
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 30, NO. 11, DECEMBER 2012 2105
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Abstract—In this paper we study resource allocation in decen-
tralized information local public good networks. A network is a
local public good network if each user’s actions directly affect
the utility of an arbitrary subset of network users. We consider
networks where each user knows only that part of the network
that either affects or is affected by it. Furthermore, each user’s
utility and action space are its private information, and each user
is a self utility maximizer. This network model is motivated by
several applications including wireless communications. For this
network model we formulate a decentralized resource allocation
problem and develop a decentralized resource allocation mecha-
nism (game form) that possesses the following properties: (i) All
Nash equilibria of the game induced by the mechanism result
in allocations that are optimal solutions of the corresponding
centralized resource allocation problem (Nash implementation).
(ii) All users voluntarily participate in the allocation process
specified by the mechanism (individual rationality). (iii) The
mechanism results in budget balance at all Nash equilibria and
off equilibrium.

Index Terms—Network, local public good, decentralized re-
source allocation, mechanism design, Nash implementation, bud-
get balance, individual rationality.

I. INTRODUCTION

IN NETWORKS individuals’ actions often influence the
performance of their directly connected neighbors. Such

an influence of individuals’ actions on their neighbors’ per-
formance can propagate through the network affecting the
performance of the entire network. Examples include several
real world networks; e.g. in a wireless cellular network, the
transmission of the base station to a given user (an action
corresponding to this user) creates interference to the reception
of other users and affects their performance. In an urban
network, when a jurisdiction institutes a pollution abatement
program, the benefits also accrue to nearby communities.
The influence of neighbors is also observed in the spread of
information and innovation in social and research networks.
Networks with above characteristics are called local public
good networks.

A local public good network differs from a typical public
good system in that a local public good (alternatively, the
action of an individual) is accessible to and directly influences
the utilities of individuals in a particular neighborhood within
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a big network. On the other hand a public good is accessible
to and directly influences the utilities of all individuals in the
system ([1, Chapter 11]). Because of the localized interactions
of individuals, in local public good networks (such as ones
described above) the information about the network is often
localized; i.e., the individuals are usually aware of only their
neighborhoods and not the entire network. In many situations
the individuals also have some private information about the
network or their own characteristics that are not known to
anybody else in the network. Furthermore, the individuals may
also be selfish who care only about their own benefit in the
network. Such a decentralized information local public good
network with selfish users gives rise to several research issues.
In the next section we provide a literature survey on prior
research in local public good networks.

A. Literature survey

There exists a large literature on local public goods within
the context of local public good provisioning by various
municipalities that follows the seminal work of [2]. These
works mainly consider network formation problems in which
individuals choose where to locate based on their knowledge
of the revenue and expenditure patterns (on local public goods)
of various municipalities. In this paper we consider the prob-
lem of determining the levels of local public goods (actions
of network agents) for a given network; thus, the problem
addressed in this paper is distinctly different from those in
the above literature. Recently, Bramoullé and Kranton [3] and
Yuan [4] analyzed the influence of selfish users’ behavior on
the provision of local public goods in networks with fixed
links among the users. The authors of [3] study a network
model in which each user’s payoff equals its benefit from the
sum of efforts (treated as local public goods) of its neighbors
less a cost for exerting its own effort. For concave benefit and
linear costs, the authors analyze Nash equilibria (NE) of the
game where each user’s strategy is to choose its effort level
that maximizes its own payoff from the provisioning of local
public goods. The authors show that at such NE specialization
can occur, i.e. only a subset of individuals contribute to the
local public goods and others free ride. In [4] the work of [3]
is extended to directed networks where the externality effects
of users’ efforts on each others’ payoffs can be unidirectional
or bidirectional. The authors of [4] investigate the relation
between the structure of directed networks and the existence
and nature of Nash equilibria of users’ effort levels in those
networks. However, it is shown in [3], [4] that none of the NE
of the abovementioned games result in a local public goods
provisioning that achieves optimum social welfare.
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In this paper we consider a generalization of the network
models investigated in [3], [4]. Specifically, we consider a
fixed network where the actions of each user directly affect the
utilities of an arbitrary subset of network users. In our model,
each user’s utility from its neighbors’ actions is an arbitrary
concave function of its neighbors’ action profile. Each user
in our model knows only that part of the network that either
affects or is affected by it. Furthermore, each user’s utility and
action space are its private information, and each user is a self
utility maximizer. Even though the network model we consider
has similarities with those investigated in [3], [4], the problem
of local public goods provisioning we formulate in this paper
is different from those in [3], [4]. Specifically, we formulate a
problem of local public goods provisioning in the framework
of implementation theory 1 and address questions such as –
How should the network users communicate so as to preserve
their private information, yet make it possible to determine
actions that achieve optimum social welfare? How to provide
incentives to the selfish users to take actions that optimize
the social welfare? How to make the selfish users voluntarily
participate in any action determination mechanism that aims
to optimize the social welfare? In a nutshell, the prior work
of [3], [4] analyzed specific games, with linear cost functions,
for local public good provision, whereas our work focusses
on designing a mechanism that can induce, via nonlinear tax
functions, “appropriate” games among the network users so
as to implement the optimum social welfare in NE. It is this
difference in the tax functions that distinguishes our results
from those of [3], [4].

Previous works on implementation approach (Nash imple-
mentation) for (pure) public goods can be found in [9], [10],
[11], [12]. For our work, we obtained inspiration from [10].
In [10] Hurwicz presents a Nash implementation mechanism
that implements the Lindahl allocation (optimum social wel-
fare) for a public good economy. Hurwicz’ mechanism also
possesses the properties of individual rationality (i.e. it induces
the selfish users to voluntarily participate in the mechanism)
and budget balance (i.e. it balances the flow of money in
the system). A local public good network can be thought of
as a limiting case of a public good network, in which the
influence of each public good tends to vanish on a subset of
network users. However, taking the corresponding limits in the
Hurwicz’ mechanism does not result in a local public good
provisioning mechanism with all the original properties of the
Hurwicz’ mechanism. In particular, such a limiting mechanism
does not retain the budget balance property which is very
important to avoid any scarcity/wastage of money. In this
paper we address the problem of designing a local public good
provisioning mechanism that possesses the desirable properties
of budget balance, individual rationality, and Nash imple-
mentation of optimum social welfare. The mechanism we
develop is more general than Hurwicz’ mechanism; Hurwicz’
mechanism can be obtained as a special case of our mechanism
by setting Ri = Cj = N ∀ i, j,∈ N (the special case where
all users’ actions affect all users’ utilities) in our mechanism.
Our mechanism also proivdes a more efficient way to achieve

1Refer to [5], [6], [7] and [8, Chapter 3] for an introduction to implemen-
tation theory.

the properties of Nash implementation, individual rationality,
and budget balance as it uses, in general, a much smaller
message space than Hurwicz’ mechanism. To the best of our
knowledge the resource allocation problem and its solution
that we present in this paper is the first attempt to analyze
a local public goods network model in the framework of
implementation theory. Below we state our contributions.

B. Contribution of the paper

The key contributions of this paper are: 1) The formulation
of a problem of local public goods provisioning in the frame-
work of implementation theory. 2) The specification of a game
form 2 (decentralized mechanism) for the above problem that,
(i) implements in NE the optimal solution of the corresponding
centralized local public good provisioning problem; (ii) is
individually rational; 3 and (iii) results in budget balance at
all NE and off equilibrium.

The rest of the paper is organized as follows. In Section II-A
we present the model of local public good network. In
Section II-B we formulate the local public good provision-
ing problem. In Section III-A we present a game form for
this problem and discuss its properties in Section III-B. We
conclude in Section IV with a discussion on future directions.
Notation used in the paper: We use bold font to represent
vectors and normal font for scalars. We use bold uppercase
letters to represent matrices. We represent the element of a
vector by a subscript on the vector symbol, and the element of
a matrix by double subscript on the matrix symbol. To denote
the vector whose elements are all xi such that i ∈ S for some
set S, we use the notation (xi)i∈S and we abbreviate it as xS .
We treat bold 0 as a zero vector of appropriate size which is
determined by the context. We use the notation (xi,x

∗/i) to
represent a vector of dimension same as that of x∗, whose
ith element is xi and all other elements are the same as the
corresponding elements of x∗. We represent a diagonal matrix
of size N × N whose diagonal entries are elements of the
vector x ∈ R

N by diag(x).

