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Abstract. We address the following sensor selection problem. We assume that a dynamic system possesses a
certain property, call it Property D, when a set I of sensors is used. There is a cost ¢, associated with each set A of
sensors that is a subset of I'. Given any set of sensors that is a subset of I, it is possible to determine, via a test,
whether the resulting system-sensor combination possesses Property D. Each test required to check whether or not
Property D holds incurs a fixed cost. For each set of sensors A that is a subset of I" there is an a priori probability
p4 that the test will be positive, i.e., the system-sensor combination possesses Property D. The objective is to
determine a test strategy, i.e., a sequence of tests, to minimize the expected cost, associated with the tests, that is
incurred until a least expensive combination of sensors that results in a system-sensor combination possessing
Property D is identified. We determine conditions on the sensor costs ¢, and the a priori probabilities p, under
which the strategy that tests combinations of sensors in increasing order of cost is optimal with respect to the
aforementioned objective.
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1. Introduction

We formulate and analyze an optimization problem in sensor selection that arises in failure
diagnosis, detection and hypothesis testing, and is motivated by economic or energy-
related considerations. Below we describe two classes of problems in the aforementioned
areas that highlight the issues we are concerned with.

Consider a problem in failure diagnosis. Assume that a dynamic system is diagnosable
when a set I' of sensors is used. By diagnosable we mean that any failure of interest can be
detected and isolated within a finite time after its occurrence by a prespecified failure
diagnosis scheme. Let us assume that there is a cost function associated with the subsets of
I'. We wish (i) to identify a least expensive combination of sensors A* = T" under which the
system is diagnosable; (ii) to determine the minimum number of tests required to identify
such a set A*, assuming that we use a fixed prespecified test for diagnosability.

Consider a M-ary hypothesis testing problem. Assume that when a set I' of sensors is
available
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Pr(correct detection|h;, ¥, ya,...,yp) >0, i=1,2,.... M (1)

where Pr(correct detection|f;,y,,¥,,...,yy) denotes the probability that the i-th
hypothesis is correctly identified when it is true, given T observations y,,y,,...,Vr
collected from the set I" of sensors, and o, 0 < o < 1, expresses the quality of performance
required by the system over a T-horizon problem. Again, a cost function is associated with
the subsets of I'. We wish (i) to identify a least expensive combination of sensors, call it
A* such that

P4+ (correct detection|h;, vy, v,...,y7) >0, i=12,....M (2)

and (ii) to determine the minimum number of tests required to identify such a combination
of sensors A*, assuming that a prespecified test is used to determine whether any set B of
sensors satisfies

Pg(correct detection|h;, y1,y5,.--,y7) >, i=1,2....M (3)

The costs associated with the sensors could have various interpretations. These costs
could model the actual economic costs of using the given sensors. In this case the problem
of finding a least costly set of sensors that diagnoses the system or satisfies (2) is of
obvious economic interest. This objective is especially justified in situations where a
combination of sensors is to be used in a large number of units (e.g., automobiles,
appliances, airplanes, unmanned aerial vehicles, etc.) and the cost of that combination is to
be taken as the total cost over all units. The cost of a sensor could also model its energy
consumption, in which case our sensor selection problem becomes one of minimization of
energy consumption in the process of diagnosing the system or satisfying (2). Furthermore,
in all cases, it is desirable to minimize the expected computational (testing) cost associated
with the identification of a least costly combination of sensors, because each test is time
and memory consuming and requires significant computational effort.

In this paper, we formulate and analyze an optimization problem in sensor selection
motivated by the above examples. We assume that a system possesses a certain Property D
(e.g., the system is diagnosable) when a set I" of sensors is used for information gathering.
There are no restrictions on the class of dynamic systems considered. For each set A of
sensors that is a subset of I, there is an a priori probability p, that the system possesses
Property D. There is a cost ¢, associated with each set A of sensors that is a subset of I'".
Given a set A of sensors that is a subset of I', it is possible to determine, via a prespecified
test, whether the resulting system-sensor combination possesses Property D. The objective
is to determine a test strategy, i.e., a sequence of tests, to minimize the expected cost,
associated with the tests, that is incurred until a least expensive system-sensor combination
that possesses Property D is identified.

Related sensor selection problems have been previously studied in Bavishi and Chong
(1994), Haji-Valizadeh and Loparo (1996) and Darabi and Jafari (1998) in the context of
discrete event systems. In Bavishi and Chong (1994), the authors present an algorithm that
determines the minimum-cost set of sensors which ensures system testability (a property
defined in Bavishi and Chong (1994). In Haji-Valizadeh and Loparo (1996), Darabi and
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Jafari (1998), the authors present algorithms that minimize the cardinality of the set of
observable events and result in observable (normal) languages (see, for example,
Cassandras and Lafortune, 1999, for definitions of these properties). The problems in
Bavishi and Chong (1994), Haji-Valizadeh and Loparo (1996) and Darabi and Jafari (1998)
as well as the problem investigated here have the following similar objective: the goal is to
determine an optimal (according to some criterion) set of sensors or events with respect to
which the system possesses a certain given property. A major difference, however, between
Bavishi and Chong (1994), Haji-Valizadeh and Loparo (1996) and Darabi and Jafari (1998)
and the present work is that we also determine a sequence of tests that minimizes the
computational effort required to identify a least costly set of sensors that results in a system
possessing the required property; this issue is not addressed in Bavishi and Chong (1994),
Haji-Valizadeh and Loparo (1996) and Darabi and Jafari (1998).

In this paper we formulate the abovementioned optimization problem as a Markovian
decision problem (MDP). Our objective is to obtain insight into the nature of this MDP by
identifying instances where it is possible to explicitly determine optimal strategies. In this
regard, we assume that any combination of / sensors has less cost than any combination of
(I4+ 1) sensors for all / and that testing for Property D requires a constant cost. We also
assume that any combination of / sensors results in a system possessing Property D with
the same probability and the probability is an increasing function of /. Under these
assumptions, we explicitly determine the sequence of tests that identifies a least (sensor)
costly system-sensor combination that achieves Property D with the minimum expected
number of tests.

This paper is organized as follows. In Section 2 we define one instance of the sensor
selection problem. We formulate that instance of the sensor selection problem as a MDP
and solve it in Section 3. We conclude with a discussion of the problem formulation and its
solution in Section 4.

2. Problem Formulation

In principle, we can formulate the sensor selection problem described in Section 1 as a MDP
with perfect observations (cf. Section 3.2). Such a formulation, without any further
assumptions, would only allow determination of the optimal sequence of tests by
computational methods, and would not provide any further insight into the structure of the
optimal policy. To develop insight into the structure of the problem, we need to isolate
instances where we can explicitly determine by analytical arguments the optimal sequence of
tests. We present such an instance in this paper, where the analytical solution relies on specific
assumptions on the costs of sensors and the a priori probabilities, p,, as defined in Section 1.
We formulate and analyze the following sensor selection problem.

