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On the Structure of Real-Time Encoders and
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Abstract— A real-time communication system with two en-
coders communicating with a single receiver over separate noisy
channels is considered. The two encoders make distinct partial
observations of a Markov source. Each encoder must encode its
observations into a sequence of discrete symbols. The symbols are
transmitted over noisy channels to a finite memory receiver that
attempts to reconstruct some function of the state of the Markov
source. Encoding and decoding must be done in real-time, that
is, the distortion measure does not tolerate delays. Under the
assumption that the encoders’ observations are conditionally
independent Markov chains given an unobserved time-invariant
random variable, results on the structure of optimal real-time
encoders and the receiver are obtained. It is shown that there
exist finite-dimensional sufficient statistics for the encoders. The
problem with noiseless channels and perfect memory at the
receiver is then considered. A new methodology to find the
structure of optimal real-time encoders is employed. A sufficient
statistic with a time-invariant domain is found for this problem.
This methodology exploits the presence of common information
between the encoders and the receiver when communication is
over noiseless channels.

I. INTRODUCTION

A large variety of decentralized systems require communi-
cation between various devices or agents. In general, since
such systems may have multiple senders and receivers of
information, the models of point-to-point communication are
not sufficient. Typically in decentralized systems, the purpose
of communication is to achieve a higher system objective.
Examples include networked control systems where the over-
all objective of communication between various sensors and
controllers is to control the plant in order to achieve a
performance objective, or sensor networks where the goal of
communication between sensors and a fusion center may be to
quickly estimate a physical variable or to track in real-time the
evolution of a physical phenomenon. In such systems, agents
(sensors, controllers etc.) have to make decisions that affect
the overall system performance based only on information
they currently have gathered from the environment or from
other agents through the underlying communication system.
The communication problem therefore should not only address
what information can be made available to each agent but also
when is this information available. Thus, the overall system
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objectives may impose constraints on the time delay associated
with communication.

In the presence of strict delay constraints on information
transmission, the communication problem becomes drastically
different from the classical information-theoretic formulations.
Information theory deals with encoding and decoding of
long sequences which inevitably results in large undesirable
delays. For systems with fixed (and typically small) delay
requirements, the ideas of asymptotic typicality can not be
used. Moreover, information-theoretic bounds on the trade-off
between delay and reliability are only asymptotically tight and
are of limited value for short sequences ([1]). Therefore, we
believe that the development of a real-time communication
theory can significantly contribute to our fundamental under-
standing of the operation of decentralized systems.

In this paper we address some issues in multi-terminal
communication systems under the real-time constraint. Specif-
ically, we look at problems with multiple senders/encoders
communicating with a single receiver. We analyze systems
with two encoders as in Figure 1, although our results gen-
eralize to n encoders (n > 2) and a single receiver. The
two encoders make distinct partial observations of a discrete-
time Markov source. Each encoder must encode in real-time
its observations into a sequence of discrete variables that are
transmitted over separate noisy channels to a common receiver.
The receiver must estimate, in real-time, a given function of
the state of the Markov source. The main feature of this multi-
terminal problem that distinguishes it from a point to point
communication problem is the presence of coupling between
the encoders (that is, each encoder must take into account
what other encoder is doing). This coupling arises because
of the following reasons : 1) The encoders’ observations are
correlated with each other. 2) The encoding problems are
further coupled because the receiver wants to minimize a
non-separable distortion metric. That is, the distortion metric
cannot be simplified into two separate functions each one of
which depends only on one encoder’s observations. The nature
of optimal strategies strongly depends on the nature and extent
of the coupling between the encoders.

Our model therefore involves real-time distributed coding of
a pair of correlated observations that are to be transmitted over
noisy channels. Information-theoretic results on asymptotically
achievable rate-regions have been known for some distributed
coding problems. The first available results on distributed
coding of correlated memoryless sources appear in [2] and [3].
Multiple access channels with arbitrarily correlated sources
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were considered in [4]. In [5], the encoders make noisy
observations of an i.i.d source. The authors in [5] characterize
the achievable rates and distortions, and propose two specific
distributed source coding techniques. Constructive methods for
distributed source coding were presented in [6], [7] and [8].
In particular, [6] address lossless and nearly lossless source
coding for the multiple access system, and [7] addresses zero-
error distributed source coding. The CEO problem, where a
number of encoders make conditionally independent observa-
tions of an i.i.d source, was presented in [9]. The case where
the number of encoders tends to infinity was investigated there.
The quadratic Gaussian case of the CEO problem has been
investigated in [10], [11] and [12]. Bounds on the achievable
rate-regions for finitely many encoders were found in [13]. A
lossy extension of the Slepian-Wolf problem was analyzed in
[14]. Multi-terminal source coding for memoryless Gaussian
sources was considered in [15].

In [16],[17],[18],[19],[20] and [21], distributed source cod-
ing problems with the objective of reconstructing a function
of the source are investigated. In [16], the authors consider
distributed source coding of a pair of correlated Gaussian
sources. The objective is to reconstruct a linear combination of
the two sources. The authors discover an inner bound on the
optimal rate-distortion region and provide a coding scheme
that achieves a portion of this inner bound. The problem
of distributed source coding to reconstruct a function of the
sources losslessly was considered in [17]. An inner bound was
obtained for the performance limit which was shown to be
optimal if the sources are conditionally independent given the
function. The case of lossless reconstruction of the modulo-2
sum of two correlated binary sources was considered in [18].
These results were extended in [21] (see Problem 23 on page
400) and [19]. An improved inner bound for the problem in
[18] was provided in [20].

The real-time constraint of our problem differentiates it from
the information-theoretic results mentioned above. Real-time
communication problems for point-to-point systems have been
studied using a decision-theoretic/stochastic control perspec-
tive. In general, two types of results have been obtained for
point to point systems. One type of results establish qualitative
properties of optimal encoding and decoding strategies. The
central idea here has been to consider the encoders and the
decoders as control agents/decision-makers in a team trying
to optimize a common objective of minimizing a distortion
metric between the source and its estimates at the receiver.
Such sequential dynamic teams - where the agents sequen-
tially make multiple decisions in time and may influence
each other’s information - involve the solution of non-convex
functional optimization to find the best strategies for the agents
([22],[23]). However, if the strategies of all but one of the
agents are fixed, the resulting problem of optimizing a single
agent’s strategy can, in many cases, be posed in the framework
of Markov decision theory. This approach can explain some of
the structural results obtained in [24],[25],[26],[27], [28]. An-
other class of results establish a decomposition of the problem
of choosing a sequence of globally optimal encoding and de-
coding functions. In the resulting decomposition, at each step,
the optimization is over one encoding and decoding functions

instead of a sequence of functions. This optimization, however,
must be repeated for all realizations of an information state
that captures the effect of past encoding/decoding functions
([26],[27],[29],[30]).

Point to point communication problems with the real-time
or finite delay constraint were also investigated from an
information-theoretic point of view. We refer the reader to [25]
for a survey of the information-theoretic approaches for point-
to-point systems with the real-time or finite delay constraint.

Inspired by the decision-theoretic approach to real-time
point-to-point systems, we look at our problem from a decen-
tralized stochastic control/team-theoretic perspective with the
encoders and the receiver as our control agents/decision mak-
ers. We are primarily interested in discovering the structure of
optimal real-time encoding and decoding functions. In other
words, given all the observations available to an agent (i.e, an
encoder or the receiver), what is a sufficient statistic to decide
its action (i.e, the symbol to be transmitted in case of the
encoders and the best estimate in case of the receiver)?. The
structure of optimal real-time encoding and decoding strategies
provides insights into their essential complexity (for example,
the memory requirements at the encoders and the receiver
for finite and infinite time horizon communication problems)
as well as the effect of the coupling between the encoders
mentioned earlier.

