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On the Structure of Optimal Real-Time Encoders and
Decoders in Noisy Communication

Demosthenis Teneketzis, Fellow, IEEE

Abstract—The output of a discrete-time Markov source must
be encoded into a sequence of discrete variables. The encoded se-
quence is transmitted through a noisy channel to a receiver that
must attempt to reproduce reliably the source sequence. Encoding
and decoding must be done in real-time and the distortion mea-
sure does not tolerate delays. The structure of real-time encoding
and decoding strategies that jointly minimize an average distor-
tion measure over a finite horizon is determined. The results are
extended to the real-time broadcast problem and a real-time vari-
ation of the Wyner–Ziv problem.

Index Terms—Markov chains, Markov decision theory,
real-time decoding, real-time encoding.

I. INTRODUCTION

I N a point-to-point communication system the outputs of a
discrete-time Markov source are encoded into a sequence of

discrete variables. This sequence is transmitted through a noisy
channel to a receiver (decoder), which must attempt to repro-
duce the outputs of the Markov source. Operation is in real-time.
That is, the encoding of each source symbol at the transmitter
and its decoding at the receiver must be performed without any
delay and the distortion measure does not tolerate delays. Sim-
ilar real-time encoding problems are considered for the broad-
cast system, [33], and a variation of the Wyner–Ziv problem
[34]. The real-time constraint is motivated by controlled infor-
mationally decentralized systems (such as networks) where in-
formation must be exchanged among various sites of the system
in real-time, and decisions, using the communicated informa-
tion, have to be made in real-time.

Problems with the real-time constraint on information trans-
mission are drastically different from the classical information
theory problem for the following reasons. The fundamental re-
sults of information theory are asymptotic in nature. They deal
with the encoding of long sequences that are asymptotically
“typical”. Encoding of long sequences introduces long unde-
sirable delays in communication. The information theoretic re-
sults available on the trade-off between delay and reliability ([1,
Ch. 5]) are asymptotically tight but of limited value for short

Manuscript received February 13, 2004; revised November 17, 2005. This
research was supported in part by NSF Grant ECS-9979347, NSF Grant CCR-
0082784, ONR Grant N00014-03-1-0232, and NSF Grant CCR-0325571. The
material in this paper was presented at the Workshop on Mathematical Theory
of Networks and Systems, Leuven, Belgium, July 2004.

The author is with the Department of Electrical Engineering and Computer
Science, University of Michigan, Ann Arbor, MI 48109-2122 USA (e-mail:
teneketzis@eecs.umich.edu).

Communicated by M. Effros, Associate Editor for Source Coding.
Digital Object Identifier 10.1109/TIT.2006.880067

sequences. Furthermore, channel capacity, which is a key con-
cept in information theory, is inappropriate here because it is
an asymptotic concept. As pointed out in [2], channels with the
same capacity may behave quite differently under the real-time
constraint.

Real-time encoding-decoding problems have received sig-
nificant attention. Necessary conditions that an optimal digital
system with a real-time encoder and decoder must satisfy were
presented in [3]. These conditions were applied to pulse code
and delta modulation systems. Real-time communication over
infinite time spans was investigated in [15] where attention was
restricted to myopic encoding rules. The real-time transmis-
sion of a memoryless source over a memoryless channel was
investigated in [30], [71], where it was shown that memoryless
encoders and decoders are optimal.

Causal lossy encoding for memoryless, stationary and binary
symmetric first-order Markov sources was investigated in
[4]–[6], [45], [68] where optimal causal encoders were deter-
mined for memoryless and stationary sources. As pointed out in
[4, p. 702], the notion of causality used in [4]–[6], [45], [68] is
weaker than the real-time requirement considered in this paper.

The existence and structure of optimal real-time encoding
strategies for systems with noiseless (error-free) channels,
different types of sources (e.g., Bernoulli processes, Markov
processes, sequences of bounded uniformly distributed random
variables, etc.) was investigated and discovered in [7]–[15],
[50]–[52]. Error exponents for real-time encoding of discrete
memoryless sources were derived in [53].

The structure of optimal real-time encoding and decoding
strategies for systems with noisy channels, perfect feedback
from the output of the channel to the encoder, and various
performance criteria was investigated in [2], [18], [19]. Appli-
cations of the results developed in [18] appeared in [20], [21].

Bounds on the performance of communication systems with
the real-time or finite delay constraint on information trans-
mission were obtained via different methods (e.g., mathemat-
ical programming, forward flow of information, and other in-
formation theoretic methods including conditional mutual infor-
mation and the determination of nonanticipatory rate distortion
functions) in [22]–[29].

Real-time or finite delay encoding-decoding problems, as
well as the sensitivity of reliable communication with respect to
delays in transmission and decoding, were investigated in [46].
In [46] a new notion of capacity (called “anytime capacity) that
corresponds to a sense of reliable transmission and is different
from the Shannon capacity was defined.

The stochastic stability of causal encoding schemes (in-
cluding adaptive quantization, delta modulation, differential
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pulse code modulation, adaptive differential pulse code modu-
lation) was established in [31], [32].

Properties of real-time decoders for communication systems
with noisy channels and Markov sources were discovered in
[16], [17].