Problem P
We are given a dynamic system and a set I' of sensors. We make the following
assumptions:

Al The system possesses Property D when the set I' of sensors is used. The cardinality
of I' is denoted by K.
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A2 LetA,,A,,...,Ax _, denote all elements in the power set of I" except the empty set
and I', and let ¢4, denote the total cost of all sensors in A;, / =1,2,... ,K' where
K' =25 -2 1f |A)| < |A, |, [,me{1,2,...,K'}, then ¢, < ¢, . Furthermore, there
is a total order in terms of cost among subsets of sensors that have the same
cardinality. Therefore, without loss of generality, we label subsets of sensors so
that

Cay <Cp, <or <y, 4)

A3 The a priori probability that the system possesses Property D when a combination of
i sensors is used is p;. Furthermore,

O=py<p1<py-<px_1<pg=1 (5)

A4 If the system with a set A of sensors is tested and found not to possess Property D,
then pp remains the same for all sets of sensors B D A. If the system with a set A of
sensors is tested and found to possess Property D, then p remains the same for all
sets of sensors C C A.

A5 A test performed off-line on any combination of sensors reveals whether the system
possesses Property D when that combination of sensors is used. The cost of the test is
independent of the combination of sensors on which it is performed, and is equal to c.

The objective is to determine a sequence of tests that minimizes the expected cost
(associated with these tests) incurred until a least costly combination of sensors with
respect to which the system possesses Property D is identified.

We briefly discuss the assumptions made in the above problem formulation. Without
Assumption Al there is no problem to solve. If the cost of any combination of / sensors is
equal to the sum of the costs of its individual components and the individual sensor costs
are comparable, then Assumption A2 is a reasonable assumption. However, Assumption
A2 may not always be true. Moreover, under Assumption A2 ordering sensor
combinations according to their cost is the same as ordering them according to their
cardinality. In Assumption A3 the probabilities p;, i = 1,2,...,K — 1, are the result of
prior knowledge based on experimental data. Assumption A3 is reasonable under the
stipulation that all sensors have comparable information gathering ability. Assumption
A4 can be justified as follows: the addition (subtraction) of a sensor to (from) a set of
sensors increases (decreases) the diagnostic ability of the resulting set of sensors in a
highly nonlinear fashion that is very difficult (if not impossible) to quantify. Thus, it is
reasonable to assume that: (i) a negative test on a set A of sensors does not provide any
additional information about the outcome of the test on any set B of sensors that is a
superset of A; and (ii) a positive test on a set A of sensors does not provide any
information on any set C of sensors that is a subset of A. Finally, Assumption AS is true
in several instances. For example, it holds in the M-ary hypothesis testing problem
discussed in Section 1, and in the case when Property D is that of diagnosability and the
test for diagnosability employed in Sampath et al. (1995, 1996, 1998) and Debouk et al.
(2000) is used.
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3. Solution
3.1. Preliminaries

We can visualize Problem P as a decision problem on a digraph (directed graph) as follows.
The nodes of the digraph are elements of 2T, the power set of I'. Thus, each node
represents a combination of sensors. Two nodes A and B are connected by a link, whose
direction is from node B to node A, if and only if cardinality(B) = cardinality(A) + 1 and
A C B. Node () of the network, called the empty node, corresponds to the empty subset of
I', i.e., there are no sensors. An example of such a digraph in the case where there are four
sensors is shown in Figure 1. The objective is to minimize the expected number of tests,
each one performed on one node of the digraph, required to identify a node that represents
a least costly combination of sensors with respect to which the system possesses Property
D. Such a visualization facilitates the analysis of Problem P.
To analyze Problem P we need the following concepts.

DEFINITION 3.1 Node B in the digraph possesses Property D if the system possesses
Property D when the combination of sensors in B is used.

DEFINITION 3.2 Node B in the digraph possesses Property D if it does not possess
Property D.

The above definitions imply that the nodes of the digraph possess the following
characteristics.

Figure 1. The digraph in the case where there are four sensors. The notation 12, for instance, is used to denote the
set of sensors {1,2}.
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C1 The node containing the set I', or simply node I', possesses Property D.

C2 Node ) possesses Property D.

C3 If node A possesses Property D, every node B D A also possesses Property D.
C4 If node A possesses Property D, every node B C A also possesses Property D.

In addition, the following definitions are needed in the subsequent development of the
results.

DEFINITION 3.3 Node B in the digraph is said to be a child of node C in the digraph if and
only if there exists a directed path in the digraph from C to B.

DEFINITION 3.4 Node B in the digraph is said to be a parent of node C in the digraph if
and only if there exists a directed path in the digraph from B to C.

DEFINITION 3.5 Let £ be a set of nodes in the digraph and let A € &. A reachable set from &,
conditioned on the event that A possesses Property D, is a set composed of all nodes in &
whose cost is strictly less than that of A.

DEFINITION 3.6 Let & be a set of nodes in the digraph and let A € . A reachable set from &,
conditioned on the event that A possesses Property D, is a set composed of all nodes in &
except node A and its children in &.

DEFINITION 3.7 A reachable set is a set that results from applying an arbitrary sequence
of n tests {t|,ty,... ,t,} to the set of nodes 2"\{0, T}, while following the rules in
Definitions 3.5 and 3.6.

The concepts introduced by Definitions 3.1-3.7 as well as the characteristics C1-C4 are
subsequently used in the formulation and analysis of Problem P as a MDP. We note that
Definitions 3.1-3.7 are valid independently of whether Assumptions A2—A4 are true or
not. We illustrate the above concepts with the following example.

Example 3.1: Consider the digraph presented in Figure 1. Let &=20\{0,T},

A=1{1,2,3}, and B = {1,2}. Assume that the costs of combinations of sensors are
ordered as follows

{1} < {2} < {3} < {1,2} < {4} < {1,3} < {2,3} < {1,4} < {2,4} < {1,2,3}
<{3,4} <{1,2,4} < {1,3,4} < {2,3,4}

We have the following:

e The children of A in & are {1}, {2},{3},{1,2},{1,3}, and {2,3}.
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e The parents of B in & are {1,2,3} and {1, 2,4}.

e The reachable set from £, conditioned on the event that B possesses Property D, is the

set {{1}, {2}, {3}}.

e The reachable set from &, conditioned on the event that A possesses Property D, is the

set {{4},{1,4},{2,4},{3,4},{1,2,4},{1,3,4},{2,3,4}}.

Based on the above preliminaries, we next proceed to formulate Problem P as a MDP.

3.2. Formulation of Problem P as a Markovian Decision Problem

We formulate Problem P as a MDP with perfect observations. We then exploit the
characteristics of reachable sets using C3 and C4, and Assumptions A1-A5 to characterize
an optimal strategy for the MDP.