A universal approach for discovering the structure of opti-
mal real-time encoding/decoding strategies in a multi-terminal
system with any general form of correlation between the
encoders’ observations has so far remained elusive. In this
paper, we restrict ourselves to a simple model for the encoders’
observations. For such a model (described in Section III), we
obtain results on the structure of optimal real-time encoding
strategies when the receiver is assumed to a have a finite mem-
ory. Our results reveal that for any time horizon, however large
(or even infinite), there exists a finite dimensional sufficient
statistic for the encoders. This implies that an encoder with a
memory that can store a fixed finite number of real-numbers
can perform as well as encoders with arbitrarily large memo-
ries. Subsequently, we consider communication with noiseless
channels and remove the assumption of having limited receiver
memory. For this problem, the approach in Section III results
in sufficient statistics for the encoders that belong to spaces
which keep increasing with time. This is undesirable if one
wishes to look at problems with large/infinite time-horizons.
In order to obtain a sufficient statistic with time-invariant
domain, we invent a new methodology for decentralized de-
cision problems. This methodology highlights the importance
of common information/ common knowledge (in the sense of
[31]), in determining structural properties of decision makers
in a team. In general, the resulting sufficient statistic belongs
to an infinite dimensional space. However, we present special
cases where a finite dimensional representation is possible.
Moreover, we believe that the infinite dimensional sufficient
statistic may be intelligently approximated to obtain real-time
finite-memory encoding strategies whose performance is close
to optimal.

The rest of the paper is organized as follows: In Section II
we present a real-time multi-terminal communication system
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and formulate the optimization problem. In Section III we
present our assumptions on the nature of the source and the
receiver and obtain structural results for optimal real-time
encoding and decoding strategies. In Section IV we consider
the problem with noiseless channels and perfect receiver
memory. We develop a new methodology to find structural
results for optimal real-time encoders for this case. We look
at some extensions and special cases of our results in Section
V. We conclude in Section VI.

Notation: 1. Throughout this paper, subscripts of the
form 1 : t, like X1:t, are used to denote sequences like
X1, X2, .., Xt.
2. We denote random variables with capital letters (X) and
their realization with small letters (x). For random vectors, we
add a tilde (˜) over the vector to denote its realization.
3. For continuous random-variables (or vectors), P (X = x)
refers to P (x ≤ X < x+ dx).
4. For a set A, we use ∆(A) to denote the space of probability
densities (or probability mass functions) on A.

II. A REAL-TIME MULTI-TERMINAL COMMUNICATION
PROBLEM

Consider the real-time communication system shown in
Figure 1. We have two encoders that partially observe a
Markov source and communicate it to a single receiver over
separate noisy channels. The receiver may be interested in
estimating the state of the Markov source or some function of
the state of the source. We wish to find sufficient statistics for
the encoders and the receiver and/or qualitative properties for
the encoding and decoding functions. Below, we elaborate on
the model and the optimization problem.

X1
t , X2

t

Encoder 1

Encoder 2

Receiver

X1
t

X2
t

Z1
t

Z2
t Y 2

t

Y 1
t

N1
t

N2
t

X̂t

Markov
Source

Fig. 1. A Multi-terminal Communication System

A. Problem Formulation

1) The Model: The state of the Markov source at time t is
described as

Xt = (X1
t , X

2
t )

where Xi
t ∈ X i, i = 1, 2 and X 1,X 2 are finite spaces. The

time-evolution of the source is given by the following equation

Xt+1 = Ft(Xt,Wt) (1)

where Wt, t = 1, 2, .. is a sequence of independent random
variables that are independent of the initial state X1.

Two encoders make partial observations of the source. In
particular, at time t, encoder 1 observes X1

t and encoder 2
observes X2

t . The encoders have perfect memory, that is, they
remember all their past observations and actions. At each time
t, encoder 1 sends a symbol Z1

t belonging to a finite alphabet
Z1 to the receiver. The encoders operate in real-time, that is,
each encoder can select the symbol to be sent at time t, based
only on the information available to it till that time. That is,
the encoding rule at time t must be of the form:

Z1
t = f1

t (X1
1:t, Z

1
1:t−1) (2)

where X1
1:t represents the sequence X1

1 , X
1
2 , . . . , X

1
t and

Z1
1:t−1 represents the sequence Z1

1 , Z
1
2 , . . . , Z

1
t−1. In general,

one can allow randomized encoding rules instead of deter-
ministic encoding functions. That is, for each realization of
its observations till time t, encoder 1 selects a probability
distribution on Z1 and then transmits a random symbol gener-
ated according to the selected distribution. We will show later
that, under our assumptions on the model, such randomized
encoding rules cannot provide any performance gain and we
can restrict our attention to deterministic encoding functions.
Encoder 2 operates in a similar fashion as encoder 1. Thus,
encoding rules of encoder 2 are functions of the form:

Z2
t = f2

t (X2
1:t, Z

2
1:t−1) (3)

where Z2
t belongs to finite alphabet Z2.

The symbols Z1
t and Z2

t are transmitted over separate noisy
channels to a single receiver. The channel noises at time t are
mutually independent random variables N1

t and N2
t belonging

to finite alphabetsN 1 andN 2 respectively. The noise variables
(N1

1 , N
2
1 , N

1
2 , N

2
2 , . . . , N

1
t , N

2
t , . . .) form a collection of inde-

pendent random variables that are independent of the source
process Xt, t = 1, 2, ....

The receiver receives Y 1
t and Y 2

t which belong to finite
alphabets Y1 and Y2 respectively. The received symbols are
noisy versions of the transmitted symbols according to known
channel functions h1

t and h2
t , that is,

Y i
t = hi

t(Z
i
t , N

i
t ) (4)

for i = 1, 2.
At each time t, the receiver produces an estimate of the

source X̂t based on the symbols received till time t, i.e.,

X̂t = gt(Y 1
1:t, Y

2
1:t) (5)

A non-negative distortion function ρt(Xt, X̂t) measures the
instantaneous distortion between the source and the estimate
at time t. (Note that the distortion function may take into
account that the receiver only needs to estimate a function of
X1

t and X2
t )

2) The Optimization Problem P: Given the source and noise
statistics, the encoding alphabets, the channel functions h1

t , h
2
t ,

the distortion functions ρt and a time horizon T, the objective
is to find globally optimal encoding and decoding functions
f1

1:T , f
2
1:T , g1:T so as to minimize

J(f1
1:T , f

2
1:T , g1:T ) = E

{
T∑

t=1

ρt(Xt, X̂t)

}
(6)
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where the expectation in (6) is over the joint distribution
of X1:T and X̂1:T which is determined by the given source
and noise statistics and the choice of encoding and decoding
functions f1

1:T , f
2
1:T , g1:T .

We refer to the collection of functions f i
1:T as encoder i’s

strategy (i = 1, 2). The collection of functions g1:T is the
decoding strategy.
Remarks: 1. Since we consider only finite alphabets for the
source, the encoded symbols, the channel noise, the received
symbols and a finite time horizon, the number of possible
choices of encoding and decoding functions is finite. There-
fore, an optimal choice of strategies (f̃1

1:T , f̃
2
1:T , g̃1:T ) always

exists.
2. A brute force search method to find the optimal can always
be used in principle. It is clear however that even for small
time-horizons, the number of possible choices would be large
enough to make such a search inefficient. Moreover, such a
scheme would not be able to identify any characteristics of
optimal encoding and decoding functions.

The encoding functions and the decoding functions in
equations (2), (3) and (5) require the encoders and the re-
ceiver to store entire sequences of their past observations and
actions. For large time-horizons storing all past data becomes
prohibitive. Therefore, one must decide what part of the
information contained in these arbitrarily large sequences is
sufficient for decision-making at the encoders and the receiver.
In particular, we are interested in addressing the following
questions:

1) Is there a sufficient statistic for the encoders and the
decoder that belongs to a time-invariant space? (Clearly,
all the past data available at an agent is a sufficient
statistic but it belongs to a space that keeps increasing
with time.) If such a sufficient statistic exists, one can
potentially look at problems with large (or infinite) time-
horizons.

2) Is there a finite-dimensional sufficient statistic for the
encoders and the receiver? If such a sufficient statistic
exists, then we can replace the requirement of storing
arbitrarily long sequences of past observations/messages
with storing a fixed finite number of real numbers at the
encoders and the receiver.

The above communication problem can be viewed as a
sequential team problem where the encoders and the receiver
are the decision-making agents that are sequentially making
decisions to optimize a common objective. The communica-
tion problem is a dynamic team problem since the encoders’
decisions influence the information available to the receiver.
Dynamic team problems are known to be hard. For dynamic
teams, a general answer to the questions on the existence of
sufficient statistics that either have time-invariant domains or
are finite-dimensional is not known. In the next section we will
make simplifying assumptions on the nature of the source and
the receiver and present sufficient statistics for the encoders.