The model and work most relevant to this paper have ap-
peared in [54], where a zero-delay joint source-channel coding
of individual sequences is considered in the presence of a gen-
eral known noisy channel. The model of [54] considers large
time horizons and a performance criterion expressed by the av-
erage-per-unit-time additive distortion between the input and
output sequences. The authors of [54] describe a coding scheme
that asymptotically performs, on all individual sequences, as
well as the best among a finite set of schemes.

In this paper, we discover the structure of optimal real-time
encoders and decoders for communication systems consisting
of Markov sources, noisy channels without any feedback from
the output of the channels to the encoder, and general addi-
tive distortion measures. The results of this paper are different
from those of: [3] where necessary conditions for optimality of
real-time encoders and decoders are stated; [15] where attention
is restricted to myopic policies; and [30] where attention is re-
stricted to memoryless sources. Our problem formulation and
results are also different from those of [4]–[7], [45], [68] as the
real-time requirement in our problem differs from the causality
requirement in [4]–[6], [45], [68] (cf [4]). In our model the en-
coder has imperfect knowledge of the information available to
the receiver(s)/decoder(s). Thus, the situation is different from
that considered in [2], [7]–[15], [50]–[52], [18]–[21], where at
each time instant the encoder has perfect knowledge of the re-
ceiver’s information. Our objectives, hence our results, are dif-
ferent from those of [31], [32], [46], [53]. We are interested in
the structure of optimal real-time encoders and decoders, there-
fore, our approach to and results on real-time communication
problems are different from the bounds derived in [22]–[29] and
the properties of real-time decoders in [16], [17]. Our structural
results on real-time encoding-decoding hold for any finite time
horizon as opposed to [54] where the results on real-time en-
coding-decoding are developed for a large time horizon. Our ap-
proach and that of [54] to real-time encoding-decoding are com-
plementary. Our approach is decision-theoretic and provides in-
sight into the structure of real-time encoders and decoders. The
approach in [54] is based on coding ideas and provides insight
into the construction of real-time coding schemes that work well
for large time horizons. Finally, because of the real-time con-
straint on encoding and decoding, our approach and results on
the broadcast system and the Wyner–Ziv problem are distinctly
different from those of [33], [37]–[44], and [34], respectively.

The main contribution of this paper is the determination of
the structure of optimal real-time encoding and decoding strate-
gies for the following classes of systems. 1) The point-to-point
communication system consisting of a Markov source, a noisy
channel without feedback, a receiver with limited memory, and
a general additive distortion measure. 2) The broadcast system
([33]) with Markov sources and general, additive distortion
measures. 3) A real-time variation of the Wyner–Ziv problem
([34]). Our philosophical approach to determining the structure
of optimal real-time encoders and decoders is similar to that

Fig. 1. The point-to-point communication system.

of [2], [7]. Real-time encoding is conceptually the “difficult”
part of the overall problem. For point-to-point communication
systems we prove that if the source is th-order Markov, one
may, without loss of optimality, assume that the encoder forms
each output based only on the last source symbols and its
knowledge of the probability distribution on the present state of
the receiver’s memory. For our results generalize those of
[2] and [7] which state that for a first-order Markov source, one
may, without loss of optimality, restrict attention to encoders
that form each output based only on the last source symbol
and the present state of the receiver’s/decoder’s memory. For

our results generalize those of [7]. We obtain results on
the structure of optimal real-time encoders similar to the above
for the real-time broadcast system and a real-time variation of
the Wyner–Ziv problem. Our results on the structure of optimal
real-time decoders with limited memory are similar to those of
[2] where decoders with unlimited memory are considered.

The remainder of the paper is organized as follows. In Sec-
tions II, III, IV, and V, we present results on the structure of
optimal real-time encoders and decoders for the point-to-point
communication system, extensions to continuous state sources
and channels and higher order Markov sources, the broadcast
system, and a variation of the Wyner–Ziv problem, respectively.
We conclude in Section VI.

II. THE REAL-TIME POINT-TO-POINT COMMUNICATION

PROBLEM

Our results on the real-time point-to-point communication
system (shown in Fig. 1) are initially developed for the case
where the source is first-order finite-state Markov, and the noise
in the channel is a discrete-valued random process consisting
of mutually independent random variables that are also inde-
pendent of the source sequence. This simple model allows us to
illustrate clearly the key conceptual issues that determine the
structure of real-time encoding and decoding strategies. The
results developed for the aforementioned model are shown to
hold for th-order finite-state Markov sources, and for contin-
uous state, discrete-time Markov sources, and channels where
the noise is described by a sequence of independent contin-
uous-state random variables that are also independent of the
source sequence.

A. Problem Formulation

1) The Model: We consider a first-order Markov source
that produces a random sequence . For each

. The Proba-
bility Mass Function (PMF) of , denoted by , as well
as the transition probabilities

, are given. For notational simplicity we set
.
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At each time a signal taking values in
, is transmitted to a receiver. The signal

is produced by a real-time encoder, which for every is charac-
terized by

(1)

so that, in general

(2)

The signal is transmitted to a receiver through a noisy
channel. At time the channel noise is described by a random
variable taking values in . The random
variables are assumed to be mutually in-
dependent, and each has a known PMF denoted by

. Furthermore, each , is
independent of .