To clearly define the MDP we need to define the following five elements (Puterman,
1994): decision epochs, states, actions, transition probabilities, and costs or rewards. The
set of decision epochs is {1,2,...,K'} since every epoch corresponds to testing a
combination of sensors and we know from C1 and C2 that I" and () possess Properties D
and D, respectively. The state space of the process is the set of all sets of subsets of I" (i.e.,
22", hence a state of the process is a collection of subsets of I'. The information state
(Kumar and Varaiya, 1986) of the process is the set of nodes of the digraph that have not
yet been checked for Property D and correspond to potentially least costly combinations of
sensors possessing Property D. In this paper we use the terms state and information state
interchangeably since we are considering a MDP with perfect observation (see Kumar and
Varaiya, 1986). When N is the state of the process, the action space is N and an action i e N
at a given epoch picks up the next subset of sensors to be tested. The transition
probabilities are defined as follows:

P(NP/N,ieN is tested) = p ©
and
P(N,-B/N,ieN is tested) = 1 —pji 7

where N,—D (NI-D ) is the new state of the process, i.e., the reachable set from node i, that
results when node i possesses Property D (D), and |i| denotes the cardinality of the set i.
Finally the cost for every action i € N is equal to c. We note here that the individual cost of
sensors appear in the optimality equation (10) through the sets N? and NP. The following

example illustrates the elements of the MDP.

Example 3.2: Let us revisit Example 3.1. I' = {1,2,3,4} and the decision epochs are
{1,2,...,14}. The state space of the process is 22" and a state N of the process is of the
form
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N = {{4},{1,4},{2,4},{3,4},{1,2,4},{1,3,4},{2,3,4}}

When the state of the process is N the action space is N, and an action is an element in N.
The transition probabilities are defined as follows:

P(N?/N,ieN is tested) = py;, |i| =1,2,3 (8)
and

P(NP/N,ieN istested) =1 —py, |i|=1,2,3 (9)
Finally the cost of testing is equal to ¢ for every action ieN.

Let V(N) denote the minimum expected (test) cost incurred when the state is N. Then,
V(N) satisfies the optimality equation

V(N) = min{e + pg - VIND) + (1 = pyg) - VIND)) (10)

where i€ {A|,...,Ax }, |i| denotes the cardinality of the set i, and N” (N?) is the new state
of the process, i.e., the reachable set from node i, that results when node i possesses
Property D (D). These states are determined from N by using C3 and C4, Definitions 3.5
and 3.6, and Assumption A2. The probabilities py;, [i|=1,2,...,K —1 remain
unchanged because of Assumption A4. With a slight abuse of notation, and for simplicity,
we thereafter use p; instead of p|; in (10) to denote the a priori probability associated with

the set of sensors i. Hence, from now on (10) will read as follows

V(N) = min{e +p, - VINP) + (1 = p,) - V(NP } (1)

3.3. Analysis

Equation (11) can be solved by backward induction (Puterman, 1994) under any
conditions on the prior probabilities p; and on the cost of combinations of sensors. This
requires a precise way of ordering and enumerating states. The following example
describes that procedure applied to Example 3.1.

Example 3.3: We consider Example 3.1. We briefly illustrate how the backward induction
procedure works in the context of the example. We proceed in stages.

At the first stage we consider all states that consist of one subset of sensors of I'. These
states are {{1}}, {{2}}, {{3}}, {{4}}, {{1,2}}, {{1,3}}, {{2,3}}, {{1,4}}, {{2,4}},
{{3,4}}, {{1,2,3}}, {{1,2,4}}, {{1,3,4}}, {{2,3,4}}. The cost associated with each
of the above states is equal to ¢, the cost of a single test.

At the second stage we consider all states that consist of two subsets of sensors of I'. We
will not enumerate these states, but will illustrate how to compute the cost of each via the
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optimality equation (11) by focusing on one such state, say N = {{2,4},{1,2,3}}. The
possible actions at N are to test either {2,4} or {1,2,3}. The cost associated with testing
{2,4} is equal to

ct+(1=py)-V{1,2,3}) =c+ (1 =py)-c=(2-py)c (12)

since N{“} = () (because of A2), N{ 4y =1{1,2,3}, and V({1,2,3}) = ¢ (from the first
stage). The cost associated with testlng {1,2,3} is equal to

c+p3 V({241 + (1 =p3) - V{2,4}) =c+ps-c+ (L =p3)rc=2-c  (13)

since N{1 23 = {2,4} (because of A2), N{1 23 = {2,4},and V({2,4}) = ¢ (from the first
stage). From (11), (12), and (13) we conclude that at state N = {{2,4},{1,2,3}} it is
optimal to test {2,4} and

V({{2,4}.{1,2,3}}) = 2 —p2) - ¢ (14)

The cost of all other states N that consist of two subsets of I' are computed in a similar
fashion

At third, fourth, fifth, ... stages we consider all states that consist of 3, 4, 5, ... subsets
of T', respectively. At each stage, the cost of the corresponding states is computed by
considering all possible actions at each state, using the results of the preceding stages to
determine the cost of each action, and selecting the minimum of these costs.

The above described procedure determines the cost of each state, and the optimal action
(i.e., the optimal test) at each state.

The solution of equation (11) by backward induction as illustrated in Example 3.3
would apply to specific situations. Furthermore, it does not provide any insight into the
nature of the solution of Problem P. We are interested in seeking structural results, i.e., in
determining properties and characteristics of optimal test strategies for Problem P so that
we develop some insight into the nature of the problem. We have isolated one instance of
Problem P where, under the set of Assumptions A1-AS5, we can explicitly determine an
optimal test policy. The following theorem summarizes the solution to Problem P under
Assumptions A1-AS5 and provides the main result of this paper.

THEOREM 3.1 If p;+p; 1 > 1 for [=1,...,K —2, then an optimal test strategy for

Problem P is to test combinations of sensors in increasing order of (sensor) cost as defined
in Assumption A2.

Proof of Theorem 3.1: The proof proceeds by induction on the cardinality of the infor-

mation state N. Let V. (N) denote the expected cost incurred when we choose to test ke N
when the information state is N and follow the optimal test strategy afterwards, that is

Vi(N) = ¢ +pp - VIND) + (1 = pg) - V(NP) (15)
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and

V(N) = min V,(N) (16)
keN
® Basis of induction Let |[N| = 2,1.e., N = {i,j} where i,je{A,...,Ag } are subsets of

sensors. There are three possibilities for such information states (based on Definitions
3.5 and 3.6 of reachable sets):

1. |i| =|/| such that the cost attached to i is less than or equal to that attached to j. In
this case

Vi(N) =c+p;-VIN?)+ (1 =p)-VIN?) =c+ (1 —p;)-c (17)
since N? = (), i.e., no more tests are needed, and Nf_) = {j}. Also,

ViN)=c+p*VIN')+ (1 —p;) VIN?) =c+p;c+(1—p)-c  (18)

since NP = {i}, and Nj5 = {i}. From (17) and (18) it follows that it is optimal to
first test i and then j since p; = p;, and p; - ¢ is always strictly positive.