II. THE LOCAL PUBLIC GOOD PROVISIONING PROBLEM

In this section we present a model of local public good
network motivated by various applications such as wireless
communication, online advertising [13], social and informa-
tion networks [4], [3]. We first describe the components of
the model and the assumptions we make on the properties of
the network. We then present a resource allocation problem
for this model and formulate it as an optimization problem.

A. The network model (M)

We consider a network consisting of N users and one
network operator. Let the set of users be N := {1, 2, . . . , N}.
Each user i ∈ N has to take an action ai ∈ Ai where Ai is the
set that specifies user i’s feasible actions. In a real network, a
user’s actions can be consumption/generation of resources or
decisions regarding various tasks. We assume that,

2See [8, Chapter 3] and [7], [6], [5] for the definition of “game form”.
3Refer to [8, Chapter 3] and [7] for the definition of “individual rationality”

and “implementation in NE.”



SHARMA and TENEKETZIS: LOCAL PUBLIC GOOD PROVISION IN NETWORKS: A NASH IMPLEMENTATION MECHANISM 2107

Fig. 1. A local public good network depicting the Neighbor sets Ri

and Cj of users i and j respectively.

Assumption 1: For all i ∈ N , Ai is a convex and compact
set in R that includes 0. 4 Furthermore, for each user i ∈ N ,
the set Ai is its private information, i.e. Ai is known only to
user i and nobody else in the network.
Because of the users’ interactions in the network, the actions
taken by a user directly affect the performance of other users
in the network. Thus, the performance of the network is
determined by the collective actions of all users. We assume
that the network is large-scale, therefore, every user’s actions
directly affect only a subset of network users in N . Thus we
can treat each user’s action as a local public good. We depict
the above feature by a directed graph as shown in Fig. 1. In
the graph, an arrow from j to i indicates that user j affects
user i; we represent the same in the text as j → i. We assume
that i → i for all i ∈ N .

Mathematically, we denote the set of users that affect user
i by Ri := {k ∈ N | k → i}. Similarly, we denote the set of
users that are affected by user j by Cj := {k ∈ N | j → k}.
We represent the interactions of all network users together by
a graph matrix G := [Gij ]N×N . The matrix G consists of
0’s and 1’s, where Gij = 1 represents that user i is affected
by user j, i.e. j ∈ Ri and Gij = 0 represents no influence
of user j on user i, i.e. j /∈ Ri. Note that G need not be a
symmetric matrix. Because i → i, Gii = 1 for all i ∈ N . We
assume that,

Assumption 2: The sets Ri, Ci, i ∈ N , are independent
of the users’ action profile aN := (ak)k∈N ∈ ∏

k∈N Ak.
Furthermore, for each i ∈ N , |Ci| ≥ 3.
We consider the condition |Ci| ≥ 3, i ∈ N , so as to ensure
construction of a mechanism that is budget balanced at all
possible allocations, those that correspond to Nash equilibria
as well as those that correspond to off-equilibrium messages.
For examples of applications where Assumption 2 holds, see
[13], [4], [3].

We assume that,
Assumption 3: Each user i ∈ N knows that the set of

feasible actions Aj of each of its neighbors j ∈ Ri is a convex
and compact subset of R that includes 0.

The performance of a user that results from actions taken
by the users affecting it is quantified by a utility function.

4In this paper we assume the sets Ai, i ∈ N , to be in R for simplicity.
However, the decentralized mechanism and the results we present in this paper
can be easily generalized to the scenario where for each i ∈ N , Ai ⊂ R

ni

is a convex and compact set in higher dimensional space R
ni . Furthermore,

each space R
ni can be of a different dimension ni for different i ∈ N .

Fig. 2. Illustration of indexing rule for set Cj shown in Fig. 1. Index Irj of
user r ∈ Cj is indicated on the arrow directed from j to r. The notation to
denote these indices and to denote the user with a particular index is shown
outside the dashed boundary demarcating the set Cj .

We denote the utility of user i ∈ N resulting from the action
profile aRi := (ak)k∈Ri by ui(aRi). We assume that,

Assumption 4: For all i ∈ N , the utility function ui :
R

|Ri| → R ∪ {−∞} is concave in aRi and ui(aRi) = −∞
for ai /∈ Ai. 5 The function ui is user i’s private information.
The assumptions that ui is concave and is user i’s private in-
formation are motivated by applications described in [13], [4],
[3]. The assumption that ui(aRi) = −∞ for ai /∈ Ai captures
the fact that an action profile (aRi) is of no significance to
user i if ai /∈ Ai. We assume that,

Assumption 5: Each network user i ∈ N is selfish, non-
cooperative, and strategic.
Assumption 5 implies that the users have an incentive to
misrepresent their private information, e.g. a user i ∈ N may
not want to report to other users or to the network operator
its true preference for the users’ actions, if this results in an
action profile in its own favor.

Each user i ∈ N pays a tax ti ∈ R to the network
operator. This tax can be imposed for the following reasons:
(i) For the use of the network by the users. (ii) To provide
incentives to the users to take actions that achieve a network-
wide performance objective. The tax is set according to the
rules specified by a mechanism and it can be either positive or
negative for a user. With the flexibility of either charging a user
(positive tax) or paying compensation/subsidy (negative tax)
to a user, it is possible to induce the users to behave in a way
such that a network-wide performance objective is achieved.
For example, in a network with limited resources, we can set
“positive tax” for the users that receive resources close to the
amounts requested by them and we can pay “compensation”
to the users that receive resources that are not close to their
desirable ones. Thus, with the available resources, we can
satisfy all the users and induce them to behave in a way that
leads to a resource allocation that is optimal according to a
network-wide performance criterion. We assume that,

Assumption 6: The network operator does not have any
utility associated with the users’ actions or taxes. It does
not derive any profit from the users’ taxes and acts like an
accountant that redistributes the tax among the users according
to the specifications of the allocation mechanism.

5Note that ai is always an element of aRi
because i → i and hence

i ∈ Ri.
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Assumption 6 implies that tax is charged in a way such that∑
i∈N

ti = 0. (1)

To describe the “overall satisfaction” of a user from the
performance it receives from all users’ actions and the tax
it pays for it, we define an “aggregate utility function”
uA
i (aRi , ti) : R

|Ri|+1 → R ∪ {−∞} for each user i ∈ N :

uA
i (aRi , ti) :=

{−ti + ui(aRi), if ai∈Ai, aj∈R, j∈Ri\{i},
−∞, otherwise.

(2)

Because ui and Ai are user i’s private information (As-
sumptions 1 and 4), the aggregate utility uA

i is also user i’s
private information. As stated in Assumption 5, users are non-
cooperative and selfish. Therefore, the users are self aggregate
utility maximizers.

In this paper we restrict attention to static problems, i.e.,
Assumption 7: The set N of users, the graph G, users’

action spaces Ai, i ∈ N , and their utility functions ui, i ∈ N ,
are fixed in advance and they do not change during the time
period of interest.

We also assume that,
Assumption 8: Every user i ∈ N knows the set Ri of users

that affect it as well as the set Ci of users that are affected by
it. The network operator knows Ri and Ci for all i ∈ N .
In networks where the sets Ri and Ci are not known to the
users beforehand, Assumption 8 is still reasonable because of
the following reason. As the graph G does not change during
the time period of interest (Assumption 7), the information
about the neighbor sets Ri and Ci, i ∈ N , can be passed to
the respective users by the network operator before the users
determine their actions. Alternatively, the users can themselves
determine the set of their neighbors before determining their
actions. 6 Thus, Assumption 8 can hold true for the rest of the
action determination process. In the next section we present a
local public good provisioning problem for Model (M).