The signal , received by the receiver at time , is a noise-
corrupted version of , that is

(3)

where is a known function that describes the channel at time
, and for each takes values in the set .

The receiver has limited memory, which is updated as fol-
lows:

1) At only is available, and a discrete random vari-
able

(4)

taking values in , is stored in memory.
2) At , the memory is updated according to

the rule

(5)

where takes values in , and , are
given functions.

At , the receiver generates a variable
by the rule

(6)

(7)

where

(8)

and

(9)

The random variable is an approximation of .
2) The Performance Criterion: For each , a

function

(10)

is given, and

(11)

measures the average distortion at . The system’s performance
is measured by

(12)

The expectation in (12) is with respect to a probability mea-
sure that is determined by the distribution of the sequence

, the choice of the functions , the
channel , and the statistics of the noise .

3) The Optimization Problem (Problem (P)): It is assumed
that the model of Section II.A1 and the performance criterion of
Section II.A2 are common knowledge ([48], [69]) to the encoder
and the receiver/decoder.

Under this assumption the optimization problem (Problem
(P)) under consideration is the following:

Problem (P): Consider the model of Section II.A.1. Given

, choose the functions and
to minimize , given by (12).

Note that in Problem (P) the memory update rule
is fixed and given. Furthermore, by

assumption, it is of the form (4)–(5). The analysis and results
that follow are derived under the above assumption on .

We proceed with the analysis of Problem (P) as follows. We
first determine the structure of optimal real-time encoding rules
for any fixed arbitrary decoding rule. Then, we determine the
structure of optimal real-time decoding rules for any fixed arbi-
trary encoding rule.

B. The Structure of Optimal Real-Time Encoders

We show that for first-order Markov sources the solution to
the real-time encoding optimization problem can be obtained
by restricting attention to encoding rules that depend on the
source’s current state and the PMF (according to the encoder’s
perception) of the receiver’s memory. Before we proceed with
the statement of the main result of this section (Theorem 1) we
introduce the following concepts and notation.

Definition 1: A design is called a choice of a system of func-
tions .

Let denote the space of PMFs on the set , and
denote the PMF of the random variable

,

(13)

The PMF gives the encoder’s perception of the decoder’s
state (i.e., the state of the decoder’s memory) at time .

Given a design , and any realization
of , the PMF is well-defined for all

.
Definition 2: Consider a design. The encoder

is said to be separated if for every
,

Notation: For the rest of the paper we adopt the following
notation. We denote by the expectation with respect to
the probability measure determined by the design . We denote
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by (respectively, the probability measure determined by
the design (respectively, the component of a design ).

The main result of this section is provided by the following
theorem.

Theorem 1: In Problem (P) (Section II-A3) there is no loss
of optimality if one restricts attention to designs consisting of
separated encoding policies.

We present two approaches to proving Theorem 1. The first
approach follows the philosophy of [7]. The second approach is
based on Markov decision theory and follows the philosophy of
[2].

We begin with the first approach. We first establish the
noisy-transmission analogues of two fundamental lemmata of
[7], namely, the two-stage lemma and the three-stage lemma.
Using the results of these lemmata we prove the assertion of
Theorem 1 by induction and the method of “repackaging” of
random variables.

1) The Two-Stage Lemma: Consider the problem formulated
in Section II-A with , and any joint distribution of the
random vector . At the beginning of stage 2 the content
of the receiver’s memory is

(14)

Furthermore

(15)

(16)

and

(17)

Lemma 1: Consider a two-stage system with a design where

(18)

so that

(19)

Then one can replace with

(20)

so that

(21)

and the resulting new design is at least as good as the old
design.

Proof: See Appendix I.
2) The Three-Stage Lemma: Consider the problem for-

mulated in Section II-A with and any joint distri-
bution of the random vector . For any design

define the resulting cost

(22)

where , is given by (11). Consider a design
where is a separated encoder

(cf. Definition 2), whereas is not. The following result holds.
Lemma 2: Consider a three-stage system with the de-

sign . One can replace with another design
where is a separated en-

coder, and the new design is at least as good as the old design,
that is

(23)

Proof: See Appendix II.
3) Proof of the Main Result: We complete the proof of the

main result (Theorem 1) based on the two-stage lemma and
the three-stage lemma. We proceed by induction. The following
lemma establishes the basis of the induction process.

Lemma 3: Consider the problem formulated in Section II-A.
Then for any design

(24)

where , is of the general form (2), one can
replace the last encoder by one of the form

(25)

without any performance loss.
Proof: See Appendix III.

Lemma 3 establishes the basis of the induction process.
To prove the induction step, consider a design

, and suppose that
are separated encoders (cf. Definition

2). We must show that can be replaced by an encoder that
is separated and is such that the performance of the new design

is
at least as good as that of . For that matter, the -stage system
can be viewed as a three-stage system where the encoder at the
third stage is separated and the source is first-order Markov.
This can be done as follows. Define

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

where is specified in terms of

(36)

(37)



TENEKETZIS: ON THE STRUCTURE OF OPTIMAL REAL-TIME ENCODERS AND DECODERS IN NOISY COMMUNICATION 4021

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

The encoder at time has the structure

(47)

which translates to

(48)

The source is first-order Markov, because
and

are conditionally independent given , as the original
source is first-order Markov.