III. PROBLEM P1

We consider the optimization problem (Problem P) formu-
lated in the previous section under the following assumptions

on the source and the receiver.
1. Assumption A1 on the Source: We assume that the time-
evolution of the source can be described by the following
model:

X1
t+1 = F 1

t (X1
t , A,W

1
t ) (7a)

X2
t+1 = F 2

t (X2
t , A,W

2
t ) (7b)

where A is a random-variable taking values in the finite set A
and W 1

t , t = 1, 2, ... and W 2
t , t = 1, 2... are two independent

noise processes (that is, sequences of independent random
variables) that are independent of the initial state (X1

1 , X
2
1

and A) as well. Thus, the transition probabilities satisfy:

P (X1
t+1, X

2
t+1|X1

t , X
2
t , A)

=P (X1
t+1|X1

t , A).P (X2
t+1|X2

t , A) (8)

The initial state of the Markov source has known statistics that
satisfy the following equation :

P (X1
1 , X

2
1 , A) =P (X1

1 , X
2
1 |A).P (A)

=P (X1
1 |A).P (X2

1 |A).P (A) (9)

Thus, A is a time-invariant random variable that couples the
evolution of X1

t and X2
t . Note that conditioned on A, X1

t and
X2

t form two conditionally independent Markov chains. We
define

Xt := (X1
t , X

2
t , A) (10)

which belongs to the space X := X 1 ×X 2 ×A.
The encoders’ model is same as before. Thus encoder 1
observes X1

t and encoder 2 observes X2
t . Note that the random

variable A is not observed by any encoder. The encoders have
perfect memories and the encoding functions are given by
equations (2) and (3).

2. Assumption A2 on the Receiver: We have a finite memory
receiver that maintains a separate memory for symbols re-
ceived from each channel. This memory is updated as follows:

M i
1 = li1(Y i

1 ), i = 1, 2 (11a)

M i
t = lit(M

i
t−1, Y

i
t ), i = 1, 2 (11b)

where M i
t belongs to finite alphabetMi, i = 1, 2 and lit are the

memory update functions at time t for i = 1, 2. For notational
convenience, we define M i

0 := 0 for i = 1, 2. The receiver
produces an estimate of the source X̂t based on its memory
contents at time t− 1 and the symbols received at time t, that
is,

X̂t = gt(Y 1
t , Y

2
t ,M

1
t−1,M

2
t−1) (12)

We now formulate the following problem.
Problem P1: With assumptions A1 and A2 as above,

and given source and noise statistics, the encoding alpha-
bets, the channel functions h1

t , h
2
t , the distortion functions

ρt and a time horizon T, the objective is to find globally
optimal encoding, decoding and memory update functions
f1

1:T , f
2
1:T , g1:T , l

1
1:T , l

2
1:T so as to minimize

J(f1
1:T , f

2
1:T , g1:T , l

1
1:T , l

2
1:T ) = E

{
T∑

t=1

ρt(Xt, X̂t)

}
(13)
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where the expectation in (13) is over the joint distribution
of X1:T and X̂1:T which is determined by the given source
and noise statistics and the choice of encoding, decoding and
memory update functions f1

1:T , f
2
1:T , g1:T , l

1
1:T , l

2
1:T .

Encoder 1

Encoder 2

Receiver

X1
t

X2
t

Z1
t

Z2
t Y 2

t

Y 1
t

N1
t

N2
t

X̂t
Markov
Source

X1
t , X2

t , A

M1
t−1

M2
t−1

Fig. 2. Problem P1

A. Features of the Model

We discuss situations that give rise to models similar to that
of Problem P1.

1. A Sensor Network: Consider a sensor network where
the sensors’ observations are influenced by a slowly varying
global parameter and varying local phenomena. Our model
is an approximation of this situation where A models the
global parameter that is constant over the time-horizon T and
Xi

t are the local factors at the location of the ith sensor at
time t. A finite memory assumption on the receiver may be
justified in situations where the receiver is itself a node in the
network and is coordinating the individual sensors. We will
show that this assumption implies that the sensors (encoders
in our model) themselves can operate on finite-dimensional
sufficient statistics without losing any optimality with respect
to sensors with perfect (infinite) memory.

2. Decentralized Detection/Estimation Problem: Consider
the following scenario of a decentralized detection problem;
Sensors make noisy observations Xi

t on the state A of envi-
ronment. Sensors must encode their information in real-time
and send it to a fusion center. Assuming that sensor noises
are independent, we have that, conditioned on A, the sensor
observations are independent. (Typically, the observations are
also assumed to be i.i.d in time conditioned on the state of
the environment, but we allow them to be Markov.) Thus, the
encoding rule for the ith sensor must be of the form:

Zi
t = f i

t (Xi
1:t, Z

i
1:t−1)

Consider the case where Zi
t can either be “blank” or a value

from the set A. Each sensor is restricted to send only one non-
blank message, and within a fixed time-horizon each sensor
must send its final non-blank message. When a sensor sends
a non-blank message Zi

t , the fusion center receives a noisy
version Y i

t of this message. As long as the fusion center
does not receive final (non-blank) messages from all sensors,
its decision is X̂t = “no decision” and the system incurs a
constant penalty c (for delaying the final decision on A). If
all sensors have sent a non-blank message, the fusion center
produces an estimate X̂t ∈ A as its final estimate on A

and incurs a distortion cost ρ(A, X̂t). Thus, we can view the
receiver as maintaining a separated memory for messages from
each sensor which is initialized to “blank” and updated as
follows:

M i
t =

{
Y i

t if M i
t−1 was “blank”

M1
t−1 otherwise (14)

The receiver’s decision is X̂t = “no decision”, if Y i
t =

M i
t−1 = “blank” for some sensor i, else the receiver uses

a function gt to find an estimate

X̂t = gt(Y 1
t , Y

2
t ,M

1
t−1,M

2
t−1) (15)

The above detection problem therefore is a special case of our
model with fixed memory update rules from (14).

Clearly, our model also includes the case when the en-
coders’ observations are independent Markov chains (not just
conditionally independent). In this case, the coupling between
encoders is only due to the fact the receiver may be interested
in estimating some function of the state of the two Markov
chains and not their respective individual states.

B. Structure Result for Encoding Functions

We define the following probability mass functions (pmf)
for encoder i, (i = 1, 2):

Definition 1: For t = 1, 2, . . . , T and a ∈ A,

bit(a) := P (A = a|Xi
1:t)

Definition 2: For t = 2, 3, . . . , T and m ∈Mi,

µi
t(m) := P (M i

t−1 = m|Zi
1:t−1, l

i
1:t−1)

where li1:t−1 in the conditioning indicate that µi
t is defined for a

fixed choice of the memory update rules li1:t−1. For notational
convenience, we also define for each m ∈Mi, i = 1, 2,

µi
1(m) := 0

Theorem 1: There exist globally optimal encoding rules of
the form :

Zi
t = f i

t (Xi
t , b

i
t, µ

i
t) (16)

where f i
t are deterministic functions for t = 1, 2, . . . , T and

i = 1, 2.
Discussion: In contrast to equation (2), Theorem 1 says that

an optimal encoder 1 only needs to use the current observation
X1

t and the probability mass functions b1t , µ
1
t that act as a

compressed representation of the past observations X1
1:t−1 and

Z1
1:t−1. These pmfs represent the encoder 1’s belief on A and

M1
t−1.
To obtain the result of Theorem 1 for the encoder 1,

we fix arbitrary encoding rules for the encoder 2 of the
form in (3), arbitrary memory update rules of the form in
(11) and arbitrary decoding rules of the form in (12). Given
these functions, we consider the problem of selecting optimal
encoding rules for encoder 1. We identify a structural property
of the optimal encoding rules of encoder 1 that is independent
of the arbitrary choice of strategies for encoder 2 and the
receiver. We conclude that the identified structure of optimal
rules of encoder 1 must also be true when encoder 2 and the
receiver are using the globally optimal strategies. Hence, the
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identified structure is true for globally optimal encoding rules
of encoder 1. We now present this argument in detail.