B. Decentralized local public good provision problem (PD)

For the network model (M) we wish to develop a
mechanism to determine the users’ action and tax profiles
(aN , tN ) := ((a1, a2, . . . , aN ), (t1, t2, . . . , tN )). We want
the mechanism to work under the decentralized information
constraints of the model and to lead to a solution to the
following centralized problem.
The centralized problem (PC)

max
(aN ,tN )

∑
i∈N

uA
i (aRi , ti)

s.t.
∑
i∈N

ti = 0
(3)

≡ max
(aN ,tN )∈D

∑
i∈N

ui(aRi), where

D := {(aN , tN )∈R
2N | ai∈Ai ∀ i∈N ;

∑
i∈N

ti = 0}
(4)

6The exact method by which the users get information about their neighbor
sets in a real network depends on the network characteristics.

The centralized optimization problem (3) is equivalent to
(4) because for (aN , tN ) /∈ D, the objective function in (3) is
negative infinity by (2). Thus D is the set of feasible solutions
of Problem (PC ). Since by Assumption 4, the objective
function in (4) is concave in aN and the sets Ai, i ∈ N ,
are convex and compact, there exists an optimal action profile
a∗
N for (PC ). Furthermore, since the objective function in (4)

does not explicitly depend on tN , an optimal solution of (PC)
must be of the form (a∗

N , tN ), where tN is any feasible tax
profile for (PC), i.e. a tax profile that satisfies (1).

The solutions of Problem (PC ) are ideal action and tax
profiles that we would like to obtain. If there exists an entity
that has centralized information about the network, i.e. it
knows all the utility functions ui, i ∈ N , and all action
spaces Ai, i ∈ N , then that entity can compute the above
ideal profiles by solving Problem (PC ). Therefore, we call the
solutions of Problem (PC) optimal centralized allocations. In
the network described by Model (M), there is no entity that
knows perfectly all the parameters that describe Problem (PC)
(Assumptions 1 and 4). Therefore, we need to develop a
mechanism that allows the network users to communicate
with one another and that leads to optimal solutions of
Problem (PC). Since a key assumption in Model (M) is that
the users are strategic and non-cooperative, the mechanism we
develop must take into account the users’ strategic behavior
in their communication with one another. To address all of
these issues we take the approach of implementation theory
[5] for the solution of the decentralized local public good
provisioning problem for Model (M). Henceforth we call this
decentralized allocation problem as Problem (PD). In the
next section we present a decentralized mechanism (game
form) for local public good provisioning that works under
the constraints imposed by Model (M) and achieves optimal
centralized allocations.

III. A DECENTRALIZED LOCAL PUBLIC GOOD
PROVISIONING MECHANISM

For Problem (PD), we want to develop a game form
(message space and outcome function) that is individually
rational, budget balanced, and that implements in Nash equi-
libria the goal correspondence defined by the solution of
Problem (PC). 7 Individual rationality guarantees voluntary
participation of the users in the allocation process specified
by the game form, budget balance guarantees that there
is no money left unclaimed/unallocated at the end of the
allocation process (i.e. it ensures (1)), and implementation in
NE guarantees that the allocations corresponding to the set of
NE of the game induced by the game form are a subset of the
optimal centralized allocations (solutions of Problem (PC )).

We would like to clarify at this point the definition of
individual rationality (voluntary participation) in the context
of our problem. Note that in the network model (M), the
participation/non-participation of each user determines the

7The definition of game form, goal correspondence, individual rationality,
budget balance and implementation in Nash equilibria is given in [8, Chapter
3].



SHARMA and TENEKETZIS: LOCAL PUBLIC GOOD PROVISION IN NETWORKS: A NASH IMPLEMENTATION MECHANISM 2109

network structure and the set of local public goods (users’
actions) affecting the participating users. To define individual
rationality in this setting we consider our mechanism to be
consisting of two stages as discussed in [14, Chapter 7]. In
the first stage, knowing the game form, each user makes a
decision whether to participate in the game form or not. The
users who decide not to participate are considered out of the
system. Those who decide to participate follow the game form
to determine the levels of local public goods in the network
formed by them. 8 In such a two stage mechanism, individual
rationality implies the following. If the network formed by the
participating users satisfies all the properties of Model (M), 9

then, at all NE of the game induced by the game form among
the participating users, the utility of each participating user
will be at least as much as its utility without participation (i.e.
if it is out of the system).

We would also like to clarify the rationale behind choosing
NE as the solution concept for our problem. Note that because
of assumptions 1 and 4 in Model (M), the environment of our
problem is one of incomplete information. Therefore one may
speculate the use of Bayesian Nash or dominant strategy as
appropriate solution concepts for our problem. However, since
the users in Model (M) do not possess any prior beliefs about
the utility functions and action sets of other users, we cannot
use Bayesian Nash as a solution concept for Model (M).
Furthermore, because of impossibility results for the existence
of non-parametric efficient dominant strategy mechanisms in
classical public good environments [15], we do not know
if it is possible to design such mechanisms for the local
public good environment of Model (M). The well known
Vickrey-Clarke-Groves (VCG) mechanisms that achieve in-
centive compatibility and efficiency with respect to non-
numeraire goods, do not guarantee budget balance [15]. Hence
they are inappropriate for our problem as budget balance is one
of the desirable properties in our problem. VCG mechanisms
are also unsuitable for our problem because they are direct
mechanisms and any direct mechanism would require infinite
message space to communicate the generic continuous (and
concave) utility functions of users in Model (M). Because
of all of above reasons, and the known existence results for
non-parametric, individually rational, budget-balanced Nash
implementation mechanisms for classical private and public
goods environments [15], we choose Nash as the solution
concept for our problem. We adopt Nash’s original “mass
action” interpretation of NE [16, page 21]. Implicit in this in-
terpretation is the assumption that the problems’s environment
is stable, that is, it does not change before the agents reach
their equilibrium strategies. This assumption is consistent with
our Assumption 7. Nash’s “mass action” interpretation of NE
has also been adopted in [15, pp. 69-70], [17, page 664], [7],
and [18], [19]. Specifically, by quoting [17], “we interpret our
analysis as applying to an unspecified (message exchange)

8This network is a subgraph obtained by removing the nodes corresponding
to non-participating users from the original graph (directed network) con-
structed by all the users in the system.

9In particular, the network formed by the participating users must satisfy
Assumption 2 that there are at least three users affected by each local
public good in this network. Note that all other assumptions of Model (M)
automatically carry over to the network formed by any subset of the users in
Model (M).

process in which users grope their way to a stationary message
and in which the Nash property is a necessary condition for
stationarity.”

We next construct a game form for the resource allocation
problem (PD) that achieves the abovementioned desirable
properties – Nash implementation, individual rationality, and
budget balance.