For the three-stage system defined above we claim the fol-
lowing.

Claim: Since the encoders at stages
are separated, they define

(49)

for some function .
Assuming for the moment that the above claim is true, the

three-stage system defined above satisfies the conditions of the
three-stage lemma. Consequently, by Lemma 2, the encoder ,
can be replaced by one that has the form

(50)

and the resulting new design performs at least as well as the
one it replaces. In the original notation, (50) corresponds to an
encoder that has the structure

and is such that the design is at least as good as .
To complete the proof of the induction step we must verify

that the claim expressed by (49) is true.
Proof of Claim (49): To prove (49) we note that

(51)

Furthermore, by assumption

(52)

for all . In addition, for any , any
and any given we have

(53)

where

(54)

The fifth equality in (53) holds, because the random variables
are independent.

From (53) we conclude that

(55)

for some function .
Hence, (52) and (55) combined give, for

(56)

for some function .
Combining (28), (36), (51) and (56) we obtain

(57)

for some function .
This completes the proof of claim (49), the proof of the in-

duction step, and the proof of Theorem 1.

C. Discussion of the Main Result on Real-Time Encoding

Theorem 1 provides a qualitative result on the structure of op-
timal real-time “noisy” encoders for Markov sources. If , the
number of discrete values can take, is small
compared to , then the result of Theorem 1 provides a substan-
tial simplification of the optimal encoder design problem for the
following reasons. For large the (on-line) implementation of
real-time encoders of the form

(58)
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requires a large memory. Moreover, the memory requirements
on the encoder’s site change as the finite horizon , over which
Problem ( ) is being considered, changes. The result of The-
orem 1 implies that the use of separated encoding strategies does
not entail any loss of optimality for Problem ( ), it requires a
finite memory of size on the encoder’s site, and this memory
size is independent of . Furthermore, it will become evident
from the following discussion (cf. (59)–(60)) that, as a conse-
quence of Theorem 1, the determination of optimal real-time
encoding strategies can be achieved using the computational
methods available for the solution of Partially Observed Markov
Decision Processes (POMDPs). There is a significant amount of
literature devoted to the computation of optimal strategies for
POMDPs and to approximating the value function of POMDPs
(see [35], [47], [49], [55]–[67], and references therein).

The result of Theorem 1 can be intuitively explained
as follows. When the receiver’s memory update functions

and decision functions are fixed,
the real-time encoding problem can be viewed as a centralized
stochastic control problem where the encoder controls the PMF
of the receiver’s memory. For this reason ([36]) an optimal
real-time encoding rule can be determined by backward induc-
tion. The optimality equations are, for any ,
(see [36, Ch. 6])

(59)

(60)

where and this indicates that the receiver’s memory
is empty

(61)

and the components of are given by

(62)

A further formal explanation of the optimality equations
(59)–(60) will be provided in Section II.D, where an alternative
proof of Theorem 1 will be presented.

We now compare the key features of our problem with those
of the problems investigated in [7], [8], [2], and [18]. This

comparison, together with the discussion of the preceding para-
graph, provides additional insight into the nature of Problem
(P). In [7], [8] communication is noiseless, therefore, for fixed

, once are specified the encoder
knows at every instant of time the state of the receiver’s
memory. Thus, when and are fixed,
the encoder’s task is to choose so as to control
the receiver’s memory and to minimize a cost function of the
form (12). In [2], [18] the channel is noisy, but there is a noise-
less feedback from the output of the channel to the encoder
so that the encoder knows at every instant of time the state
of the receiver’s memory. Hence, for fixed and

the encoder’s problem in [2], [18] is essentially
the same as its problem in [7], [8]. In our problem the encoder
does not know the state of the receiver’s memory. However,
for fixed memory update functions and fixed de-
cision functions , given the encoder’s decisions

, the encoder knows the probability distribution
of the receiver’s memory at any , and the probability distri-
bution of the receiver’s decisions at any . Thus, the encoder’s
task is to control, through the choice of , the
distribution of the receiver’s memory so as to minimize a
performance criterion given by (12).

The observation that the real-time encoding problem can be
viewed as a centralized stochastic control problem where the
encoder controls the PMF of the receiver’s memory leads to
another approach to the problem, which we discuss next.