2. |i|=|j| — 1 with i being a child of j. In this case

VilN) = c+pis VIND) + (1= p) - VINP) = e+ (1 = p)) ¢ (19)
since N? = () (by Assumption A2), i.e., no more tests are needed, and Nf_) ={j}
Also,

, . D . Dy _ .. .

ViN)=c+p;*V(N;)+ (1 =p;)-V(N;) =c+p;-c (20)

since NID = {i}, and NIB = (). From (19) and (20) we conclude that it is optimal to
first test / and then j because by assumption p; + p; > 1, implying that 1 —p; < p;.

3. |if =1j] — 1 such that i is not a child of j. In this case

ViN)=c+p-VINY)+ (1 —p;) - VIN?) =c+ (1 —p,) - c (21)

since N,D = () (by Assumption A2), i.e., no more tests are needed, and Nil_) ={j}
Also,

Vi(Ny=c+p;-VIN)+ (1 =p,) VIN?) =c+pj-c+ (1 —p)c=c+c
(22)

since N = {i}, and NJE = {i}. From (21) and (22) it follows that it is optimal to first
test i and then j since 1 — p; is always strictly less than 1.

e Induction step Assume that the assertion of the theorem is true for any set N’ with
cardinality k, i.e., under Assumptions A1-AS and p; + p,,; > 1 for all /, and for any
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set of cardinality less than or equal to k an optimal test strategy is to test combinations
of sensors by increasing order of their cost. We must prove that for any set N of
cardinality k + 1, the assertion of the theorem is still true. Let i, j be elements of N (that
is i, are subsets of sensors) such that the cost attached to i is the smallest cost attached
to any combination of sensors in N. Clearly, |j| > |i| by Assumption A2. We need to
prove that

Vi(N) = ¢+ p; - VINP) + (1 = p;) - VNP) < ¢ +p; - VINP) + (1 — p;) - V(NP)

= V;(N) (23)
pi-VINP) + (1= p;) - V(NP) < p;- VINP) + (1 = p;) - V(NP) (24)
where
NP =0
NP = N\{i}

NJ-D ={xeN:|x| < |j|,or |x| =|j| and the cost attached to x is less than

that attached to j and x # j}

D ) . . . .
N; = {xeN :x # j,and x is not a child of j} (25)
We can apply the induction hypothesis to the sets N,-B, NJ»D, and Nj’-3 since their
cardinalities are less than or equal to k (cf. (25)). By successively applying the
induction hypothesis until all elements in N?, NJ’-j , and NJD are exhausted, we get

vi—1 Vigr — 1

V(NiB) - [Z(l —p)"+ (1 —=p) Z (1 =pig1)”

n=0 n=0

Fo At (L=p) (L =piy) e (L=py) Z(l -p)

vp—1

Foo (L =p)" (L =pig )™ e (L=pp )™ Z(l —PL)n] (26)

n=0

n=0

V(N/’D) =ce [i(l =p)"+(1=p) i (1=piy1)
n=0

ri—1

+o (=p) " (I =piy) o (1 _ijl)r’” : Z(l _Pj)n] (27)

n=0

and
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s;i—1

V(ND Z(]‘_pl Z 1_p1+1
sp—1

o (L=p) e (L=p )" e s (L =pp )™t Z(l -p)"
n=0

(28)

where v, denotes the number of combinations of k sensors in N°, r, denotes the number
of combinations of k sensors in N; b s, denotes the number of comblnatlons of k sensors
in ND and L denotes the highest set cardinality in N with | j| < L < K — 1. In Appendix
A we explain in more detail how equations (26)—(28) are obtained. Because of (25)—
(28), the inequality we need to prove in (24) can be written as follows (after canceling ¢
from both sides)

n=0
vy —1
+oot (L=p) (L =pi )™ (I=pp_)™" (1 _PL)n]
n=0
ri—1 i —1
<pe |Y_(1=p)"+(1=p) (1=pis1)"
n=0 n=0
ri—1
+ + (1 _p1> (1 pl+l> ] (1 pjfl)’Fl Z(l _pj>"]
n=0
si—1 Sis1 -1
+ (1 _pj)' [Z(l_pl) +(1 _pz) (1_p1+1)n
n=0 n=0
sp—1
+ (L=p)" (L =pj )" (L=pp_y)* " Z(l _PL)nl
n=0
(29)

We consider two cases: | j| > |i|, and | j| = |i| such that the cost attached to j is higher
than that attached to i.

Case 1: |j| > |i|. In this case, from the definition of reachable sets (Definitions 3.5 and
3.6), C3 and C4 we have the following relations
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rj<vj

re=v. k=li|+1,...,]j] -1

rp=v;+1

sg=v k=|j|+1,...,L

s;=vi—1

s <wve k=li|+1,...,]j] -1

s;<vi+1 (30)

The set of equalities and inequalities (30) is best explained by referring to (25). For
instance, r; < v; since the elements in NP having | j| sensors (denoted by v;) are equal to
the elements in N having | j | sensors while the elements in NP having | j | sensors (denoted
by r;) are those elements in N'\{j} having || sensors and a cost strictly less than that of
element j. Verification of the remaining equalities and inequalities can be found in
Appendix B. Because of (29) and of the relations between the r;’s and v;’s,
k=li|,...,|j| — L, in (30), the inequality we must prove to complete the proof of the

induction step in Case 1 is

vi—1 Vigr — 1
(I—pi)- Z(l —p)"+ (1 =p)" (1=pis1)"
n=0 n=0
v,—l
o (L= p) (L= p ) e (L= py ) S (1= py)f
n=0
vy —1
ot (L=p)" (L=pig )™ e (L=ppy)™ e Z(l _PL)n]
n=0
Vi Vigp—1
<pe [ =p) + (=) N (1=piy)
n=0 n=0
Ij—l
ot (L=p)" (L =p )i (1 —pj—1)" Z(l _pj)’1]
n=0
5 —1 Siv1 1
+ (1 =p)- [Z(I—Pi)n+(1—Pi)si' (1=pis1)"
n=0 n=0
s, — 1
+-4 (1 _Pi)xi'(l_l’iﬂ)sm' '(1_PL71)SL7]' (1 _PL)H] (31)
n=0

Because of Assumption A3 the condition p;, +p;, ; > 1 for all / of the theorem implies
that 1 — p; < p;. Moreover, the terms multiplied by p; on the right hand side of (31) are
term by term greater than or equal to the first v, +1+v; y+---+v;_; +r; terms

multiplied by (1 — p;) (in between braces) on the left hand side. Hence, because of (31)
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and the above observation, to complete the proof of the induction step in Case 1 it is
sufficient to prove that

(L=p)-(L=p)iee(L=p, ) - (1—p)iT'- Z (1=p)"

W\l*l
—r;—1
+(1=p) T Y (L =pp)"
n=0

vy —1
+ (1 _Pj)‘fl"il (1 _Pj+1)v/+1 s e (1 _PL—l)V“l : Z(l _PL)"]
n=0
si—1 i1~ 1
<A=p)- D A=p)' +1=p) > (1=p 1)
n=0 n=0
sp—1
Fo At (I =p)" (L =pig ) s (L=pp ) Z(l —-p) (32)
n=0