A. The game form

In this section we present a game form for the local public
good provisioning problem presented in Section II-B. We
provide explicit expressions of each of the components of the
game form, the message space and the outcome function. We
assume that the game form is common knowledge among the
users and the network operator.
The message space: Each user i ∈ N sends to the network
operator a message mi ∈ R

|Ri| × R
|Ri|
+ =: Mi of the

following form:

mi := ( ai Ri
, πi Ri

); ai Ri
∈ R

|Ri|, πi Ri
∈ R

|Ri|
+ , (5)

where, ai Ri
:= ( ai k)k∈Ri ; πi Ri

:= ( πi k)k∈Ri , i ∈ N . (6)

User i also sends the component ( ai k, πi k), k ∈ Ri, of its
message to its neighbor k ∈ Ri. In this message, ai k is the
action proposal for user k, k ∈ Ri, by user i, i ∈ N . Similarly,
πi k is the price that user i, i ∈ N , proposes to pay for the

action of user k, k ∈ Ri. A detailed interpretation of these
message elements is given in Section III-B.
The outcome function: After the users communicate their
messages to the network operator, their actions and taxes are
determined as follows. For each user i ∈ N , the network
operator determines the action âi of user i from the messages
communicated by its neighbors that are affected by it (set Ci),
i.e. from the message profile mCi := (mk)k∈Ci :

âi(mCi) =
1

|Ci|
∑
k∈Ci

ak i, i ∈ N . (7)

To determine the users’ taxes the network operator considers
each set Cj , j ∈ N , and assigns indices 1, 2, . . . , |Cj| in a
cyclic order to the users in Cj . Each index 1, 2, . . . , |Cj| is
assigned to an arbitrary but unique user i ∈ Cj . Once the
indices are assigned to the users in each set Cj , they remain
fixed throughout the time period of interest. We denote the
index of user i associated with set Cj by Iij . The index Iij ∈
{1, 2, . . . , |Cj |} if i ∈ Cj , and Iij = 0 if i /∈ Cj . Since for
each set Cj , each index 1, 2, . . . , |Cj | is assigned to a unique
user i ∈ Cj , therefore, ∀ i, k ∈ Cj such that i 	= k, Iij 	=
Ikj . Note also that for any user i ∈ N , and any j, k ∈ Ri,
the indices Iij and Iik are not necessarily the same and are
independent of each other. We denote the user with index
k ∈ {1, 2, . . . , |Cj |} in set Cj by Cj(k). Thus, Cj(Iij) = i for
i ∈ Cj . The cyclic order indexing means that, if Iij = |Cj |,
then Cj(Iij+1) = Cj(1), Cj(Iij+2) = Cj(2), and so on. In Fig. 2
we illustrate the above indexing rule for the set Cj shown in
Fig. 1.
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Based on the above indexing, the users’ taxes t̂i, i ∈ N , are
determined as follows.

t̂i((mCj )j∈Ri)=
∑
j∈Ri

lij(mCj ) âj(mCj )+
∑
j∈Ri

πi j

(
ai j−

a
Cj(Iij+1)

j

)2

−
∑
j∈Ri

π
Cj(Iij+1)

j

(
a

Cj(Iij+1)

j − a
Cj(Iij+2)

j

)2 (8)

where, lij(mCj )= π
Cj(Iij+1)

j− π
Cj(Iij+2)

j , j∈Ri, i∈N . (9)

We would like to emphasize here that the presence of
the network operator is necessary for strategy-proofness and
implementation of the above game form. A detailed discussion
on the need and significance of the network operator can be
found in [13].

The game form given by (5)–(9) and the users’
aggregate utility functions in (2) induce a game
(×i∈NMi, (âi, t̂i)i∈N , {uA

i }i∈N ). In this game, the set
of network users N are the players, the set of strategies of
a user is its message space Mi, and a user’s payoff is its
utility uA

i

((
âj(mCj )

)
j∈Ri

, t̂i
(
(mCj )j∈Ri

))
that it obtains

at the allocation determined by the communicated messages.
We define a NE of this game as a message profile m∗

N that
has the following property: ∀ i ∈ N and ∀ mi ∈ Mi,

uA
i

((
âj(m

∗
Cj
)
)
j∈Ri

, t̂i
(
(m∗

Cj
)j∈Ri

)) ≥
uA
i

((
âj(mi,m

∗
Cj
/i)

)
j∈Ri

, t̂i
(
(mi,m

∗
Cj
/i)j∈Ri

))
.

(10)

As discussed earlier, NE in general describe strategic behavior
of users in games of complete information. This can be
seen from (10) where, to define a NE, it requires complete
information of all users’ aggregate utility functions. However,
the users in Model (M) do not know each other’s utilities;
therefore, the game induced by the game form (5)–(9) and the
users’ aggregate utility functions (2) is not one of complete
information. Therefore, for our problem we adopt the NE
interpretation of [17] and [15, Section 4] as discussed at the
beginning of Section III. That is, we interpret NE as the
“stationary” messages of an unspecified (message exchange)
process that are characterized by the Nash property (10).

In the next section we show that the allocations obtained by
the game form presented in (5)–(9) at all NE message profiles
(satisfying (10)), are optimal centralized allocations.

B. Properties of the game form

We begin this section with an intuitive discussion on how
the game form presented in Section III-A achieves optimal
centralized allocations. We then formalize the results in The-
orems 1 and 2.

To understand how the proposed game form achieves op-
timal centralized allocations, let us look at the properties of
NE allocations corresponding to this game form. A NE of the
game induced by the game form (5)–(9) and the users’ utility
functions (2) can be interpreted as follows: Given the users’
messages mk, k ∈ Ci, the outcome function computes user
i’s action as 1/|Ci|

(∑
k∈Ci

ak i

)
. Therefore, user i’s action

proposal ai i can be interpreted as the increment that i desires
over the sum of other users’ action proposals for i, so as
to bring its allocated action âi to its own desired value.

Thus, if the action computed for i based on its neighbors’
proposals does not lie in Ai, user i can propose an appropriate
action ai i and bring its allocated action within Ai. The
flexibility of proposing any action ai i ∈ R gives each user
i ∈ N the capability to bring its allocation âi within its
feasible set Ai by unilateral deviation. Therefore, at any NE,
âi ∈ Ai, ∀ i ∈ N . By taking the sum of taxes in (8) it can
further be seen, after some computations, that the allocated tax
profile (t̂i)i∈N satisfies (1) (even at off-NE messages). Thus,
all NE allocations

(
(âi(m

∗
Ci
))i∈N , (t̂i((m

∗
Cj
)j∈Ri))i∈N

)
lie

in D and hence are feasible solutions of Problem (PC ).
To see further properties of NE allocations, let us look at the

tax function in (8). The tax of user i consists of three types
of terms. The type-1 term is

∑
j∈Ri

lij(mCj ) âj(mCj ); it
depends on all action proposals for each of user i’s neigh-
bors j ∈ Ri, and the price proposals for each of these
neighbors by users other than user i. The type-2 term is∑

j∈Ri
πi j

(
ai j − a

Cj(Iij+1)

j

)2

; this term depends on ai Ri

as well as πi Ri
. Finally, the type-3 term is the following:

−∑
j∈Ri

π
Cj(Iij+1)

j×
(

a
Cj(Iij+1)

j − a
Cj(Iij+2)

j

)2

; this term
depends only on the messages of users other than i. Since
πi Ri

does not affect the determination of user i’s action,
and affects only the type-2 term in t̂i, the NE strategy of
user i, i ∈ N , that minimizes its tax is to propose for each
j ∈ Ri, πi j = 0 unless at the NE, ai j = a

Cj(Iij+1)

j . Since
the type-2 and type-3 terms in the users’ tax are similar
across users, for each i ∈ N and j ∈ Ri, all the users
k ∈ Cj choose the above strategy at NE. Therefore, the type-
2 and type-3 terms vanish from every users’ tax t̂i, i ∈ N ,
at all NE. Thus, the tax that each user i ∈ N pays at a NE
m∗

N is of the form
∑

j∈Ri
lij(m

∗
Cj
) âj(m

∗
Cj
). The NE term

lij(m
∗
Cj
), i ∈ N , j ∈ Ri, can therefore be interpreted as the

“personalized price” for user i for the NE action âj(m
∗
Cj
) of

its neighbor j. Note that at a NE, the personalized price for
user i is not controlled by i’s own message. The reduction of
the users’ NE taxes into the form

∑
j∈Ri

lij(m
∗
Cj
) âj(m

∗
Cj
)

implies that at a NE, each user i ∈ N has a control over
its aggregate utility only through its action proposal. 10 If all
other users’ messages are fixed, each user has the capability
of shifting the allocated action profile âRi to its desired value
by proposing an appropriate ai Ri

∈ R
|Ri| (See the discussion

in the previous paragraph). Therefore, the NE strategy of each
user i ∈ N is to propose an action profile ai Ri

that results in
an allocation âRi that maximizes its aggregate utility. Thus,
at a NE, each user maximizes its aggregate utility for its given
personalized prices. By the construction of the tax function,
the sum of the users’ tax is zero at all NE and off equilibria.
Thus, the individual aggregate utility maximization of the
users also result in the maximization of the sum of users’
aggregate utilities subject to the budget balance constraint
which is the objective of Problem (PC ).