D. An Alternative Proof of the Main Result on Real-Time
Encoding

Consider any (fixed) memory update rule
and any arbitrary (but fixed) decision rule
for the decoder. Define the process by

(63)

(64)

where , is defined by (13).
Lemma 4: The process is conditionally

Markov given the ’s; that is, for any

(65)

where

(66)

(67)

Proof: For any realization of
, respectively, where

(68)

we have

(69)

for any by the first-order Markov property of the source.
Furthermore, for any and
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(70)

for and

(71)

The third equality in (70) and the second equality in (71)
hold because, by assumption, is a sequence
of independent random variables that are also indepen-
dent of ; therefore, is independent of

and is independent of .
From (70) and (71) we conclude that, for

(72)

and for

(73)

where , are functions determined by (71)
and (70), respectively. Therefore, because of (69) and (72) we
obtain for and any ,

(74)

where is the Kronecker delta, i.e.

if
otherwise

(75)

Equation (74) proves the assertion of Lemma 4.
The conditional Markov property of

implies that for each and
each realization , of

(76)

for some function . Because of (76) we obtain

(77)

Consequently, for fixed and
, the problem is to control through the choice of

, for all , the transition probabilities from to so
as to minimize the cost given by (77). From Markov decision
theory (e.g., [36], Chapter 6) it is well known that an optimal
control law, i.e., an optimal encoding rule, is of the form

(78)

for all , and that an optimal encoding rule can be determined
by the solution of the dynamic program described by (59)–(62).

E. The Structure of Optimal Real-Time Decoders

Let denote the set of PMFs on . Consider arbi-
trary (but fixed) encoding and memory updating strategies

and , respectively,
where and are of the general form (1) and (4), (5), re-
spectively. Let denote the PMF of .
Let denote the conditional PMF of given the
decoder’s information at time ; that is

(79)

The superscripts on both sides of (79) indicate that this condi-
tional PMF explicitly depends on and . To proceed further,
we need the following.

Definition: For any and define

(80)

With the above notation and definition we present the result
that describes the structure of optimal real-time decoders.
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Theorem 2: Let , be any (fixed) encoding and memory up-
dating strategies, respectively. The optimal real-time decoding
rule for is given by

(81)

(82)

Proof: We make the following observation. For any fixed
, minimizing (given by (12)) is equivalent to minimizing
(given by (11)) for each . The assertion of Theorem 2 fol-

lows from the above observation and the definition of (cf.
(80)).

The conditional PMF’s and
, can be computed using Bayes’ rule, the functional

form of and , the dynamics of the Markov source, the statis-
tics of the channel noise, and the fact that are
mutually independent, and independent of .
Their computation is presented in Appendix IV.

III. EXTENSIONS

As pointed out in Section II, the results of Sections II-B–II-E
were developed for a simple model so as to clearly illustrate the
key conceptual issues that determine the structure of optimal
real-time encoding and decoding strategies. In this section we
discuss extensions of these results to more general models.

A. Continuous-State First-Order Markov Sources,
Continuous-State Channel Noise

The results of Sections II-B–II-E hold for the following sys-
tems. The source is described by a continuous-state first-order
Markov source for all , with
given statistical description. The noise in the channel is de-
scribed by a random process ,
for all , where the random variables are mu-
tually independent, each has a known cumulative distribu-
tion function, and each is independent of .
The real-time encoder’s output , takes values
in the set defined in Section II-A1, the channel output

, and the decoder has limited memory as
in the model of Section II-A1. The decoder’s decisions

, and for each the distortion measure is
defined as

(83)

For any design (cf. Definition 1) the system’s performance is
measured by a criterion of the form (12).

For the above model, the results of Theorems 1 and 2 can be
proved by the same technical approach as in Sections II-B–II-D
and II-E, respectively.

B. th-Order Markov Sources

Consider the model of Section II-A1 with only one modifica-
tion. The source is a discrete-time, discrete-state, th-order
Markov source ; that is, for

(84)

for any (where the set is defined in
Section II-A1). We briefly describe the structure of optimal real-
time encoders and decoders for this situation.

The structure of optimal real-time decoders is the same
as that of the model of Section II.E, and is described by
Theorem 2. The computation of the conditional PMF’s

, defined in Section II.E
and appearing in the statement of Theorem 2, can be performed
in the same way as in Appendix IV using (84).

A result similar to that of Theorem 1 is also true. To state this
result precisely, we first need the following definition.

Definition 4: The encoder , is
said to be -separated if

(85)

and

(86)

Consider Problem (P) (cf. Section II-A3) for the model of this
section. The following result holds.

Theorem 3: In Problem ( ) there is no loss of optimality
if one restricts attention to designs consisting of -separated
encoding policies.

Proof: For the assertion of Theorem 3 is trivial. For
and any the assertion of Theorem 3 can be

established as follows.
Define the process

(87)

Define
(88)

(89)

(90)

(91)

(92)

(93)

(94)

(95)

(96)

The functions relating the above variables are as follows. The
encoder is characterized by

(97)

(98)

The function summarizes the effect of the first encoders
; the functions can be uniquely defined by the

arguments presented in [7] (Section V). The receiver’s memory
update functions are

(99)
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(100)

The function summarizes the recursive build-up of from
through the use of . The receiver’s

decisions are described by

(101)

(102)

The function summarizes the actions of the
first decoders through and . The dis-
tortion functions , are described by

(103)

and

(104)

With the above definitions we have a first-order Markov
process , a model that is the
same as that of Section II-A1, and an optimization Problem ( )
similar to that of Sections II-A2 and Sections II-A3. For this
system Theorem 1 applies to show that in Problem (P) there
is no loss of optimality if one restricts attention to separated

encoders , that is, encoders of the
form

(105)

(106)

Reverting to the original notation, (106) corresponds to

(107)

for some function , or equiva-
lently

(108)

for , and this establishes the assertion of
Theorem 3.