Sinee (1= p;) (1=p)" = (1=py )" = o (L= ) (L= ) < (1= py),
to establish (32) it is sufficient to show that

vi—rj—2

Vit1
Z (1=p)" + (1 =p) it Z(l —pp) o (L=py)i T
n=0 n=0
vy —1
(1 _19/‘+1)"+1 s (L=ppo)t e Z(l -p)"
n=0
—1
Z 1—p)' +(1—py)” Z =pis1) + o (L=p)”
sp—1
(L=pig)" e (L=pp ) Z(l -p) (33)
n=0

From (30) we have that s =v;— 1> vi—rj— 1 since > 0, and s, =y,

k=|j|+1,...,L. Hence, the following is true
Vi—r=D4vig+ vy <si+s 4+t (34)

Inequality (34) implies that (33) is true since the terms in the left hand side of (33) are term
by term less than or equal to the first (v, —r; — 1) +v; | +--- + v, terms on the right
hand side of (33) (by noting that since p; < p; then (1 — p;) < (1 — p;)). The proof of the
induction step is complete and the assertion of the theorem is true for Case 1.

Case 2: |j| = |i|. Such that the cost attached to j is higher than that attached to i. In this
case Inequality (29) becomes
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vi—1 Vigr— 1

(I—pi)- Z(l_l?i)n"‘(l_l’i)v" Z (1=pis)

n=0 n=0

ot (L=p) e (L=piy )" s (L=py ) Z(l —p)'

n=0
ri—1 s, — 1
<pi* Z(l =p)" +(1=p)- Z(l -p)
n=0 n=0
sip1—1
+(1=p;)" Z (L=pis) -+ (1 =p)" (L =pip )™
n=0
sp—1
s (L=ppoy)t e Z(I_PL)n (35)
n=0
where vy, 1y, 5, and L are as defined in Case 1, and they are related as follows
TSV
S = Vi k:|l‘,,L (36)
Observe that s, = v, for k = |i|,...,L since the sets Nl5 and th_) contain the same

combinations of |i| sensors or more. The inequality r; < v; is true since the set N contains
all elements of |i| sensors in N except the element 7, while NjD only contains elements with
|i| sensors that have a cost strictly less than that of the element j. Hence, to complete the
proof of the induction step in Case 2 we must prove that (35) is true. For that matter we
observe that the terms multiplied by (1 — p;) on the left hand side of (35) are term by term
equal to the terms multiplied by (1 — p;) on the right hand side of (35). Hence the
inequality in (35) is always true.

The proof of the induction step is now complete. Therefore, the assertion of the theorem
is true. |

Theorem 3.1 presents conditions sufficient to guarantee that the strategy that tests
combinations of sensors in increasing order of cost is optimal for Problem P. This
result may be intuitively interpreted as follows: the conditions p,+p,, | > 1,
I=1,2,...,K =2, imply that p; > 1/2 for i=2,...,K — 1. Thus, it is assumed a
priori that a combination of two or more sensors is equally or more likely to result in a
system possessing Property D than a system possessing Property D. Therefore, given that
the cost of testing for Property D is independent of the cardinality of the combination of
sensors that is being used, it is plausible that the optimal test will examine combinations of
sensors in increasing order of cost.

The proof of Theorem 3.1 is achieved by showing that the test strategy claimed to be
optimal performs no worse than any other strategy. The method of proof of the theorem
cannot be used to compare any two test strategies, none of which is the one specified by the
theorem. Later, in Section 3.4, we show that under a slightly modified set of assumptions it
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is possible to compare test strategies that satisfy certain conditions even when none of
these strategies is an optimal one (see Theorem 3.2).

Using the result of Theorem 3.1, it is possible to determine an analytic expression for the
value function V(N) that satisfies equation (11).

COROLLARY 3.1 Consider Problem P with the conditions p;+p; . >1,1=12,...,
K —2.

i. Let N be a reachable set. Then the minimum expected cost associated with N is

n—1 nyq—1
V(N) =c- Z(l—Pl)n+(1—P1)nl' Z (1=pi)
n=0 n=0
n, —1

Foot (L=p)" (L=pp )" e (L=py )™t Z(l —pn)"| (37)
n=0

where | and h denote, respectively, the lowest and highest set cardinalities in N and n,
and ny, denote the number of combinations of sensors in N of cardinality | and h,
respectively.

ii. Let Ny and N, be two reachable sets. If N{ =N, then V(N;) < V(N,).

Proof of Corollary 3.1: The proof of part (i) of this corollary can be found in the proof
of Theorem 3.1. Namely, in the proof of Theorem 3.1 we showed that (29) and (35) are
always true, hence the left hand side of the inequality (after adding the constant c)
represents the cost associated with the optimal policy. That cost can be rewritten as
presented in the statement of the corollary. The proof of part ii of the corollary is a direct
consequence of part i. If we write the expansions of V(N,) and V(N,) according to (37),
with the terms ordered as given in (37), then the |N,| elements in V(N,) are term by term
less than the first |[N,| elements in V(N,) since (1 —p;) > (1 — p; ) for all i. |

The following example illustrates in part the results of our analysis. It shows that when the
conditions p; +p; . > 1,1 =1,2,...,K — 2, are not satisfied the result of Theorem 3.1 is
not, in general, true. It also provides a comparison of the test policy g, that tests
combinations of sensors in increasing order of cost, with two other specific policies, and
demonstrates that when the conditions of Theorem 3.1 are satisfied, g, outperforms these
two policies.

Example 3.4: Consider the digraph presented in Figure 1 and let the information state
N =2"\{T",(}. Assume that the combination of sensors {1,2,3,4} achieves Property D,
the costs of combinations of sensors are ordered as follows

{1} < {2} < {3} < {4} < {1,2} < {1,3} < {1,4} < {2,3} < {2,4} < {3,4}
<{1,2,3} < {1,2,4} < {1,3,4} < {2,3,4}
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P1 < Py < p3, and for any combination of sensors the cost for testing for Property D is
equal to unity. Hence Assumptions A1-A3 and A5 are met. We also assume that
Assumption A4 is satisfied. Denote by g, the policy that always tests combinations of
sensors in increasing order of cost. We compare g; with two other policies g, and g3
defined as follows:

g, Always test combinations of sensors in decreasing order of cardinality with the tie-
breaker being the maximum number of children a combination has;

g3 Always test combinations of sensors whose cardinality equals the median of available
cardinalities in the information state with the tie-breaker being the maximum number
of children a combination has.