It is worth mentioning at this point the significance of type-2
and type-3 terms in the users’ tax. As explained above, these

10Note that user i’s action proposal determines the actions of all the users
j ∈ Ri; thus, it affects user i’s utility ui

((
âj(m

∗
Cj

)
)
j∈Ri

)
as well as its

tax
∑

j∈Ri
lij(m

∗
Cj

) âj(m
∗
Cj

).
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two terms vanish at NE. However, if for some user i ∈ N
these terms are not present in its tax t̂i, then, the price proposal
πi Ri

of user i will not affect its tax and hence, its aggregate
utility. In such a case, user i can propose arbitrary prices πi Ri

because they would affect only other users’ NE prices. The
presence of type-2 and type-3 terms in user i’s tax prevent such
a behavior as they impose a penalty on user i if it proposes a
high value of πi Ri

or if its action proposal for its neighbors
deviates too much from other users’ proposals. Even though
the presence of type-2 and type-3 terms in user i’s tax is
necessary as explained above, it is important that the NE price
lij(m

∗
Cj
), j ∈ Ri of user i ∈ N is not affected by i’s own

proposal πi Ri
. This is because, in such a case, user i may

influence its own NE price in an unfair manner and may not
behave as a price taker. To avoid such a situation, the type-2
and type-3 terms are designed in a way so that they vanish at
NE. Thus, this construction induces price taking behavior in
the users at NE and leads to optimal allocations.

The results that formally establish the above properties of
the game form are summarized in Theorems 1 and 2 below.

Theorem 1: Let m∗
N be a NE of the game induced by the

game form presented in Section III-A and the users’ utility
functions (2). Let (â∗

N , t̂∗N ) := (âN (m∗
N ), t̂N (m∗

N )) :=(
(âi(m

∗
Ci
))i∈N , (t̂i((m

∗
Cj
)j∈Ri))i∈N

)
be the action and tax

profiles at m∗
N determined by the game form. Then,

(a) Each user i ∈ N weakly prefers its allocation (â∗
Ri

, t̂∗i )
to the initial allocation (0, 0). Mathematically,

uA
i

(
â∗
Ri

, t̂∗i
)
≥ uA

i

(
0, 0

)
, ∀ i ∈ N .

(b) (â∗
N , t̂∗N ) is an optimal solution of Problem (PC ). �

Theorem 2: Let â∗
N be an optimum action profile corre-

sponding to Problem (PC). Then,
(a) There exist a set of personalized prices l∗ij , j ∈ Ri, i ∈

N , such that

â∗
Ri

= argmax
âi∈Ai

âj∈R, j∈Ri\{i}

−
∑
j∈Ri

l∗ij âj+ui(âRi), ∀ i ∈ N .

(b) There exists at least one NE m∗
N of the game induced

by the game form presented in Section III-A and the
users’ utility functions (2) such that, âN (m∗

N ) = â∗
N .

Furthermore, if t̂∗i :=
∑

j∈Ri
l∗ij â

∗
j , i ∈ N , the set of

all NE m∗
N = (m∗

i )i∈N = ( ai ∗
Ri

, πi ∗
Ri

) that result in
(â∗

N , t̂∗N ) is characterized by the solution of the following
set of conditions:

1

|Ci|
∑
k∈Ci

ak ∗
i = â∗i , i ∈ N ,

Cj(Iij+1)π∗
j − Cj(Iij+2)π∗

j = l∗ij , j ∈ Ri, i ∈ N ,

πi ∗
j

(
ai ∗
j − Cj(Iij+1)a∗j

)2

= 0, j ∈ Ri, i ∈ N ,

πi ∗
j ≥ 0, j ∈ Ri, i ∈ N .�

Because Theorem 1 is stated for an arbitrary NE m∗
N of

the game induced by the game form of Section III-A and
the users’ utility functions (2), the assertion of the theorem
holds for all NE of this game. Thus, part (a) of Theorem 1
establishes that the game form presented in Section III-A is

individually rational, i.e., at any NE allocation, the aggregate
utility of each user is at least as much as its aggregate utility
before participating in the game/allocation process. Because
of this property of the game form, each user voluntarily
participates in the allocation process. Part (b) of Theorem 1
asserts that all NE of the game induced by the game form
of Section III-A and the users’ utility functions (2) result in
optimal centralized allocations (solutions of Problem (PC )).
Thus the set of NE allocations is a subset of the set of optimal
centralized allocations. This establishes that the game form
of Section III-A implements in NE the goal correspondence
defined by the solutions of Problem (PC ). Because of this
property, the above game form guarantees to provide an
optimal centralized allocation irrespective of which NE is
achieved in the game induced by it.

The assertion of Theorem 1 that establishes the above two
properties of the game form presented in Section III-A is
based on the assumption that there exists a NE of the game
induced by this game form and the users’ utility functions
(2). However, Theorem 1 does not say anything about the
existence of NE. Theorem 2 asserts that NE exist in the above
game, and provides conditions that characterize the set of
all NE that result in optimal centralized allocations of the
form (â∗

N , t̂∗N ) = (â∗
N , (

∑
j∈Ri

l∗ij â
∗
j )i∈N ), where â∗

N is any
optimal centralized action profile. In addition to the above,
Theorem 2 also establishes the following property of the game
form. Since the optimal action profile â∗

N in the statement of
Theorem 2 is arbitrary, the theorem implies that the game
form of Section III-A can obtain each of the optimum action
profiles of Problem (PC ) through at least one of the NE of
the induced game. This establishes that the above game form
is not biased towards any particular optimal centralized action
profile.

We present the proofs of Theorems 1 and 2 in Appendices A
and B. An example that illustrates how the properties estab-
lished by Theorems 1 and 2 are achieved by the proposed
game form can be found in [13].

IV. FUTURE DIRECTIONS

The problem formulation and the solution of the local
public goods provisioning problem presented in this paper
open up several new directions for future research. First,
the development of efficient mechanisms that can compute
NE is an important open problem. To address this problem
there can be two different directions. (i) The development
of algorithms that guarantee convergence to Nash equilibria
of the games constructed in this paper. (ii) The development
of alternative mechanisms/game forms that lead to games
with dynamically stable NE. Second, the network model we
studied in this paper assumed a given set of users and a
given network topology. In many local public good networks
such as social or research networks, the set of network
users and the network topology must be determined as part
of network objective maximization. These situations give
rise to interesting admission control and network formation
problems many of which are open research problems. Finally,
in this paper we focused on static resource allocation problem
where the characteristics of the local public good network do
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not change with time. The development of implementation
mechanisms under dynamic situations, where the network
characteristics change during the determination of resource
allocation, are open research problems.

Acknowledgments: This work was supported in part by
NSF grant CCF-1111061. The authors are grateful to Y. Chen
and A. Anastasopoulos at the University of Michigan for
stimulating discussions.

In the appendices that follow, we present the proof of
Theorems 1 and 2. We divide the proof into several claims
to organize the presentation.

APPENDIX A
PROOF OF THEOREM 1

We prove Theorem 1 in four claims. In Claims 2 and 3
we show that all users weakly prefer a NE allocation (corre-
sponding to the game form presented in Section III-A) to their
initial allocations; these claims prove part (a) of Theorem 1. In
Claim 1 we show that a NE allocation is a feasible solution of
Problem (PC). In Claim 4 we show that a NE action profile is
an optimal action profile for Problem (PC ). Thus, Claim 1 and
Claim 4 establish that a NE allocation is an optimal solution
of Problem (PC) and prove part (b) of Theorem 1.