IV. THE REAL-TIME BROADCAST PROBLEM

For the broadcast system, we show that the structure of
optimal real-time encoders and decoders is similar to the one
discovered in Section II for the point-to-point communication
system.

A. The Model

Consider the system of Fig. 2. Each source ,
is described by a finite-state discrete-time Markov Chain

where
for all . The initial PMF on and the transition functions

are given for all and for all

. The Markov Chains are assumed to
be mutually independent. The message of source must be
communicated in real-time to receiver .

The output of all sources is encoded by a single encoder. At
time a signal , taking values in , is trans-
mitted to all receivers. The signal produced by the real-time en-
coder is characterized by

(109)

so that in general

(110)

where for all ,

(111)

The signal is transmitted through noisy channels to
the receivers. At time the noise in channel is de-
scribed by taking values in .
Let . The random variables

are assumed to be mutually independent,
and independent of , and each

has a known PMF. For each and may be
correlated. The signal , received by the th receiver at time
is a noise-corrupted version of , that is

(112)

where is a known function that describes channel at time ,
and for each takes values in the set .

Receiver , has limited memory. Its memory
update is performed as follows.

i) At time is available and a discrete random
variable

(113)

taking values in is stored in
memory. The functions , are given.

ii) At time , the memory of receiver
, is updated according to the rule

(114)

where takes values in and
are given.

At , receiver generates a variable
by the rule

(115)

(116)

where
(117)
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Fig. 2. Broadcast system.

(118)

For each and the functions

(119)

are given, and

(120)

measures the average distortion at receiver at time . The
system’s performance is measured by

(121)

that is, it is the sum of the distortions of each broadcast trans-
mitter/receiver pair.

The expectation in (121) is with respect to a probability
measure that is determined by the distribution of the sequences

, the choice of the functions , the
channels , and the statistics
of the noise .

The following is assumed.
A1) The statistical description of all the Markov sources

, is common
knowledge ([48], [69]) to the encoder and all the re-
ceivers/decoders.

A2) For every , the functions
, and the statistics of the random process

are common knowledge to the en-
coder and receiver .

Under the above assumptions the optimization problem,
Problem (P’), under consideration is the following.

Problem (P’): Consider the above-described model. Given

,

choose the functions and
, to minimize , given by (121).

Because of the real-time constraint on encoding and de-
coding, the objectives in Problem ( ) and the technical
approach taken for the solution of Problem ( ) are different
from those of all previous studies of the broadcast system (see
[37]–[44], and the references in [44]).

B. The Structure of Optimal Real-Time Encoders and
Decoders

The real-time encoding problem can be viewed as a central-
ized stochastic control problem where the encoder has to simul-
taneously control the PMFs of the receivers’ memories so as to
minimize the performance criterion given by (121) (cf. discus-
sion of Section II-C).

Consider any fixed memory update rules
, and any arbitrary

but fixed decision rules
for the decoders. Define for each

(122)

Consider the process defined by

(123)

(124)

where , are defined by (13).
Lemma 5: The process is conditionally

Markov given the ’s; that is, for any

(125)

where, for any
(126)

(127)
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Proof: Define for any

For any realization

of ,
respectively, we have

(128)

for any , by the first-order Markov property of the
source. Furthermore, for and ,

(129)

for and

(130)

The first equality in (129) and the first equality in (130) hold be-
cause of (112)–(114) and the assumption that
is a sequence of independent random variables that are also in-
dependent of ; therefore, for each is inde-
pendent of .

From (129) and (130) we conclude that for

(131)

and for

(132)

where the joint PMF (defined by the analogue of
(13) for the random vector , ,
denotes the encoder’s perception of the memory of receivers

, at given and , and

, are functions defined by (130) and
(129), respectively, Furthermore, from (131)–(132) we con-
clude that for

(133)

and for

(134)

where , are functions determined by (129)–(132).
Consequently, because of (128) and (133) we obtain for
and any and ,

(135)

where is the Kronecker delta defined in (75). Equation
(135) proves the assertion of Lemma 5.

The result of Lemma 5 implies that for each and each real-
ization ,
of , re-
spectively

(136)
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for some functions , and . Consequently,
because of (136)

(137)

Therefore, for fixed and the problem
is to control, through the choice of , the transition probabili-
ties from to so as to minimize the cost given by (137).
From Markov decision theory ([36, Ch. 6]) we conclude that an
optimal encoding rule is of the form

(138)

for all , and that optimal real-time encoding rules
can be determined by the solution of the dynamic program

(139)

(140)

where , for every

(141)

and for every , the components of are given
by

(142)

We can summarize the results of the above analysis as follows.

Theorem 4: For Problem (P’) there is no loss of optimality if
one restricts attention to real-time encoders of the form

(143)

(144)

Optimal real-time encoding strategies can be determined by the
solution of the dynamic program (139)–(142).