Consider arbitrary (but fixed) encoding rules for encoder 2
of the of the form in (3), arbitrary memory update rules for the
receiver of the form in (11) and arbitrary decoding rules of the
form in (12). We will prove Theorem 1 using the following
lemmas.

Lemma 1: The belief of the first encoder about the random
variable A can be updated as follows:

b1t = α1
t (b1t−1, X

1
t , X

1
t−1) (17)

where α1
t , t = 2, 3, . . . , T are deterministic functions.

Proof: See Appendix A.
Lemma 2: The belief of the first encoder about the receiver

memory M1
t−1 can be updated as follows:

µ1
t = β1

t (µ1
t−1, Z

1
t−1) (18)

where β1
t , t = 2, 3, . . . , T are deterministic functions.

Proof: See Appendix B.

Define the following random variables:

R1
t := (X1

t , b
1
t , µ

1
t ), (19)

for t = 1, 2, . . . , T .
Observe that R1

t is a function of encoder 1’s observations till
time t, that is, X1

1:t, Z
1
1:t−1. Moreover, any encoding rule of

the form in (2) can also be written as

Z1
t = f1

t (R1
1:t, Z

1
1:t−1)

Lemma 3: R1
t , t = 1, 2, ..., T is a perfectly observed con-

trolled Markov process for encoder 1 with Z1
t as the control

action at time t.
Proof: Since R1

t is a function of encoder 1’s observations
till time t, that is, X1

1:t, Z
1
1:t−1, it is perfectly observed at

encoder 1.
Let x1

1:t, z
1
1:t−1 be a realization of the encoder 1’s observations

X1
1:t, Z

1
1:t−1. Similarly, let r1

t be a realization of R1
t and b̃1t

and µ̃1
t be realizations of b1t and µ1

t respectively. Then,

P (R1
t+1 = (x1

t+1, b̃
1
t+1, µ̃

1
t+1)|r1

1:t, z
1
1:t)

= P (x1
t+1, b̃

1
t+1, µ̃

1
t+1|x1

1:t, b̃
1
1:t, µ̃

1
1:t, z

1
1:t)

= P (b̃1t+1, µ̃
1
t+1|x1

t+1, x
1
1:t, b̃

1
1:t, µ̃

1
1:t, z

1
1:t)

×P (x1
t+1|x1

1:t, b̃
1
1:t, µ̃

1
1:t, z

1
1:t) (20)

= P (b̃1t+1, µ̃
1
t+1|x1

t+1, x
1
t , b̃

1
t , µ̃

1
t , z

1
t )

×P (x1
t+1|x1

1:t, b̃
1
1:t, µ̃

1
1:t, z

1
1:t) (21)

where the first term in (21) is true because of Lemma 1
and Lemma 2. Consider the second term in (21). It can be

expressed as follows:

P (x1
t+1|x1

1:t, b̃
1
1:t, µ̃

1
1:t, z

1
1:t)

=
∑
a∈A

P (x1
t+1, A = a|x1

1:t, b̃
1
1:t, µ̃

1
1:t, z

1
1:t) (22)

=
∑
a∈A

P (x1
t+1|A = a, x1

1:t, b̃
1
1:t, µ̃

1
1:t, z

1
1:t)

×P (A = a|x1
1:t, b̃

1
1:t, µ̃

1
1:t, z

1
1:t) (23)

=
∑
a∈A

P (x1
t+1|A = a, x1

t ).b̃1t (a) (24)

where the first term in (24) is true because of the Markov
property of X1

t when conditioned on A. Therefore, substituting
(24) in (21), we get

P (R1
t+1 = (x1

t+1, b̃
1
t+1, µ̃

1
t+1)|x1

1:t, b̃
1
1:t, µ̃

1
1:t, z

1
1:t)

=P (b̃1t+1, µ̃
1
t+1|x1

t+1, x
1
t , b̃

1
t , µ̃

1
t , z

1
t )

×
∑
a∈A

[P (x1
t+1|A = a, x1

t )× b̃1t (a)] (25)

The right hand side of (25) depends only on x1
t ,b̃1t , µ̃

1
t and z1

t

from the entire collection of conditioning variables in the left
hand side of (25). Hence,

P (R1
t+1|r1

1:t, z
1
1:t) =P (R1

t+1|x1
1:t, b̃

1
1:t, µ̃

1
1:t, z

1
1:t)

=P (R1
t+1|x1

t , b̃
1
t , µ̃

1
t , z

1
t )

=P (R1
t+1|r1

t , z
1
t ) (26)

This establishes the Lemma.
Lemma 4: The expected instantaneous distortion cost for

encoder 1 can be expressed as :

E
{
ρt(Xt, X̂t)

∣∣∣ X1
1:t, Z

1
1:t

}
= ρ̂t(R1

t , Z
1
t ) (27)

where ρ̂t, t = 1, 2, . . . , T are deterministic functions.
Proof: For any realization x1

1:t, z
1
1:t of X1

1:t, Z
1
1:t, we have

E
{
ρt(Xt, X̂t)

∣∣∣ x1
1:t, z

1
1:t

}
=E

{
ρt(x1

t , X
2
t , A, gt(Y 1

t , Y
2
t ,M

1
t−1,M

2
t−1)

∣∣ x1
1:t, z

1
1:t)

}
(28)

The expectation in (28) depends on x1
t (appearing in

the argument of ρt) and the conditional probability:
P (X2

t , A, Y
1
t , Y

2
t ,M

1
t−1,M

2
t−1|x1

1:t, z
1
1:t). We can evaluate

this conditional probability as follows:

P (X2
t = x2

t , A = a, Y 1
t = y1

t , Y
2
t = y2

t ,

M1
t−1 = m1

t−1,M
2
t−1 = m2

t−1|x1
1:t, z

1
1:t) (29)

=P (X2
t = x2

t , Y
2
t = y2

t ,M
2
t−1 = m2

t−1|A = a, Y 1
t = y1

t ,

M1
t−1 = m1

t−1, x
1
1:t, z

1
1:t)×

P (Y 1
t |A = a,M1

t−1 = m1
t−1, x

1
1:t, z

1
1:t)×

P (M1
t−1 = m1

t−1|A = a, x1
1:t, z

1
1:t)×

P (A = a|x1
1:t, z

1
1:t) (30)

=P (X2
t = x2

t , Y
2
t = y2

t ,M
2
t−1 = m2

t−1|A = a)×
P (Y 1

t = y1
t |z1

t )× P (M1
t−1 = m1

t−1|z1
1:t)× P (A = a|x1

1:t)
(31)

=P (X2
t = x2

t , Y
2
t = y2

t ,M
2
t−1 = m2

t−1|A = a)×
P (Y 1

t = y1
t |z1

t )× µ̃1
t (m1

t−1)× b̃1t (a) (32)
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In the first term of (31), we used the fact that conditioned
on A, the observations of encoder 2 and received messages
from the second channel are independent of the observations
of encoder 1 and the messages received from the first channel.
We used the fact that the noise variables N1

t are i.i.d and
independent of the source in the second and third term of
(31). Thus, the conditional probability in (29) depends only on
z1
t , µ̃

1
t and b̃1t . Therefore, the expectation in (28) is a function

of x1
t , z

1
t , µ̃

1
t , b̃

1
t . That is,

E
{
ρt(Xt, X̂t)

∣∣∣ x1
1:t, z

1
1:t

}
= ρ̂t(x1

t , z
1
t , µ̃

1
t , b̃

1
t ) (33)

= ρ̂t(r1
t , z

1
t ) (34)

Proof: [Proof of Theorem 1] From Lemma 3 and Lemma
4, we conclude that the optimization problem for encoder 1,
when the strategies of encoder 2 and the receiver have been
fixed, is equivalent to controlling the transition probabilities
of the controlled Markov chain R1

t through the choice of the
control actions Z1

t (where Z1
t can be any function of R1

1:t and
Z1

1:t−1) in order to minimize
∑T

t=1E
{
ρ̂t(R1

t , Z
1
t )
}

. It is a
well-known result of Markov decision theory ([32], Chapter
6) that there is an optimal control law of the form:

Z1
t = f1

t (R1
t )

or equivalently,
Z1

t = f1
t (X1

t , b
1
t , µ

1
t )

Moreover, it also follows from Markov decision theory that
allowing randomized control policies for encoder 1 cannot
provide any performance gain. Since the above structure of the
optimal choice of encoder 1’s strategy is true for any arbitrary
choice of encoder 2’s and the receiver’s strategies, we conclude
that the above structure of optimal encoder 1 is true when the
encoder 2 and the receiver are using their globally optimal
choices as well. Therefore, the above structure is true for
globally optimal strategy of encoder 1 as well. This completes
the proof of Theorem 1. Structural result for encoder 2 follows
from the same arguments simply by interchanging the roles of
encoder 1 and encoder 2.