Claim 1: If m∗
N is a NE of the game induced by the

game form presented in Section III-A and the users’ utility
functions (2), then the action and tax profile (â∗

N , t̂∗N ) :=
(âN (m∗

N ), t̂N (m∗
N )) is a feasible solution of Problem (PC ),

i.e. (â∗
N , t̂∗N ) ∈ D.

Proof: We prove the feasibility of the NE action and tax
profiles in two steps. First we prove the feasibility of the NE
tax profile, then we prove the feasibility of the NE action
profile.

To prove the feasibility of NE tax profile, we need to show
that it satisfies (1). For this, we first add the second and
third terms on the Right Hand Side (RHS) of (8) ∀ i ∈ N , i.e.

∑
i∈N

∑
j∈Ri

[
πi j

(
ai j − a

Cj(Iij+1)

j

)2

− π
Cj(Iij+1)

j

(
a

Cj(Iij+1)

j − a
Cj(Iij+2)

j

)2
]
.

(11)

From the construction of the graph matrix G and the sets Ri

and Cj , i, j ∈ N , the sum
∑

i∈N
∑

j∈Ri
(·) is equal to the

sum
∑

j∈N
∑

i∈Cj
(·). Therefore, we can rewrite (11) as

∑
j∈N

[ ∑
i∈Cj

πi j

(
ai j − a

Cj(Iij+1)

j

)2

−
∑
i∈Cj

π
Cj(Iij+1)

j

(
a

Cj(Iij+1)

j − a
Cj(Iij+2)

j

)2
]
.

(12)

Note that both the sums inside the square brackets in (12) are
over all i ∈ Cj . Because of the cyclic indexing of the users in
each set Cj , j ∈ N , these two sums are equal. Therefore the
overall sum in (12) evaluates to zero. Thus, the sum of taxes

in (8) reduces to∑
i∈N

t̂i((mCj )j∈Ri ) =
∑
i∈N

∑
j∈Ri

lij(mCj ) âj(mCj ). (13)

Combining (9) and (13) we obtain∑
i∈N

t̂i((mCj )j∈Ri) =

∑
j∈N

[ ∑
i∈Cj

π
Cj(Iij+1)

j −
∑
i∈Cj

π
Cj(Iij+2)

j

]
âj(mCj ) = 0.

(14)

The second equality in (14) follows because of the cyclic
indexing of the users in each set Cj , j ∈ N , which makes the
two sums inside the square brackets in (14) equal. Because
(14) holds for any arbitrary message profile mN , it follows
that at NE m∗

N , ∑
i∈N

t̂i((m
∗
Cj
)j∈Ri) = 0. (15)

To complete the proof of Claim 1, we have to prove that
for all i ∈ N , âi(m∗

Ci
) ∈ Ai. We prove this by contradic-

tion. Suppose â∗i /∈ Ai for some i ∈ N . Then, from (2),
uA
i (â

∗
Ri

, t̂∗i ) = −∞. Consider m̃i = (( ãi i, ai ∗
Ri

/i), πi ∗
Ri

)
where ai ∗

k, k ∈ Ri\{i}, and πi ∗
Ri

are respectively the NE
action and price proposals of user i and ãi i is such that

âi(m̃i,m
∗
Ci
/i) =

1

|Ci|
(
ãi i +

∑
k∈Ci
k �=i

ak ∗
i

)
∈ Ai. (16)

Note that the flexibility of user i in choosing any message
ai Ri

∈ R
|Ri| (see (5)) allows it to choose an appropriate

ãi i that satisfies the condition in (16). For the message m̃i

constructed above,

uA
i

((
âk(m̃i,m

∗
Ck
/i)

)
k∈Ri

, t̂i
(
(m̃i, m

∗
Cj
/i)j∈Ri

))
=

− t̂i
(
(m̃i, m

∗
Cj
/i)j∈Ri

)
+ ui

((
âk(m̃i,m

∗
Ck
/i)

)
k∈Ri

)
> −∞ = uA

i (â
∗
Ri

, t̂∗i ).

(17)

Thus if âi(m
∗
Ci
) /∈ Ai user i finds it profitable to deviate to

m̃i. Inequality (17) implies that m∗
N cannot be a NE, which

is a contradiction. Therefore, at any NE m∗
N , we must have

âi(m
∗
Ci
) ∈ Ai ∀ i ∈ N . This along with (15) implies that,

(â∗
N , t̂∗N ) ∈ D.

Claim 2: If m∗
N is a NE of the game induced by the game

form presented in Section III-A and the users’ utility functions
(2), then, the tax t̂i((m

∗
Cj
)j∈Ri ) =: t̂∗i paid by user i, i ∈ N ,

at the NE m∗
N is of the form t̂∗i =

∑
j∈Ri

l∗ij â∗j , where
l∗ij = lij(m

∗
Cj
) and â∗j = âj(m

∗
Cj
).

Proof: Let m∗
N be the NE specified in the statement of

Claim 2. Then, for each i ∈ N ,

uA
i

((
âk(mi,m

∗
Ck
/i)

)
k∈Ri

, t̂i
(
(mi, m

∗
Cj
/i)j∈Ri

))
≤ uA

i

(
â∗
Ri

, t̂∗i
)
, ∀ mi ∈ Mi.

(18)
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Substituting mi = ( ai ∗
Ri

, πi Ri
), πi Ri

∈ R
|Ri|
+ , in (18) and

using (7) implies that

uA
i

(
â∗
Ri

, t̂i
(
(( ai ∗

Ri
, πi Ri

), m∗
Cj
/i)j∈Ri

))
≤ uA

i

(
â∗
Ri

, t̂∗i
)
, ∀ πi Ri

∈ R
|Ri|
+ .

(19)

Since uA
i decreases in ti (see (2)), (19) implies that

t̂i

((
( ai ∗

Ri
, πi Ri

), m∗
Cj
/i
)
j∈Ri

)
≥ t̂∗i , ∀ πi Ri

∈R
|Ri|
+ . (20)

Substituting (8) in (20) results in∑
j∈Ri

[
l∗ij â

∗
j + πi j

(
ai ∗
j − Cj(Iij+1)a∗j

)2

− Cj(Iij+1)π∗
j(

Cj(Iij+1)a∗j − Cj(Iij+2)a∗j
)2

]
≥∑

j∈Ri

[
l∗ij â

∗
j + πi ∗

j

(
ai ∗
j − Cj(Iij+1)a∗j

)2

− Cj(Iij+1)π∗
j(Cj(Iij+1)a∗j − Cj(Iij+2)a∗j

)2
]
, ∀ πi Ri

∈ R
|Ri|
+ .

(21)

Canceling the common terms in (21) gives∑
j∈Ri

( πi j− πi ∗
j )

(
ai ∗
j−Cj(Iij+1)a∗j

)2

≥0, ∀ πi Ri
∈R

|Ri|
+ . (22)

Since (22) must hold for all πi Ri
∈ R

|Ri|
+ , we must have that

for each j ∈ Ri, either πi ∗
j = 0 or ai ∗

j =
Cj(Iij+1)a∗j . (23)

From (23) it follows that at any NE m∗
N ,

πi ∗
j

(
ai ∗
j − Cj(Iij+1)a∗j

)2

= 0, ∀ j ∈ Ri, ∀ i ∈ N . (24)

Note that (24) also implies that ∀ i ∈ N and ∀ j ∈ Ri,

Cj(Iij+1)π∗
j

(Cj(Iij+1)a∗j − Cj(Iij+2)a∗j
)2

= 0. (25)

(25) follows from (24) because for each i ∈ N , j ∈ Ri also
implies that j ∈ RCj(Iij+1)

. Using (24) and (25) in (8) we
obtain that any NE tax profile must be of the form

t̂∗i =
∑
j∈Ri

l∗ij â
∗
j , ∀ i ∈ N . (26)

Claim 3: The game form given in Section III-A is individ-
ually rational, i.e. at every NE m∗

N of the game induced by
this game form and the users’ utilities in (2), each user i ∈ N
weakly prefers the allocation (â∗

Ri
, t̂∗i ) to the initial allocation

(0, 0). Mathematically,

uA
i

(
0, 0

)
≤ uA

i

(
â∗
Ri

, t̂∗i
)
, ∀ i ∈ N . (27)

Proof: Suppose m∗
N is a NE of the game induced by the

game form of Section III-A and the users’ utility functions
(2). From Claim 2 we know the form of users’ tax at m∗

N .
Substituting that from (26) into (18) we obtain that for each
i ∈ N ,

uA
i

((
âk(mi,m

∗
Ck
/i)

)
k∈Ri

, t̂i
(
(mi, m

∗
Cj
/i)j∈Ri

))
≤ uA

i

(
â∗
Ri

,
∑
j∈Ri

l∗ij â
∗
j

)
, ∀ mi = ( ai Ri

, πi Ri
) ∈ Mi.