The result of Theorem 4 can be intuitively explained as
follows. Since the real-time encoder has to produce at each
time one message which it broadcasts to all receivers, it
has to take into account the messages produced at by all
the sources, (that is, , and the information it perceives is
available to each receiver. This information is described by

.
The result of Theorem 4 holds for the case where each

Markov source is continuous-state discrete-time, and the
channel noise is described by a continuous-state random
process for all ,
where the random variables , are mutually
independent, each has a known cumulative distribution
function and each is independent of (cf.
Section III-A). Theorem 4 also holds when the Markov sources

, are correlated and the
overall process is Markov with a given
statistical description. The aforementioned extensions of The-
orem 4 can be established by the technical approach presented
in this section.

Under Assumptions A1)–A2) (cf. Section IV-A), the real-
time decoding problem for each receiver is similar to that in
the point-to-point communication system. At each time , for
any fixed

, based on , and receiver/decoder can de-
termine the conditional PMF of by a computation similar to
that of Appendix IV.

Let

(145)

Let denote the set of PMFs on . For any
and define

(146)

Then, by arguing as in the proof of Theorem 2 for each receiver/
decoder we obtain the following result.

Theorem 5: Consider any receiver , and let
, be any (fixed) encoding and memory up-

dating strategies, respectively. The optimal real-time decoding
rule for receiver for is given by

(147)

(148)
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Fig. 3. Variation of Wyner–Ziv problem.

V. A REAL-TIME VARIATION OF THE WYNER–ZIV PROBLEM

A. The Model

Consider the system of Fig. 3. The source is described by a
Markov chain where is de-
fined in Section II-A1, the PMF and the transition functions

are given.
At each time , a signal , taking values in the set , de-

fined in Section II-A1, is transmitted to a receiver. The signal
is produced by a real-time encoder, which is characterized

for every by

(149)

so that in general

(150)

The signal is transmitted to the receiver through a noisy
channel. At every , simultaneously with , the source output

is itself transmitted to the same receiver through a second
noisy channel. Thus, at each the receiver ob-
tains two signals

(151)

and

(152)

where , is the noise in channel , and
, are known functions describing the two channels at . Let

(153)

The random variables are assumed to be
mutually independent, and each is independent of

. Furthermore, for each takes values
in , and takes values in

.
The receiver has limited memory the update of which is per-

formed as follows:
(154)

(155)

where are given functions. The random vari-
ables take values in .

At , the receiver generates an estimate
of by the rule

(156)

where

(157)

and

(158)

For each a distortion measure and the average dis-
tortion are defined in the same way as in Sec-
tion II-A2. The system’s performance is measured by an index
similar to (12), i.e.

(159)

The expectation in (159) is with respect to a probability
measure that is determined by the distribution of the se-
quence , the choice of the functions

,
the channels , and the statistics of the
noise

It is assumed that the model of Section V.A is common
knowledge ([48], [69]) to the encoder and the receiver/decoder.

Under this assumption the optimization problem, Problem
( ), for the model described above is the following:

Problem ( ) Given

, choose the functions
, to minimize given by (159).

The above problem is a real-time variation of the Wyner–Ziv
problem [34], where in addition to the real-time constraint on
encoding and decoding, there is a noisy channel between the en-
coder and the receiver. Furthermore, in Problem ( ) the source
is Markov whereas in [34] the source is described by a sequence
of independent identically distributed random variables.

B. The Structure of Optimal Real-Time Encoders and
Decoders

By arguments similar to those of Sections II-B, II-D, one can
obtain the following results on the structure of optimal real-time
encoders and decoders.

Theorem 6: In Problem ( ) there is no loss of optimality if
one restricts attention to encoding rules of the form

(160)

for all . Optimal real-time encoding strategies can be de-
termined by the solution of a dynamic program similar to that
of (59)–(60).

The real-time decoding problem for the receiver is similar to
that in the point-to-point communication system. The following
result can be proved in the same way as Theorem 2.
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Theorem 7: Let and
be any fixed encoding and memory updating

strategies, respectively. The optimal real-time decoding rule
for is given by

(161)

(162)

where denotes the conditional PMF of given
the decoder’s information at time

(163)

and , is defined by (80). The conditional
PMFs can be computed by the method pre-
sented in Appendix IV.

The results of Theorems 6 and 7 also hold for models of
Markov sources and channels described in Section III-A.

VI. CONCLUSION

We have discovered the structure of optimal real-time en-
coders and decoders for point-to-point communication systems,
broadcast systems, and a real-time variation of the Wyner–Ziv
problem. Our technical approach was based on two key observa-
tions. 1) The structure of optimal real-time decoders depends on
the distortion measure. 2) For arbitrary but fixed decoding and
memory update strategies, optimal real-time encoding is a cen-
tralized stochastic control problem where the encoder, through
the choice of its strategy, has to optimally control the memory
of the receiver(s). Our results imply that the memory size at the
encoder’s site is independent of (the finite horizon over which
the real-time transmission problem is being considered) and de-
pends only on the size of the memory of the receiver(s). Thus,
the optimal real-time encoding problem is substantially simpli-
fied when the memory size of the receiver is much smaller than

. Furthermore, optimal real-time encoding strategies can be
determined using the computational methods available for the
solution of partially observed Markov decision problems. As
pointed out in Section II-A3, our results were derived for ar-
bitrary but fixed memory update rule(s). The optimal selection
of memory update rule(s), as well as the determination of jointly
optimal real-time encoding, decoding and memory update rules,
have not been addressed in this paper. A methodology for the
determination of jointly optimal real-time encoding, decoding,
and memory update strategies appears in [70].