C. Structural result for Decoding Functions

We now present the structure of an optimal decoding
strategy. Consider fixed encoding rules of the form in (2) and
(3) and fixed memory update rules of the form in (11). We
define the following probability mass function for the receiver
:

Definition 3: For x ∈ X and t = 1, 2, . . . , T ,

ψt(x) := P (Xt = x|Y 1
t , Y

2
t ,M

1
t−1,M

2
t−1, f

1
1:t, f

2
1:t, l

1
1:t, l

2
1:t)

where the functions f1
1:t, f

2
1:t, l

1
1:t, l

2
1:t in the conditioning in-

dicate that ψt is defined for a fixed choice of encoding and
memory update strategies.

Let ∆(X ) denote the set of probability mass functions on
the finite set X . We define the following functions on ∆(X ).

Definition 4: For any ψ ∈ ∆(X ) and t = 1, 2, . . . , T ,

τt(ψ) = argmin
s∈X

∑
x∈X

ψ(x)ρt(x, s)

With the above definitions, we can present the result on
the structure of a globally optimal decoding rule.

Theorem 2: For any fixed encoding rules of the form in (2)
and (3) and memory update rules of the form in (11), there is
an optimal decoding rule of the form

X̂t = τt(ψt) (35)

where the belief ψt is formed using the fixed encoding and
memory update rules. In particular, equation (35) is true for a
globally optimal receiver, when the fixed encoding rules and
memory update rules are the globally optimal rules.

Proof: In order to minimize the expected total accu-
mulated distortion, the receiver must minimize the expected
distortion at each time t. Clearly, the definitions of the function
τt and the belief ψt imply that τt(ψt) achieves the minimum
expected distortion at time t (see [25]).

D. Discussion of the Result

Theorem 1 identifies sufficient statistics for the encoders. In-
stead of storing all past observations and transmitted messages,
each encoder may store only the probability mass functions
(pmf) on the finite sets A and Mi generated from past
observations and transmitted messages. Thus we have finite-
dimensional sufficient statistics for the encoders that belong
to time-invariant spaces (the space of pmfs on A and Mi).
Clearly, this amounts to storing a fixed number of real-numbers
in the memory of each encoder instead of arbitrarily large
sequences of past observations and past transmitted symbols.
However, the encoders now have to incur an additional com-
putational burden involved in updating their beliefs on A and
the receiver memory.

We would like to emphasize that the presence of a finite
dimensional sufficient statistic that belong to time-invariant
spaces is strongly dependent on the nature of the source and
the receiver. Indeed, without the conditionally independent
nature of the encoders’ observations or the separated finite
memories at the receiver, we have not been able to identify a
sufficient statistic whose domain does not keep increasing with
time. For example, if the finite memory receiver maintained a
coupled memory which is updated as:

Mt = lt(Mt−1, Y
1
t , Y

2
t )

then one may conjecture that the encoder could use a belief
on Mt−1 as a sufficient representation of past transmitted
symbols, analogous to µ1

t in Theorem 1. However, such a
statistic cannot be updated without remembering all past data,
that is, an update equation analogous to Lemma 2 for µ1

t

does not hold. This implies that the Markov decision-theoretic
arguments of Theorem 1 do not work for this case.
In the case when encoders’ observations have a more general
correlation structure, a finite dimensional statistic like b1t that
compresses all the past observations seems unlikely. It appears
that in the absence of the assumptions mentioned above, the
optimal encoders should remember all their past information.

If the receiver has perfect memory, that is, it remembers
all past messages received, (M i

t−1 = Y i
1:t−1, i = 1, 2),
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Theorem 1 implies µi
t = P (Y i

1:t−1|Zi
1:t−1) as a part of the

sufficient statistic for encoder i. Thus, Theorem 1 says that
each encoder needs to store beliefs on the increasing space
of all past observations at the receiver. This sufficient statistic
does not belong to a time-invariant space. In the next section,
we will consider this problem with noiseless channels and
show that for noiseless channels there is in fact a sufficient
statistic that belongs to a time-invariant space. However, this
sufficient statistic is no longer finite dimensional and for
implementation purposes, one would have to come up with
approximate representations of it.

IV. PROBLEM P2

We now look at the Problem P1 with noiseless channels.
Firstly, we assume the same model for the nature of the source
and the separated memories at the receiver as in Problem
P1. The result of Theorem 1 holds with the belief on M i

t−1

replaced by the true value of M i
t−1. The presence of noiseless

channels implies that encoder i and the receiver have some
common information. That is, at time t they both know the
state of M i

t−1. The presence of common information among
agents of a team allows for new ways of optimizing the
team objective ([33]). In this section, we will show that the
presence of common information allows us to explore the
case when the receiver may have perfect memory. We will
present a new methodology that exploits the presence of
common information between the encoder and the receiver to
find sufficient statistics for the encoders that belong to time-
invariant spaces (spaces that do not keep growing with time).

A. Problem Formulation

1) The Model: We consider the same model as in P1 with
following two modifications:

i. The channels are noiseless; thus the received symbol
Y i

t is same as the transmitted symbol Zi
t , for i = 1, 2

and t = 1, 2, . . . , T .
ii. The receiver has perfect memory, that is, it remem-

bers all the past received symbols. Thus, M i
t−1 =

Zi
1:t−1, for i = 1, 2 and t = 2, 3, . . . , T . (See Fig. 3)

2) The Optimization Problem, P2: Given the source statis-
tics, the encoding alphabets, the time horizon T, the
distortion functions ρt, the objective is to find globally
optimal encoding and decoding functions f1

1:T , f
2
1:T , g1:T

so as to minimize

J(f1
1:T , f

2
1:T , g1:T ) = E[

T∑
t=1

ρt(Xt, X̂t)] (36)

where the expectation in (36) is over the joint distribution
of X1:T and X̂1:T which is determined by the given
source statistics and the choice of encoding and decoding
functions f1

1:T , f
2
1:T , g1:T .

B. Structure of the Receiver

Clearly, problem P2 is a special case of problem P1. The
decoder structure of P1 can now be restated for P2 as follows:
For fixed encoding rules of the form in (2) and (3), we can

Encoder 1

Encoder 2

Receiver

X1
t

X2
t

Z1
t

Z2
t

X̂tMarkov
Source

X1
t , X2

t , A

Z1
1:t−1

Z2
1:t−1

Fig. 3. Problem P2

define the receiver’s belief on the source as:

ψt(x) := P (Xt = x|Z1
1:t, Z

2
1:t, f

1
1:t, f

2
1:t)

for x ∈ X and t = 1, 2, . . . , T .

Theorem 3: For any fixed encoding rules of the form in (2)
and (3), there is an optimal decoding rule of the form

X̂t = τt(ψt) (37)

where the belief ψt is formed using the fixed encoding rules
and τt is as defined in Definition 4. In particular, equation (37)
is true for a globally optimal receiver, when the fixed encoding
rules are globally optimal rules.

C. Structural Result for Encoding Functions

For a fixed realization of Zi
1:t−1, encoder i’s belief on the

receiver memory M i
t−1 is simply:

µ̃i
t(m) = P (M i

t−1 = m|zi
1:t−1) =

{
1 if m = z1

1:t−1

0 otherwise
(38)

Therefore, using Theorem 1, we conclude that there is a
globally optimal encoder of the form:

Zi
t = f i

t (Xi
t , b

i
t, µ

i
t)

for t = 1, 2, . . . , T and i = 1, 2.
Or equivalently,

Zi
t = f i

t (Xi
t , b

i
t, Z

i
1:t−1) (39)

Observe that the domain of the encoding functions in (39)
keeps increasing with time since it includes all past transmitted
symbols Z1

1:t−1. We would like to find a sufficient statistic that
belongs to a time-invariant space. Such a statistic would allow
us to address problems with large (or infinite) time horizons.