(28)

Substituting for t̂i in (28) from (8) and using (25) we obtain,

uA
i

((
âk

(
( ai Ri

, πi Ri
),m∗

Ck
/i
))

k∈Ri

,
∑
j∈Ri

(
l∗ij âj

(
( ai Ri

,

πi Ri
),m∗

Cj
/i
)
+ πi j

(
ai j − a

Cj(Iij+1)

j

)2))
≤ uA

i

(
â∗
Ri

,
∑
j∈Ri

l∗ij â
∗
j

)
, ∀ ai Ri

∈R
|Ri|, ∀ πi Ri

∈R
|Ri|
+ .

(29)

In particular, πi Ri
= 0 in (29) implies that

uA
i

((
âk

(
( ai Ri

,0),m∗
Ck
/i
))

k∈Ri

,
∑
j∈Ri

(
l∗ij âj

(
( ai Ri

,0),

m∗
Cj
/i
))) ≤ uA

i

(
â∗
Ri

,
∑
j∈Ri

l∗ij â
∗
j

)
, ∀ ai Ri

∈ R
|Ri|.

(30)

Since (30) holds for all ai Ri
∈ R

|Ri|, substituting in it
1

|Cj | ( a
i

j +
∑

k∈Cj\{i} ak ∗
j ) = aj ∀ j ∈ Ri implies,

uA
i

((
aj
)
j∈Ri

,
∑
j∈Ri

(
l∗ij aj

)) ≤ uA
i

(
â∗
Ri

,
∑
j∈Ri

l∗ij â
∗
j

)
,

∀ aRi := (aj)j∈Ri ∈ R
|Ri|.

(31)

For aRi = 0, (31) implies further that

uA
i

(
0, 0

)
≤ uA

i

(
â∗
Ri

,
∑
j∈Ri

l∗ij â
∗
j

)
, ∀ i ∈ N .

Claim 4: A NE allocation (â∗
N , t̂∗N ) is an optimal solution

of the centralized problem (PC).

Proof: For each i ∈ N , (31) can be equivalently written as

â∗
Ri

∈ argmax
aRi

∈R
|Ri|

uA
i

(
aRi ,

∑
j∈Ri

l∗ij aj
)

= argmax
ai∈Ai

aj∈R, j∈Ri\{i}

⎧⎨⎩−
∑
j∈Ri

l∗ij aj + ui(aRi)

⎫⎬⎭
(32)

Let for each i ∈ N , fAi(ai) be a convex function that
characterizes the set Ai as, ai ∈ Ai ⇔ fAi(ai) ≤ 0. 11

Since for each i ∈ N , ui(aRi) is assumed to be concave in
aRi and Ai is convex, the Karush Kuhn Tucker (KKT) con-
ditions [20, Chapter 11] are necessary and sufficient for â∗

Ri

to be a maximizer in (32). Thus, for each i ∈ N ∃ λi ∈ R+

such that, â∗
Ri

and λi satisfy the following KKT conditions:

∀ j ∈ Ri\{i}, l∗ij −∇aj
ui(aRi) |aRi

=â∗
Ri

= 0,

l∗ii −∇ai
ui(aRi) |aRi

=â∗
Ri

+λi∇ai
fAi(ai) |ai=â∗

i
= 0,

λifAi(â
∗
i ) = 0.

(33)

For each i ∈ N , adding the KKT condition equations in (33)
over k ∈ Ci results in∑

k∈Ci

l∗ki −∇ai

∑
k∈Ci

uk(aRk
) |aRk

=â∗
Rk

+

λi∇ai
fAi(ai) |ai=â∗

i
= 0.

(34)

11By [20] we can find a convex function that characterizes a convex set.
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From (9) we have,∑
k∈Ci

l∗ki =
∑
k∈Ci

(Ci(Iki+1)π∗
i − Ci(Iki+2)π∗

i

)
= 0. (35)

Substituting (35) in (34) we obtain 12 ∀ i ∈ N ,

−∇ai

∑
k∈Ci

uk(aRk
) |aRk

=â∗
Rk

+λi∇ai
fAi(ai) |ai=â∗

i
= 0,

λifAi(â
∗
i ) = 0.

(36)

The conditions in (36) along with the non-negativity of
λi, i ∈ N , specify the KKT conditions (for variable âN )
for Problem (PC ). Since (PC ) is a concave optimization
problem, KKT conditions are necessary and sufficient for
optimality. As shown in (36), the action profile â∗

N satisfies
these optimality conditions. Furthermore, the tax profile t̂∗N
satisfies, by its definition,

∑
i∈N t̂∗i = 0. Therefore, the NE

allocation (â∗
N , t̂∗N ) is an optimal solution of Problem (PC ).

This completes the proof of Claim 4 and hence, the proof of
Theorem 1.

Claims 1–4 (Theorem 1) establish the properties of NE
allocations based on the assumption that there exists a NE of
the game induced by the game form of Section III-A and users’
utility functions (2). However, these claims do not guarantee
the existence of a NE. This is guaranteed by Theorem 2 which
is proved next in Claims 5 and 6.

APPENDIX B
PROOF OF THEOREM 2

We prove Theorem 2 in two steps. In the first step we
show that if the centralized problem (PC) has an optimal
action profile â∗

N , there exist a set of personalized prices,
one for each user i ∈ N , such that when each i ∈ N
individually maximizes its own utility taking these prices as
given, it obtains â∗

Ri
as an optimal action profile. In the

second step we show that the optimal action profile â∗
N and

the corresponding personalized prices can be used to construct
message profiles that are NE of the game induced by the game
form of Section III-A and users’ utility functions in (2).

Claim 5: If Problem (PC) has an optimal action profile
â∗
N , there exist a set of personalized prices l∗ij , j ∈ Ri, i ∈ N ,

s.t.

â∗
Ri

∈ argmax
âi∈Ai

âj∈R, j∈Ri\{i}

−
∑
j∈Ri

l∗ij âj + ui(âRi), ∀ i ∈ N . (37)

Proof: Suppose â∗
N is an optimal action profile corresponding

to Problem (PC). Writing the optimization problem (PC) only
in terms of variable âN gives

â∗
N ∈ argmax

âN

∑
i∈N

ui(âRi)

s.t. âi ∈ Ai, ∀ i ∈ N .

(38)

As stated earlier, an optimal solution of Problem (PC ) is of the
form (â∗

N , t̂N ), where â∗
N is a solution of (38) and t̂N ∈ R

N

is any tax profile that satisfies (1). Because KKT conditions
are necessary for optimality, the optimal solution in (38) must

12The second equality in (36) is one of the KKT conditions from (33).

satisfy the KKT conditions. This implies that there exist λi ∈
R+, i ∈ N , such that for each i ∈ N , λi and â∗

N satisfy

−∇âi

∑
k∈Ci

uk(âRk
) |âRk

=â∗
Rk

+λi∇âifAi(âi) |âi=â∗
i
= 0,

λifAi(â
∗
i ) = 0,

(39)

where fAi(·) is the convex function defined in Claim 4.
Defining for each i ∈ N ,

l∗ij := ∇âjui(âRi) |âRi
=â∗

Ri
, j ∈ Ri\{i},

l∗ii := ∇âiui(âRi) |âRi
=â∗

Ri
−λi∇âifAi(âi) |âi=â∗

i
,

(40)

we get ∀ i ∈ N ,∑
k∈Ci

l∗ki =

∇âi

∑
k∈Ci

uk(âRk
) |âRk

=â∗
Rk

−λi∇âifAi(âi) |âi=â∗
i
= 0.

