to allow for our sensitivity result to be extended to more
realistic cases.

We extended our sensitivity analysis to the case of the
distributed computation of the optimal routing policy, when
the distributed algorithms converge to a stationary policy. A
further study should be conducted to investigate the impact of
estimation error on the convergence rate of various distributed
algorithms.

We would like to point out that in scenarios where changes
in the topology and structure of the network are relatively rare,
which implies a sufficiently fast recovery of information and
reconstruction of an optimal routing strategy, the result of our
sensitivity analysis can be used to intuitively predict the transient
behavior of various routing strategies when implemented in
real systems. In other words, in the case of networks with
rare topological changes, the result of sensitivity analysis can
provide a bound on the transient performance of proposed
routing strategies.

APPENDIX I
PROOF OF LEMMAS 2 AND 3

Now, we provide the full proof for Lemma 2; the proof of
Lemma 3 is very similar (for the complete proof, see [17]).

Lemma 2: Assume that is the strict priority
ordering under policy , i.e., for . Then, we
have

(38)

where is increasing in and satisfies the recursion

Proof: We prove the lemma by induction on the index of
the strict ordering .

Basis of Induction: Since is an optimal routing policy
for a problem associated with the tuple we have

. Similarly, is an optimal routing policy
under and (see [4, Sec. 3.3.2]). Hence, we
have .

Induction Step: We assume that

(39)

We need to show that

(40)

where .
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Case 1) If , then . Hence

(41)

On the other hand, the right-hand side of (40) is always a
positive number. Hence

(42)

This completes the induction step in Case 1).
Case 2) If , then

. Hence

(43)

where the second inequality is proved in [17, Fact 7, App.
II] , the third inequality holds since an the expected reward
of an optimal policy at each node is bounded in the interval

and we assume that is an optimal policy in the
context of , the fourth inequality is true since is an optimal
routing policy associated with the tuple (i.e.,

), the fifth inequality holds due
to the induction hypothesis and the fact that for all such that

and we have ,
and the last inequality holds since is increasing in .

Now, we solve (43) for , and replacing
by , we

have

(44)

The proof of the induction step in Case 2) is now complete.
Hence, the assertion of the lemma is true.
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