Figure 2 depicts the cost associated with the three policies above as function of p, with
fixed p; and ps. In the top left graph, the conditions of Theorem 3.1 are satisfied, so g;
outperforms g, and g; as expected. In the top right (bottom left) graph the condition
p1 + P, > 1 (all conditions) of Theorem 3.1 is (are) violated; yet g, outperforms g, and g3
in both instances. In the bottom right graph, the conditions p;, +p;,; > 1,/ = 1,2, are all
violated and g, is inferior to g, and gs.

p,=0.5, p,=0.85 p,=0.25, p,=0.85
4.5 5.5
4 T 5
35 -
- 45
5 3 T —— - E
= =
4
2.5
> _ a5
1.5 3
0.4 0.5 0.6 0.7 0.8 0.9 0.2 0.4 0.6 0.8 1
Pz [
p,=0.25, p,=0.7 py=01,p;=0.5
5.5
5
4.5
3
=
4
3.5
3
0.2 0.3 0.4 0.5 0.6 0.7 0.1 0.2 0.3 0.4 0.5

P2 Pa

Figure 2. Policy comparisons for Example 3.4.
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3.4. Analysis of a Special Instance of Problem P

As discussed in Section 3.3, under Assumptions A1-AS5 we can show that the test strategy
described in Theorem 3.1 is optimal but the theorem only includes a comparison between
any strategy and an optimal strategy. By slightly modifying one assumption we can obtain
one instance of Problem P that has more structural properties than those described in
Theorem 3.1. Specifically, by replacing Assumption A3 with

A3’ The a priori probability that the system possesses Property D when the combination
of i sensors is used, 1 < i < K — 1, is equal to a constant, p,

we achieve the following:

e Comparison of any two test strategies that satisfy certain conditions even when none of
these strategies is an optimal one (cf. Theorem 3.2).

e Discovery of an additional property of the value function V(+) (cf. Theorem 3.3).

Assumption A3’ may not always be realistic. It may be justified only in the case where
there is no prior experimental data available about the diagnostic properties of any set of
sensors; in such a case one might choose p = p; = 1/2 for all i. The result of Theorem 3.2
that follows is valid for all p > 1/2; Theorem 3.3 is true for all p.

Under Assumptions Al, A2, A3, A4, and A5, if p; + p; ., > lorp > 1/2, Theorem 3.1
is still valid since A3’ implies A3. Furthermore, under A1, A2, A3, A4, A5, andp > 1/2
we can compare the expected costs incurred when at any instant of time we test any two
distinct combinations of sensors within a reachable set and we follow the optimal test
strategy afterwards. The following theorem precisely states the result.

THEOREM 3.2 Let N be an information state, and let i and j be two elements in N. Under
Assumptions Al, A2, A3', A4, A5, and p > 1/2 the following are true:

i IfINP| + INP| < [NP| + NP (38)
and [NP| < [NP| < [NP|, |NP| < [NP| < NP (39)
then V;(N) < V;(N) (40)

where V.(N) denotes, as previously, the expected (test) cost incurred when we choose to
test ke N when the information state is N and follow the optimal test strategy afterwards.

ii. An optimal test strategy for the sensor selection problem under consideration is to
test combinations of sensors in increasing order of their cost. Moreover, the minimum
expected cost associated with N is
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v(

IN|—1
Ny=c: > (1-p) (41)
n=0

Proof of Theorem 3.2: Part ii is already proved by Theorem 3.1 and the fact that
Assumption A3’ implies Assumption A3. Equation (41) is obtained by letting all
probabilities equal to p in equation (37). We prove part i by induction on the cardinality of
the information state N.

® Basis of induction Let [N| = 2, i.e., N = {i,j} where i,j e {A,,...,Ax } are subsets of
sensors. There are three possibilities for such information states (based on Definitions
3.5 and 3.6 of reachable sets):

1,2:

J| such that the cost attached to i is less than that attached to j, or
J| — 1 where i is not a child of j. In this case

il =|
il =1

V(NP) = 0,V(NP) = {j}, V(NP) = {i}, and V(NP) = {i} (42)
Therefore,
INP| + [NP| < INP|+ NP (43)
and
INP| < INP| < INP|, INP| < INP| < INP| (44)
Moreover,
ViN) =c+p-VINP)+ (1—p)-VIN?) =c+ (1 —p)-c=c-(2—p)
(45)
and

Vi(N) = c+p-VIN) + (1= p) - VIND) = c+prc+ (1 =p)rc=2+c
(46)
From (45) and (46) it follows that V;(N) < V;(N) and it is optimal to test i next.

li| = |j| — 1 with i being a child of j. In this case

V(NP) = 0,V(NP) = {j},V(ND) = {i}, and V(NP) =0 (47)
Consequently,
D D D D
IN7| + INZ| < N7+ N7 (48)

and
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INP| < INP| < [NP|, |NP| < NP| < |NP| (49)

Furthermore,

ViN) =c+p-VIN?) + (1 =p) - VIN') =c+ (1 =p)-c=c- (2~ p)
(50)

and

ViN)=c+p-VIN')+ (1 =p)-VIN)=c+p-c=c-(1+p) (51)

From (50), (51) and the assumption that p > 1/2 implying that
(2 —p) < (1+p), we conclude that V;(N) < V;(N).

® Induction step Assume that the assertion of the theorem is true for any set N’ with
cardinality £, i.e., for any set N” of cardinality less than or equal to &, if i and j subsets of
sensors belonging to N’ such that (38) and (39) are satisfied and p > 1/2 then (40) is
true and an optimal test strategy is to test combinations of sensors in increasing order of
cost. We need to prove that for any set N of cardinality k& + 1, the assertion of the
theorem is still true. Let i and j be subsets of sensors belonging to N such that (38) and
(39) are satisfied. We need to prove that V;(N) < V;(N) and an optimal test strategy is
to test combinations of sensors in increasing order of cost. To prove that V;(N) < V;(N)
we need to show that

Vi(N) = c+p-V(NP) + (1 =p) - VINP) < c+p-V(NP) + (1 = p) - V(NP)
= V;(N) (52)

or

pV(NP) + (1= p)-V(NP) <p-V(NP) + (1 — p)- V(NP) (53)

Let u, v, r, and s denote, respectively, the cardinality of the sets NiD , Nl-B, NjD ,and NjE. By
assumption we have that

u+v<r+s, andu<r<yvu<s<y (54)

Since u, v, r, and s are all less than or equal to k, we obtain, by the induction hypothesis
and ii

u—

c-» (1-p)'
0

VIN) ) =c+ (1 =p) e+ (1 =p)-le+-]

n

and similarly,
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v—1

VINP) = e+ S (1 p)'

n=0
r—1
VINP)=c ) (1-p)"
n=0
V) =+ 3 (1 —p)' (55)
n=0

Proving Inequality (52) reduces to showing that

pres S (U-pf +(1-p) e S (1-p) <pre
n=0 n=0
S —p) +(1=p)c S (1-p) (56)
n=0 n=0

subject to the constraints (54). By rearranging terms in (56) and using the facts that
u <rand s < v, we find that proving (52) is equivalent to showing

v—1 r—1

(1=p)res > (1=p)" <prc- > (1-p) (57)

n=s n=u

By the assumption that p > 1/2 we have that (1 — p) < p. Hence, to show that (57) is
true it is sufficient to prove that the summation on the left hand side is less than the
summation on the right hand side. The left hand side summation of (57) has fewer terms
than the right hand side summation since v — s < r — u (cf. (54)). Moreover, the terms
in the summation on the left hand side are term by term less than the first v — s terms in
the summation on the right hand side: s > u implies that (1 — p)* < (1 —p)", i.e., the
first term in the left hand side summation is smaller than the first term in the right hand
side summation, and similarly for the remaining v —s — 1 terms. Therefore, we
conclude that Inequality (57) is always true which implies that (52) is always true and
this concludes the proof of the induction step for part (i) of the theorem. |