The extension of our results to decentralized real-time
encoding-decoding problems that are more general than the
Wyner–Ziv model remains an open challenging problem.

APPENDIX I
PROOF OF LEMMA 1

With a given design , we have for
any

(A1)

for some function , where is the PMF on the re-
ceiver’s memory according to the encoder’s perception given

, (cf. (13))

(A2)

and depends on but not on . For every
, (A1) quantifies the performance of the design

at stage 2, given the information at
the encoder’s site at stage 2.

Consider now a new design where

(A3)

is chosen as follows. For any given and any given

(A4)

Since for some there may be more than one
that achieve

the encoder can be constructed by using (A3) and the method
proposed in the Appendix of [7]. This method can be briefly
described as follows: Consider the set of information states

for which is among the minimizing decisions.
For all , set . Next consider
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the set of all states for which is among the mini-
mizing decisions. Let and for all

set . Proceed in this way to create the
sets , such
that if . Then, under the de-
sign we have for all

(A5)

and

(A6)

Inequality (A6) shows that for a suitable change in (given
by (11)) can only decrease, that is

(A7)

Furthermore, since only is changed

(A8)

From (A7) and (A8) we conclude that the design is at least as
good as the original design . This completes the proof of the
two-stage lemma.

Remark: The Markov property of the source is not used in
the proof of the two-stage lemma, but is needed in the proof of
the three-stage lemma.

APPENDIX II
PROOF OF LEMMA 2

The cost is unaffected by changes in , that is

(B1)

Furthermore, any changes in do not affect the receiver’s
memory

(B2)

or the PMF , (cf. (13))

(B3)

which depends only on , and the statistics of the noise .
For any , the cost incurred at the last two

stages by the design is

(B4)

Note that, given and any
, one can determine and the PMF’s

, where for any

(B5)

and for any

(B6)

Consequently

(B7)

where the last equality in (B7) follows from the fact that:

(B8)

Furthermore,

(B9)
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Therefore, because of (B7) and (B9), (B4) can be written as

(B10)

where denotes the PMF on the receiver’s

memory at (according to the encoder’s perception) given
and (cf. (B5), that is, for any

(B11)

Consider now a new design
where

(B12)

is chosen as follows: For any given and any given

(B13)

As in the case of the two-stage lemma, the encoder can be
constructed by using (B13) and the method described in the Ap-
pendix of [7].

Because of the choice of we have

(B14)

for all and all , as depends only on
and the statistics of the noise . Moreover, for any

(B15)

for all , because of (B14) and the fact that for given
and depends only on the channel

, the statistics of the noise and . Finally, for any ,

(B16)

because of (B15) and the fact that the encoding rule is a
separated encoder. As a consequence of (B12)–(B16) we obtain,
for any ,

(B17)

therefore

(B18)

Furthermore, from (B1) we have

(B19)

so that

(B20)
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Inequality (B20) shows that for a suitable change of by a
separated encoder the overall cost can only decrease. This
completes the proof of the three-stage lemma.

Remarks:
1) The Markovian nature of the source is used in the proof

of the three-stage lemma, specifically, in establishing the
second equality in (B4).

2) In (B10) the terms
depend only on , the channel , and the statis-
tics of the noise . The PMF changes

as and/or vary. Also, in (B10) the terms

, de-

pend only on ; the values of these probabilities change
as and/or vary.

APPENDIX III
PROOF OF LEMMA 3

The given -stage system can be considered as a two-stage
system by setting

(C1)

(C2)

(C3)

(C4)

(C5)

(C6)

(C7)

(C8)

(C9)

where is defined in terms of

(C10)

(C11)

(C12)

(C13)

(C14)

(C15)

(C16)

(C17)

(C18)

Then, by the two-stage lemma there is an encoder that has
the structure

(C19)

and is such that its use does not increase the cost . In the
original notation, this corresponds to an encoder that has the
structure

(C20)

and the use of which does not increase the cost . Since
remains unchanged when is replaced by , the

overall cost does not increase by the use of ,
and this completes the proof of Lemma 3.

APPENDIX IV

The random functions and
can be computed as follows. For and any

(D1)

Since

(D2)

it follows from (D1) and (D2) that, for any

(D2)

Then, for any is determined by (D1)
and (D3). For any and

(D4)

Furthermore, for any , because of (1), (4), and (5), we obtain

(D5)

for some function , and

(D6)

for some functions and . Using (D5) and (D6) we can write
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(D7)

where the third and fourth equalities in (D7) follow from the
fact that the random variable are mutually in-
dependent and independent of . The probability

can be computed using the PMF
and the transition probabilities .
Moreover

(D8)

where

(D9)

and each of the terms in the sum of the right-hand side of (D8)
can be computed using the mutual independence of the random
variables .

Then for any and any
can be computed using (D4), (D7), (D8)

and (D9).
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