For that matter, let us first review the approach used for
obtaining the first structural result for the encoders (Theorem
1). We fixed the strategy of encoder 2 and the receiver to any
arbitrary choice and looked at the optimization problem P1
from encoder 1’s perspective. Essentially, we addressed the
following question: if encoder 2 and the receiver have fixed
their strategies, how can we characterize the best strategy of
encoder 1 in response to the other agents’ fixed strategies?
In other words, with f2

1:T and g1:T as fixed, what kind of
strategies of encoder 1 (f1

1:T ) minimize the objective in equa-
tion (13)? This approach allowed us to formulate a Markov
decision problem for encoder 1. The Markov decision problem
gave us a sufficient statistic for encoder 1 that holds for any
choice of strategies of encoder 2 and the receiver and this led
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to the result of Theorem 1. In problem P2, such an approach
gives the result of equation (39) - which implies a sufficient
statistic whose domain keeps increasing with time.

To proceed further, we need to adopt a different approach.
As before, we will make an arbitrary choice of encoder 2’s
strategy of the form in (3). Given this fixed encoder 2, we will
now ask, what are the jointly optimal strategies for encoder 1
and the receiver? That is, assuming f2

1:T is fixed, what choice
of f1

1:T and g1:T together minimize the objective in equation
(36)? From our previous structural results, we know that we
can restrict to encoding rules f1

1:T of the form in (39) and
decoding rules from Theorem 3 without any loss of optimality.
We thus have the following problem:
Problem P2’: In Problem P2, with encoder 2’s strategy fixed
to an arbitrary choice f ′21:T , find the jointly optimal strategies
of encoder 1 of the form in (39) and of the receiver in Theorem
3 to minimize

J(f1
1:T , f

′2
1:T , g1:T ) = E[

T∑
t=1

ρt(Xt, X̂t)]

Problem P2’ is in some sense a real-time point-to-point
communication problem with side information at the receiver.
This is now a decentralized team problem with the first
encoder and the receiver as the two agents. Note that encoder 1
influences the decisions at the receiver not only by the symbols
Z1

t it sends but by the entire encoding functions it employs
(since the receiver’s belief ψt depends on the choice of
encoding functions f1

1:t). A general way to solve such dynamic
team problems is to search through the space of all strategies
to identify the best choice. For our problem (and for many
team problems), this is not a useful approach for two reasons:
1) Complexity - the space of all strategies is clearly too large
even for small time horizons, thus making a brute force search
prohibitive. 2) More importantly, such a method does not
reveal any characteristic of the optimal strategies and does
not lead to the identification of a sufficient statistic. We will
therefore adopt a different philosophy to address our problem.

Our approach is to first consider a modified version of
problem P2’. We will construct this modified problem in such
a way so as to ensure that:
(a) The new problem is a single agent problem instead of a
team problem. Single agent centralized problems (in certain
cases) can be studied through the framework of Markov
decision theory and dynamic programming.
(b) The new problem is equivalent to the original team
problem. We will show that the conclusions from the modified
problem remain true for the problem P2’ as well.
We proceed as follows:
Step 1: We introduce a centralized stochastic control problem
from the point of view of a fictitious agent who knows the
“common information” between encoder 1 and the receiver.
Step 2: We argue that the centralized problem of Step 1
is equivalent to the original decentralized team problem.
Step 3: We solve the centralized stochastic control problem
by identifying an information state and employing dynamic
programming arguments. The solution of this problem will
reveal a sufficient statistic with a time-invariant domain for
encoder 1.

Receiver
Source

Xt = (X1
t , X

2
t , A)

Z1
t

Z2
t

X̂t

w1
t

Encoder 1

w1
t

Coordinator
Z1

1:t−1

f 2′
t

X1
t

X2
t

Fig. 4. Coordinator’s Problem P2”

Below, we elaborate on these steps.
Step 1: We observe that the first encoder and the receiver

have some common information. At time t, they both know
Z1

1:t−1. We now formulate a centralized problem from the
perspective of a fictitious agent that knows just the common
information Z1

1:t−1. We call this fictitious agent the “coordi-
nator” (See Fig. 4).

The system operates as follows in this new problem: Based
on Z1

1:t−1, the coordinator selects a partial-encoding function

w1
t : X 1 ×∆(A) −→ Z1

An encoding function of the form in (39) can be thought of
as a collection of mappings from X 1×∆(A) to Z1 - one for
each realization of Z1

1:t−1. Clearly, w1
t represents one such

mapping corresponding to the true realization of Z1
1:t−1 that

was observed by the coordinator. (At t = 1, since there is
no past common information, the partial-encoding rule w1

1 is
simply f1

1 which is a mapping from X 1 ×∆(A) to Z1.)
The coordinator informs the encoder 1 of its choice w1

t . The
encoder 1 then uses w1

t on its observations X1
t and b1t to find

the symbol to be transmitted, i.e,

Z1
t = w1

t (X1
t , b

1
t ) (40)

The coordinator also informs the receiver of the partial-
encoding function. The receiver at each time t, forms its belief
on the state of the source based on the received symbols, the
partial-encoding functions and the fixed strategy of encoder 2.
This belief is

ψt(x) := P (Xt = x|z1
1:t, z

2
1:t, w

1
1:t, f

′2
1:t)

for x ∈ X . The receiver’s optimal estimate at time t is then
given as:

X̂t = argmin
s∈X

∑
x∈X

ψt(x)ρt(x, s) (41)

The coordinator then observes the symbol Z1
t sent from

encoder 1 to the receiver and then selects the partial-encoding
function for time t+ 1 (w1

t+1). The system continues like this
from time t = 1 to T . The objective of the coordinator is to
minimize the performance criterion of equation (36), that is,
to minimize

E[
T∑

t=1

ρt(Xt, X̂t)]
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We then have the following problem:
Problem P2”: In Problem P2, with encoder 2’s strategy fixed
to the same choice f ′21:T as in P2’ and with a coordinator
between encoder 1 and the receiver as described above, find
an optimal selection rule for the coordinator, that is find
the mappings Λt, t = 1, 2, ..., T that map the coordinator’s
information to its decision

w1
t = Λt(Z1

1:t−1, w
1
1:t−1)

so as to minimize the total expected distortion over time T .
(Note we have included the past decisions (w1

1:t−1) of the
coordinator in the argument of Λt since they themselves are
functions of the past observations Z1

1:t−1).
Remark: Under a given selection rule for the coordinator, the
function w1

t is a random variable whose realization depends
on the realization of past Z1

t−1 which, in turn, depends on the
realization of the source process and the past partial-encoding
functions.

Step 2: We now argue that the original team problem P2’
is equivalent to the problem in the presence of the coordinator
(Problem P2”). Specifically, we show that any achievable value
of the objective (that is, the total expected distortion over time
T ) in problem P2’ can also be achieved in problem P2” and
vice versa. Consider first any selection rule Λt, t = 1, 2, ..., T
for the coordinator. While introducing the coordinator in Step
1, we gave it a particular structure- namely, we said that
the coordinator only knows the common information between
encoder 1 and the receiver. This is crucial because it implies
that all information available at the coordinator is in fact
available to both encoder 1 and the receiver. Thus, the selection
rule Λt of the coordinator can be used by both encoder 1 and
the receiver to determine the partial-encoding function, w1

t , to
be used at time t even when the coordinator is not actually
present! With encoder 2 fixed as before, the system operation
for the model in Problem P2’ can now be described as follows:
At each time t, encoder 1, uses the selection rule Λt to decide
the partial function to be used at time t, it then uses w1

t to
evaluate Z1

t as follows :

Z1
t = w1

t (X1
t , b

1
t )

The receiver uses the same selection rule to find out what w1
t is

being used by encoder 1. It then uses the received symbols to
form its belief on the source and produce an estimate according
to equation (41). Therefore, the coordinator can effectively
be simulated by encoder 1 and the receiver, and hence any
achievable value of the objective in Problem P2” with the
coordinator can be achieved even in the absence of a physical
coordinator.