(41)

The second equality in (41) follows from (39). Furthermore,
(40) implies that ∀ i ∈ N ,

∀ j ∈ Ri\{i}, l∗ij −∇âjui(âRi) |âRi
=â∗

Ri
= 0,

l∗ii −∇âiui(âRi) |âRi
=â∗

Ri
+λi∇âifAi(âi) |âi=â∗

i
= 0.

(42)

The equations in (42) along with the second equality in (39)
imply that for each i ∈ N , â∗

Ri
and λi satisfy the KKT

conditions for the following maximization problem:

max
âi∈Ai

âj∈R, j∈Ri\{i}
−

∑
j∈Ri

l∗ij âj + ui(âRi) (43)

Because the objective function in (43) is concave (Assump-
tion 4), KKT conditions are necessary and sufficient for
optimality. Therefore, we conclude from (42) and (39) that,

â∗
Ri

∈ argmax
âi∈Ai

âj∈R, j∈Ri\{i}

−
∑
j∈Ri

l∗ij âj + ui(âRi), ∀ i ∈ N .

Claim 6: Let â∗
N be an optimal action profile for Prob-

lem (PC), let l∗ij , j ∈ Ri, i ∈ N , be the personalized
prices corresponding to â∗

N as defined in Claim 5, and let
t̂∗i :=

∑
j∈Ri

l∗ij â
∗
j , i ∈ N . Let m∗

i := ( ai ∗
Ri

, πi ∗
Ri

), i ∈ N ,
be a solution to the following set of relations:

1

|Ci|
∑
k∈Ci

ak ∗
i = â∗i , i ∈ N , (44)

Cj(Iij+1)π∗
j − Cj(Iij+2)π∗

j = l∗ij , j ∈ Ri, i ∈ N , (45)

πi ∗
j

(
ai ∗
j − Cj(Iij+1)a∗j

)2

= 0, j ∈ Ri, i ∈ N , (46)

πi ∗
j ≥ 0, j ∈ Ri, i ∈ N . (47)

Then, m∗
N := (m∗

1,m
∗
2, . . . ,m

∗
N ) is a NE of the game in-

duced by the game form of Section III-A and the users’ utility
functions (2). Furthermore, for each i ∈ N , âi(m∗

Ci
) = â∗i ,

lij(m
∗
Cj
) = l∗ij , j ∈ Ri, and t̂i((m

∗
Cj
)j∈Ri) = t̂∗i .

Proof: Note that, the conditions in (44)–(47) are necessary
for any NE m∗

N of the game induced by the game form of
Section III-A and users’ utilities (2), to result in the allocation
(â∗

N , t̂∗N ) (see (7), (9) and (24)). Therefore, the set of solutions
of (44)–(47), if such a set exists, is a superset of the set of all
NE corresponding to the above game that result in (â∗

N , t̂∗N ).
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Below we show that the solution set of (44)–(47) is in fact
exactly the set of all NE that result in (â∗

N , t̂∗N ).
To prove this, we first show that the set of relations in

(44)–(47) do have a solution. Notice that (44) and (46) are
satisfied by setting for each i ∈ N , ak ∗

i = â∗i ∀ k ∈ Ci.
Notice also that for each j ∈ N , the sum over i ∈ Cj of the
right hand side of (45) is 0. Therefore, for each j ∈ N , (45)
has a solution in iπ∗

j , i ∈ Cj . Furthermore, for any solution
iπ∗

j , i ∈ Cj , j ∈ N , of (45), iπ∗
j + c, i ∈ Cj , j ∈ N , where

c is some constant, is also a solution of (45). Consequently,
by appropriately choosing c, we can select a solution of (45)
such that (47) is satisfied.

It is clear from the above discussion that (44)–(47) have
multiple solutions. We now show that the set of solutions m∗

N
of (44)–(47) is the set of NE that result in (â∗

N , t̂∗N ). From
Claim 5, (37) can be equivalently written as

â∗
Ri

∈ argmax
âRi

∈R
|Ri|

uA
i

(
âRi ,

∑
j∈Ri

l∗ij âj
)
, i ∈ N . (48)

Substituting âj |Cj | −
∑

k∈Cj\{i}
ka∗j = iaj for each j ∈ Ri,

i ∈ N , in (48) we obtain

ai ∗
Ri

∈ argmax
ai Ri

∈R|Ri|
uA
i

(( 1

|Cj |
(
iaj +

∑
k∈Cj\{i}

ka∗j
))

j∈Ri

,

∑
j∈Ri

l∗ij
1

|Cj |
(
iaj +

∑
k∈Cj\{i}

ka∗j
))

, i ∈ N .

(49)

Because of (46), (49) also implies that

( ai ∗
Ri

, πi ∗
Ri

) ∈
argmax

( ai Ri
, πi Ri

)∈R|Ri|×R
|Ri|
+

uA
i

((
âj
(
(iaRi ,

iπRi), m
∗
Cj
/i
))

j∈Ri

,

∑
j∈Ri

l∗ij âj
(
(iaRi ,

iπRi), m
∗
Cj
/i
)− ∑

j∈Ri

Cj(Iij+1)π∗
j(Cj(Iij+1)a∗j − Cj(Iij+2)a∗j

)2
)
, i ∈ N .

(50)

Furthermore, since uA
i is strictly decreasing in the tax (see

(2)), (50) also implies the following:

( ai ∗
Ri

, πi ∗
Ri

) ∈
argmax

( ai Ri
, πi Ri

)∈R|Ri|×R
|Ri|
+

uA
i

((
âj
(
(iaRi ,

iπRi),m
∗
Cj
/i
))

j∈Ri

,

∑
j∈Ri

l∗ij âj
(
(iaRi ,

iπRi),m
∗
Cj
/i
)
+
∑
j∈Ri

iπj

(
iaj−Cj(Iij+1)a∗j

)2

−
∑
j∈Ri

Cj(Iij+1)π∗
j

(Cj(Iij+1)a∗j − Cj(Iij+2)a∗j
)2

)
, i ∈ N .

(51)

Eq. (51) implies that, if the message exchange and allocation is
done according to the game form of Section III-A, then user
i, i ∈ N , maximizes its utility at m∗

i when all other users
j ∈ N\{i} choose their respective messages m∗

j , j ∈ N\{i}.
This, in turn, implies that a message profile m∗

N that is a
solution to (44)–(47) is a NE of the game induced by the
above game form and the users’ utilities (2). Furthermore, it

follows from (44)–(47) that the allocation at m∗
N is

âi(m
∗
Ci
) =

1

|Ci|
∑
k∈Ci

ak ∗
i = â∗i , i ∈ N ,

lij(m
∗
Cj
) =

Cj(Iij+1)π∗
j − Cj(Iij+2)π∗

j = l∗ij , j∈Ri, i∈N ,

t̂i
(
(m∗

Cj
)j∈Ri

)
=
∑
j∈Ri

lij(m
∗
Cj
)âj(m

∗
Cj
)

+ πi ∗
j

(
ai ∗
j −Cj(Iij+1)a∗j

)2

−Cj(Iij+1)π∗
j

(Cj(Iij+1)a∗j − Cj(Iij+2)a∗j
)2

=
∑
j∈Ri

l∗ij â
∗
i = t̂∗i , i ∈ N .

(52)

From (52) it follows that the set of solutions m∗
N of (44)–(47)

is exactly the set of NE that result in (â∗
N , t̂∗N ). This completes

the proof of Claim 6 and hence the proof of Theorem 2.
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