Remark: For this problem the value function V(N) is upper bounded by c/p. This can be
seen as follows. First, it is clear that V(N) is a nondecreasing function of the cardinality of
the information state N. Since the a priori probability that the system possesses Property D
when any combination of sensors is used is p, as cardinality (N)— co the average number
of tests required to determine the least costly combination of sensors is 1/p, according to
the optimal test strategy of Theorem 3.2. Consequently V(N) cannot exceed ¢/p for any
information state N.
The following example illustrates, in part, Theorem 3.2.

Example 3.5: Consider the digraph presented in Figure 1 and let N = 2"\ {I", 0, {1}, {2}}
be the information state. Assume that the costs of combinations of sensors are ordered as
follows
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{3} < {4} < {2,3} <{1,3} < {1,2} < {3,4} < {2,4} < {1,4}
<{1,2,3} < {2,3,4} < {1,3,4} < {1,2,4}

and let p = 0.6. Pick i = {1,2} and j = {1,3,4}. Then

A%)::{{3}7{4}’{273}7{173}}
NIB = {{3}7{4}7{273}7{1’3}7{374}7{2’4}7{174}7{17273}7{27374}7
{1,3,4},{1,2,4}}
NP = {{3},{4},{2,3},{1,3},{1,2},{3,4},{2,4},{1,4},{1,2,3},
{2,3,4}}
NP = {{2,3},{1,2},{2,4},{1,2,3},{2,3,4},{1,2,4}}
Vi(N) =c+p-V(NP)+ (1 —p)- V(NP)
and V;(N) = ¢ +p- V(NP) + (1 —p) - V(NP)

Since the above sets satisfy (38) and (39) of Theorem 3.2 part i, we must have
Vi(N) < V;(N). Indeed, by using (55), we obtain

3 10
ViNy=c+p-ce > (1=p)"+(1=p)rc- > (1—p)" =2.6410-c
n=0 n=0
9 5
ViN)=c+p-ce > (1=p)"+(1=p)rc- > (1—p)" =26689-c> Vi(N)
n=0 n=0

Both V;(N) and V;(N) are greater than the optimal cost which is equal to

11

¢+ > (1=p)" =1.6666-c(cf.(41))

n=0

We conclude this section by showing that Assumption A3’ together with Assumptions
Al, A2, A4, and A5 lead to an additional property of the value function V(N) stated in
Theorem 3.3 below. This property relates the cost function of two reachable sets, one being
a subset of the other. Note that Corollary 3.1 presented a similar property under
Assumption A3 provided that the conditions p; +p;,; > 1 hold for all /. Under
Assumptions Al, A2, A3’, A4, and A5, Theorem 3.3 is valid for any value of p. Since no
restrictions are imposed on p, the strategy that tests combinations of sensors in increasing
order of cost is not necessarily an optimal test strategy. Therefore, Theorem 3.3 does not
follow directly from the results of Theorems 3.1 and 3.2. Moreover, as presented in the
proof, the arguments needed to establish Theorem 3.3 are different from those used in the
proofs of Theorems 3.1 and 3.2.
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THEOREM 3.3 Consider the sensor selection problem under Assumptions Al, A2, A3', A4,
and AS. Let A and B be two reachable sets in the digraph. If A = B then V(A) < V(B).

Proof of Theorem 3.3: 'We prove this Theorem by induction on the number of elements
in A.

e Basis of induction: Let A = {a},

V({B}) = ¢ = V({a}) = V(A).

e Induction step: Assume that V(A) < V(B) for any two sets A and B such that A =B,
|A| = n, |B| = n+k, for any k > 0. Pick any A’, B’ such that A’<=B’, |A'| =n—+1,
|B'| = n+k+ 1. We need to show that V(A’) < V(B’). Pick an optimal decision at
state B, say x. Depending on whether xe A’ or not there are two cases.

B| = 1+k, k> 0. We have V({a}) = ¢, and

Case 1: xeA’. The choice x may or may not be an optimal decision for A’. Therefore,

V(A) <c+p-V(AP)+ (1 —p)-V(AP) (58)
and

V(B') =c+p-V(BP)+(1—p)-V(BP) (59)
Furthermore,

AP<BP  |AP|<n, |BP|<n+k (60)
and

AP<BP AP <n, |BP|<n+k (61)

by the properties of reachable sets and the fact that A’ B’. Therefore, by the induction
hypothesis

V(AY) < V(BY) (62)
and

V(AP) < V(BY) (63)
which, together with (58)—(59), result in

V(A) Sctp-V(BY) + (1 -p)-V(BY) =V(B) (64)
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Case 2: x ¢A’. Here we have two sub-cases:
Case 2-i: x or one of its parents was tested (before reaching state A”) and proved not to
possess Property D, i.e., x possesses property D. Pick for A’ a decision element, say x’, such

that x’ is the lowest cost combination of sensors in A’. Since X’ may not be the optimal
decision for A’,

V(@A) <c+p-V(AP)+ (1 —p)-V(AP) (65)
furthermore, since x is an optimal decision at B’ equation (59) holds. By assumption A’

does not contain any child of x, which implies that A’? does not contain any child of
x(A? <A’ =B'), but B” contains all elements in B’ except x and its children. Therefore,

AP cpP (66)
In addition
AP = (c=BP (67)

since x' is the lowest cost combination of sensors in A’. By the induction hypothesis, since

AP <n, |BP|<ntk |AP|<n, and B <ntk (68)
we obtain

V(AP) < V(BP) (69)
and

V(A?) <V(BY) (70)

From (59), (65), (69), and (70) it follows that

V(A) Sc+p-V(BY)+(1-p)-V(BY) =V(B) (71)

Case 2-ii: x was tested (before reaching state A”) and proved to possess Property D. This
implies that A’ only contains elements whose number of sensors is strictly less than that of
x in addition to those elements with the same number of sensors as x but with a lower cost.
This case may be further divided into two sub-cases.