Conversely, in Problem P2’ consider any strategy f1
1:T of

encoder 1 and the corresponding optimal receiver given by
Theorem 3. Now consider the following selection rule for
the coordinator in P2”: At each time t, after having observed
z1

1:t−1, the coordinator selects the following partial encoding
function.

w1
t (·) = f1

t (·, z1
t−1)

Then it is clear that for every realization of the source,
encoder 1 in Problem P2” will produce the same realization of

encoded symbols as encoder 1 of Problem P2’. Consequently
the above selection rule of the coordinator will induce the
same joint distribution P (X1:T , Z

1
1:T , Z

2
1:T ) as the encoding

rules f1
1:T for encoder 1 in problem P2’. Then the receivers in

Problem P2’ and Problem P2” will have the same conditional
belief ψt and will make the same estimates (given by Theorem
3 and equation (41) respectively). Thus any achievable value of
the objective in Problem P2’ can also be achieved in Problem
P2”.

The above equivalence allows us to focus on the coor-
dinator’s problem to solve the original problem P2’. We
now argue that the coordinator’s problem is in fact a single
agent centralized problem for which Markov decision-theoretic
results can be employed.

Step 3: To further describe the coordinator’s problem we
need the following definition and lemma.

Definition 5: For t = 1, 2, . . . , T , let ξ1
t be the coordinator’s

belief on X1
t , b

1
t . That is,

ξ1
t (x1

t , b̃
1
t ) := P (X1

t = x1
t , b

1
t = b̃1t |Z1

1:t, w
1
1:t)

for x1
t ∈ X 1 and b̃1t ∈ ∆(A).

For notational convenience, we define ξ1
0 := 0.

Lemma 5: For a fixed strategy of encoder 2, there is an
optimal decoding rule of the form:

X̂t = τt(ψt) = τt(δt(ξ1
t , Z

2
1:t)) (42)

where δt, t = 1, 2, . . . , T are fixed transformations that depend
only on source statistics and the fixed strategy of encoder 2
and τt, t = 1, 2, . . . , T are the decoding functions as defined
in Definition 4.

Proof: See Appendix C.

From equations (40) and (42), it follows that in the coor-
dinator’s problem P2”, encoder 1 and the receiver are simply
implementors of fixed transformations. They do not make any
decisions. Thus, in this formulation, the coordinator is the sole
decision maker. We now analyze the centralized problem for
the coordinator.

Firstly, observe that at time t, the coordinator knows its
observations so far - Z1

1:t−1 and the partial encoding functions
it used so far - w1

1:t−1; it then selects an “action” w1
t and

makes the next “observation” Z1
t . In particular, note that the

coordinator has perfect recall, that is, it remembers all its
past observations and actions-this is a critical characteristic
of classical centralized problems for which Markov decision-
theoretic results hold.

We can now prove the following lemma :
Lemma 6: 1) With a fixed strategy of the second encoder,
ξ1
t can be updated as follows:

ξ1
t = γ1

t (ξ1
t−1, Z

1
t , w

1
t ) (43)

where γ1
t , t = 2, . . . , T are fixed transformations that

depend only on the source statistics.
2) For a fixed strategy of the second encoder, the expected

instantaneous cost from the coordinator’s perspective can
be written as:

E
{
ρt(Xt, X̂t)

∣∣∣ Z1
1:t, w

1
1:t

}
= ρt(ξ

1
t ) (44)
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for t = 1, 2, . . . , T , where ρt are deterministic functions.
Proof: See Appendix D.

Based on Lemma 6, we obtain the following result on the
coordinator’s optimization problem.

Theorem 4: For any given selection rule Λt, t = 1, 2..., T
for the coordinator, there exists another selection rule Gt, t =
1, 2, ..., T that selects the partial-encoding function to be used
at time t, (w1

t ) based only on ξ1
t−1 and whose performance is

no worse than that of Λt, t = 1, 2, ..., T . Therefore, one can
optimally restrict to selection rules for the coordinator of the
form:

w1
t = Gt(ξ1

t−1) (45)
Proof: Because of Lemma 6, the optimization problem

for the coordinator is to control the evolution of ξ1
t (given

by (43)) through its actions w1
t , when the instantaneous cost

depends only on ξ1
t . Since ξ1

t is known to the coordinator,
this problem is similar to the control of a perfectly observed
Markov process. This observation essentially implies the result
of the theorem, as it follows from Markov decision theory
([32], Chapter 6) that to control a perfectly observed Markov
process one can restrict attention to policies that depend only
on the current state of the Markov process without any loss of
optimality. A more detailed proof using the backward induc-
tion method of dynamic programming is given in Appendix
E.

We have therefore identified the structure of the coordinator’s
selection rule. The coordinator does not need to remember all
of its information - Z1

1:t−1 and w1
1:t−1. It can operate optimally

by just using ξ1
t−1. We can thus conclude the following result.

Theorem 5: In Problem P2, there is no loss of optimality
in considering decoding rules of the form in Theorem 3 with
encoders that operate as follows:
For i = 1, 2, define ξi

0 := 0 and for t = 1, 2, ...T ,

Zi
t = f i

t (Xi
t , b

i
t, ξ

i
t−1) (46)

and
ξi
t = γi

t(ξ
i
t−1, Z

i
t , f

i
t (·, ξi

t−1)) (47)

where γi
t are fixed transformations (Lemma 6).

Proof: The assertion of the the theorem follows from
Theorem 4 and the equivalence between problem P2’ and P2”
established in Step 2. The coordinator (either real or simulated
by encoder 1 and receiver) can select the partial encoding
functions by a selection rule of the form:

w1
t = Gt(ξ1

t−1)

and the encoder 1’s symbol to be transmitted at time t is given
as:

Z1
t = w1

t (X1
t , b

1
t )

Thus, Z1
t is a function of X1

t , b
1
t and ξ1

t−1 that was used to
select w1

t . That is,

Z1
t = f1

t (X1
t , b

1
t , ξ

1
t−1)

where w1
t (·) = f1

t (·, ξ1
t−1). The coordinator (real or simulated)

then updates ξ1
t−1 according to Lemma 6 as:

ξ1
t = γ1

t (ξ1
t−1, Z

1
t , w

1
t )

The same argument holds for encoder 2 as well.

D. Discussion

Observe that Z1
1:t−1 appearing in the argument of optimal

encoding functions in (39) have been replaced by ξ1
t−1. By

definition, ξ1
t is a joint belief on X 1 and ∆(A), therefore, ξ1

t

belongs to a time-invariant space, namely, the space of joint
beliefs on X 1 and ∆(A). Thus the domain of the optimal
encoding functions in (46) is time-invariant. However, ξ1

t

above is a joint belief on a finitely-valued random variable
(X1

t ) and a real-valued vector (b1t ). Thus, we have an infinite-
dimensional sufficient statistic for the encoder. Clearly, such
a sufficient statistic can not be directly used for implemen-
tation. However, it may still be used in identifying good
approximations to optimal encoders. Below, we present some
cases where the above structural result may suggest finite-
dimensional representations of the sufficient statistic.

E. Special Cases

1) A observed at the Encoders: Consider the case when the
encoder’s observations at time t = 1 include the realization of
the random variable A. Clearly, the encoder’s belief on A, (bit)
can be replaced by the true value of A in Theorem 5. Thus,
for problem P2, there is an optimal encoding rule of the form:

Z1
t = f1

t (X1
t , A, P (X1

t−1, A|Z1
1:t−1, f

1
1:t−1)) (48)

Since A belongs to a finite set, the domain of the encoding
functions in (48) consists of the scalars X1

t and A and a belief
on the finite space X 1 ×A. Thus when A is observed at the
encoders, we have a finite dimensional sufficient statistic for
each encoder.

2) Independent Observations at Encoders: Consider the
case when the encoders’ observations are independent Markov
chains. This is essentially the case when A is constant with
probability 1. Then, effectively, all agents know A. In this
case, the result of (48) reduces to

Z1
t = f1

t (X1
t , P (X1

t−1|Z1
1:t−1, f

1
1:t−1)) (49)

and we have a finite dimensional sufficient statistic for the
encoders.

3) Binary A: Consider the case when A can take only two
values : 0 or 1. Then the encoder’s belief bit can be described
by a single real number,

bit := P (A = 0|Xi
1:t)

Thus, ξ1
t−1 in Theorem 4 involves forming a joint belief on a

finitely valued Xi
t−1 and a real-number bit−1 ∈ [0, 1]. Although

probability distributions on real number can’t be stored in
the encoder’s memory, we can still work with approximate
versions of these beliefs. For example, we may decide to store
the cumulative distribution function for only certain values in
[0, 1] as an approximation of the true distribution. This would
give a time-invariant finite dimensional approximation of the
encoder’s information. Approximate ways of evaluating and
updating these approximate beliefs would be required for this
scheme to become feasible.
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V. EXTENSIONS

We apply our results for Problems P1 to P2 to other related
problems in this section.