Case 2-ii-a: A’ contains at least one child of x. Pick the child of x in A’ having the highest
number of sensors as a decision for A/, say x”. Since x” may or may not be an optimal
decision at state A’,
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VA) <c+p-VAD)+ (1 —p)-V(4D) (72)

Furthermore, since x is an optimal decision at state B’ Equation (59) holds. By the choice of
x" it follows that

AP B (73)

since A’? €A’ =B’ and A’? has only elements having number of sensors less than or equal
that of x”, and consequently strictly less than that of x. By definition,

AR = A\{x and its children} (74)
and

B = B'\{x and its children} (75)
and since A’ < B’, and x” is the child of x in A’ with the maximum number of sensors,

AR <P (76)

By the induction hypothesis, since

AD|<n, |BP|<n+k |AR|<n, and |BP|<n+k (77)
we obtain

V(AR) < V(BP) (78)
and

V(AD) < V(BP) 79)

Consequently, from (59), (72), (78), and (79) we conclude that

V(A) Sctp-V(BY)+ (1 -p)-V(BY) = V(B (80)

Case 2-ii-b: A’ contains no children of x. Pick the element in A’ that has the highest cost,
say x”. Since X" may or may not be an optimal decision,

V(A) <c+p-V(AR) +(1—p)-V(AD) (81)

Furthermore, since x is an optimal decision at state B equation (59) holds. The choice of x”
implies that

AD = AN} (82)
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i.e., A’ only contains elements in A’ that have cost strictly lower than that of x”.
Moreover, by assumption x does not belong to A’, and it was tested before reaching A’ and
proved to possess Property D; hence, all elements in A’ and consequently all elements in
A'D, have strictly lower cost than that of x. Furthermore, B'? has all of its elements as those
elements in B’ whose cost is strictly less than that of x. Therefore, since A’ =B/, it follows
that

AL <B? (83)
In addition,

AD cBP (84)
since AR, A’ B’ and the only elements missing from B’ in B? are x and its children,

which are not in A2, by the assumption that A’ contains no children of x. By the induction
hypothesis, since

AD| <n, |BP|<n+k |AR|<n, and |BP|<n+k (85)
we obtain

V(AD) < V(BP) (86)
and

V(AD) < V(BP) (87)

From (59), (81), (86), and (87) we obtain

V(A) <c+p-V(BY)+ (1 -p)-V(BY) =V(B) (88)

The proof of the induction step is complete, and this completes the proof of Theorem
3.3. |

4. Concluding Remarks

We have presented conditions sufficient to guarantee that the strategy that tests
combinations of sensors in increasing order of cost is optimal for Problem P. This result
is intuitive since it is assumed that a combination of two or more sensors is equally or more
likely to result in a system possessing Property D than a system possessing Property D and
the cost of testing for Property D is independent of the cardinality of the combination of
sensors that is being used.
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Assumptions A2-AS5 as well as p;+p;, 1 >1, [=1,2,...,M — 2, are crucial in
establishing the result of Theorem 3.1. A brief critique of these assumptions was presented
in Section 2. We add a few more remarks that further reveal the importance of these
assumptions. We have already noted that Assumption A2 is reasonable but it may not
always be true. Relaxation of Assumption A2 may drastically change the structure of the
optimization problem because ordering of sensor combinations according to their cost is
not the same as the ordering according to their cardinality. Therefore, it may be unlikely
that the strategy described in Theorem 3.1 will be optimal; even if the same strategy were
optimal, a proof of its optimality would require arguments different from those employed
in the proof of Theorem 3.1. If the sensors’ information gathering ability drastically differs
from sensor to sensor, then Assumption A3 may not be true. In this case, an optimal test
strategy for the sensor selection problem may be different from that of Theorem 3.1 and
arguments significantly different from those presented in Theorem 3.1 may be required to
discover the nature of an optimal test strategy. The conditions p,+p, ; > 1,
I=1,2,...,M — 2 are essential for the validity of the result of Theorem 3.1; the
plausibility of the main result under these conditions has already been discussed. Finally,
Assumption A3’ is stronger than A3. This is why when Assumption A3’ is used instead of
A3 we obtain more structural results about Problem P. Specifically, under Assumptions
A1-AS5 we have proved the optimality of the strategy that tests combinations of sensors in
increasing order of cost, but have been unable to compare any other policies; on the
contrary, under Assumptions Al, A2, A3’, A4, and A5 we can compare policies that satisfy
the conditions of Theorem 3.2.

We conclude by noting that although the methodology presented in this paper was
motivated by the failure diagnosis and hypothesis testing examples, it can be used in other
situations as long as the property to be tested exhibits the same characteristics as Property
D, namely C3 and C4. For example, in the field of discrete event systems, the properties of
controllability, observability and normality possess C3 and C4 (see Cassandras and
Lafortune, 1999).
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Appendices
A. Computation of Equations (26), (27), and (28)

Assume that the three lowest-cost combinations of sensors in the set N,E (cf. (25)) are a, b,
and d in that order, and a and b are combinations of i sensors while d is a combination of

i + 1 sensors. Since the cardinality of N? is less than or equal to k we can apply the



444 DEBOUK ET AL.

induction hypothesis to the set Nf_), i.e., we test next the element with the smallest cost.
Therefore, we have

VINP) = c+ (1 —p;) - V(NP\{a}) (89)

By applying the induction hypothesis to N,-B\{a} in (89), we have

VINP) = ¢+ (1=p)c+ (1= p)* - V(INP\{a, b}) (90)

By applying the induction hypothesis to Nf_)\{a, b} in (90), we have

VINP) = c+(1=p) e+ (1=p)* e+ (1=p)’ - (1= p) - VIN\{a,b,d})
(91)

Finally, by successively applying the induction hypothesis until exhausting all elements in
NP we get (26). Following a similar procedure, one can verify (27) and (28).

B. Verification of (30): Properties of Reachable Sets

The reachable sets from (25) are Ni5 s N,D and N]5 The properties of these reachable sets
are listed below (reproducing (30))

rp < (92)
re=w k=lil+1,...,]j|—1 (93)
=yl (94)
se=v k=jl+1,....L (95)
sp=v;— 1 (96)
s <we k=li|+1,...,]j]—-1 (97)
si<vi+1 (98)

where v, denotes the number of combinations of k sensors in N?, r, denotes the number of
combinations of k sensors in NJD , 5, denotes the number of combinations of k sensors in
NP, and L denotes the highest set cardinality in N with | j| < L < K — 1. We need to verify
(93)—(98) since we verified (92) in Section 3.3.

From (25), the set NiD is equal to the set N without the element i. The set NID includes all
element in N except the elements with more than | j | sensors and those with | j | sensors but
with strictly higher cost than j. The set N]D includes all elements in N except j and its
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children. The elements of N7’ and NP with more than [i| sensors and less than |/ | sensors
are the same, hence (93) is true. N/D has all elements in N with |i| sensors while N? includes
the same elements with the exception of the element i, and that verifies (94). The sets NlD
and NP share the same elements with more than |j| + 1 sensors, and that verifies (95).
The only element of |j| sensors missing from NJ-D and belonging to N is the element j,
hence (96) is true. Inequality (97) is true since NiD_contains all elements in N with more
than |i| sensors and less than |j| sensors, while N]D contains the same elements with the
exception of those that are children of the element j. The same argument applies to the
elements with |i| sensors with the possible addition of the element i, which does not belong
to NP, to the set N, and that verifies (98).
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