A. Multiple (n) encoders and single receiver problem

Encoder 1

Encoder 2

X1
t

X2
t

Z1
t

Z2
t Y 2

t

Y 1
t

X̂t

Markov
Source

M1
t−1

M2
t−1

Encoder n

Xn
t Zn

t Y n
t

Mn
t−1

X1
t , ..., Xn

t , A

Fig. 5. Problem with n encoders

Consider the model of Figure 5 where we have n (n > 2)
encoders that partially observe a Markov source and encode
their observations, in real-time, into sequences of discrete
symbols that are transmitted over separate noisy channels
(with independent noise) to a common receiver. We make
assumptions analogous to assumptions A1 and A2 for Problem
P1, that is,

1. Assumption 1: The state of the Markov source is given
as :

Xt := (X1
t , X

2
t , ..., X

n
t , A)

where A is a time-invariant random variable and conditioned
on A, X1

t , X
2
t , ..., X

n
t are conditionally independent Markov

chains. The ith encoder observes the process Xi
t , t = 1, 2, ...

and uses encoding functions of the form :

Zi
t = f i

t (Xi
1:t, Z

i
i:t−1)

for i = 1, 2, ..., n.
2. Assumption 2: We have a finite memory receiver that

maintains a separate memory for symbols received from each
channel. This memory is updated as follows:

M i
1 = li1(Y i

1 ), i = 1, 2, ..., n (50a)

M i
t = lit(M

i
t−1, Y

i
t ), i = 1, 2, ..., n (50b)

where M i
t belongs to finite alphabet Mi, and lit are the

memory update functions at time t for i = 1, 2, ..., n. The
receiver produces an estimate of the source X̂t based on its
memory contents at time t − 1 and the symbols received at
time t, that is,

X̂t = gt(Y 1
t , Y

2
t , ..., Y

n
t ,M

1
t−1,M

2
t−1, ...,M

n
t−1) (51)

A non-negative distortion function ρt(Xt, X̂t) measures the
instantaneous distortion at time t. We can now formulate the
following problem.

Problem P3: With the assumptions 1 and 2 as above, and
given source and channel statistics, the encoding alphabets,
the distortion functions ρt and a time horizon T, the objective
is to find globally optimal encoding, decoding and memory

update functions f1
1:T , f

2
1:T , ..., f

n
1:T , g1:T , l

1
1:T , l

2
1:T , ..., l

n
1:T so

as to minimize

E

{
T∑

t=1

ρt(Xt, X̂t)

}
(52)

For this problem we can establish, by arguments similar to
those used in the problems with two encoders, the following
results (Theorems 6 and 7) that are analogous to Theorem 1
and Theorem 5 respectively.

Theorem 6: There exist globally optimal encoding rules of
the form :

Zi
t = f i

t (Xi
t , b

i
t, µ

i
t) (53)

where bit := P (A|Xi
1:t) and µi

t := P (M i
t−1|Zi

1:t−1, l
i
1:t−1).

The optimal decoding rules are of the form:

X̂t = τt(ψt) (54)

where ψt := P (Xt|Y 1
t , Y

2
t , ..., Y

n
t ,M

1
t−1,M

2
t−1, ...,M

n
t−1)

and τt is as defined in Definition 4.
Proof: Consider any arbitrary choice of encoding func-

tions for encoder 2 through encoder n and arbitrary choice
of the decoding and memory update functions at the receiver.
Then the problem for encoder 1 is essentially same as in the
case when n = 2.

Theorem 7: Consider Problem P3 with noiseless channel
(that is, Y i

t = Zi
t ) and perfect receiver memory (that is

, M i
t−1 = Zi

1:t−1). Then there is no loss of optimality
in considering decoding rules of the form X̂t = τt(ψt)
where ψt = P (Xt|Z1

1:t, ..., Z
n
1:t) with encoders that operate

as follows:
For i = 1, 2, ..., n, define ξi

0 := 0 and for t = 1, 2, ...T ,

Zi
t = f i

t (Xi
t , b

i
t, ξ

i
t−1) (55)

and
ξi
t = γi

t(ξ
i
t−1, Z

i
t , f

i
t (·, ξi

t−1)) (56)

where γi
t are fixed transformations (Lemma 6).

Proof: The result follows from Theorem 5 using similar
arguments as in the proof of Theorem 6.

B. Point-to-Point Systems

Receiver
X1

t Z1
t

Y 2
t

Y 1
t

N2
t

X̂t

X2
t

Encoder

N1
t

Source

X1
t

, X2
t

, A

Fig. 6. Side-Information Problem

1) A Side Information Channel: Consider Problem P1 or
P2 with encoder 2’s strategy fixed as follows:

Z2
t = X2

t
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Then the multi-terminal communication problems reduce to a
point-to-point communication problems with side-information
available at the receiver (See, for example, Fig.6). It is clear
that the results of Theorem 1 and Theorem 2, for noisy
channels, and Theorem 5, for noiseless channels, remain valid
for these side-information problems as well (since they are
true for any arbitrary choice of encoder 2’s strategy).

2) Unknown Transition Matrix: Consider a point-to-point
communication system where an encoder is communicating
its observations of a Markov source Xt to a receiver (Fig.7).
The channel may be noisy or noiseless, the receiver may have
finite memory or perfect recall. Structural results for optimal
real-time encoding rules have been obtained in cases when the
transition probabilities of the Markov source are known ([24],
[25]). Consider now the case where the encoder observes a
Markov chain Xt whose transition matrix is not known. How-
ever, the set of possible transition matrices is parameterized
by a parameter A with a known prior distribution over a finite
set A. The encoding functions are of the form:

Zt = ft(X1:t, Z1:t−1)

where Zt is the transmitted symbol at time t. The receiver
receives a noisy version of Zt given by

Yt = ht(Zt, Nt)

where Nt is the noise in the channel. The receiver maintains
a finite memory that is updated as follows:

M1 = l1(Y1)

Mt = lt(Yt,Mt−1)

where Mt ∈M, ∀t. The receiver’s estimate at time t is given
as:

X̂t = gt(Yt,Mt−1)

A non-negative distortion function ρt(Xt, X̂t) measures the
instantaneous distortion at time t. We consider the following

Receiver X̂t

Nt

YtZt
Encoder

Markov Source
with unknown

statistics

Xt

Mt−1

Fig. 7. Point-to-point system with unknown source statistics

problem:
Problem P4: Given the source and receiver model as above
and the noise statistics, the encoding alphabets, the channel
functions ht, the distortion functions ρt and a time horizon T,
the objective is to find globally optimal encoding, decoding
and memory update functions f1:T , g1:T , l1:T so as to mini-
mize

J(f1:T , g1:T , l1:T ) = E

{
T∑

t=1

ρt(Xt, X̂t)

}
(57)

The methodology employed for the analysis of Problem P1
can be used to establish the following result.

Theorem 8: There exist globally optimal encoding rules of
the form :

Zt = ft(Xt, bt, µt) (58)

where bt := P (A|X1:t) and µt := P (Mt−1|Z1:t−1, l1:t−1).
The optimal decoding rules are of the form:

X̂t = τt(ψt) (59)

where ψt := P (Xt|Yt,Mt−1, f1:t, l1:t) and τt is as defined in
Definition 4.

Proof: We can view the optimization problem P4 as a
special case of Problem P1 with an imaginary second encoder
that makes no observations of the source and sends no message
to the receiver (that is, the set X 2 and Z2 are empty). Thus,
the results of the above theorem follow from Theorem 1 and
Theorem 2.
The methodology developed for the analysis of Problem P2
can be used to obtain the following result.

Theorem 9: Consider Problem P4 with noiseless channel
(that is, Yt = Zt) and perfect receiver memory (that is ,
Mt−1 = Z1:t−1). Then there is no loss of optimality in
considering encoding rules of the form:

Zt = ft(Xt, bt, ξt−1)

where bt := P (A|X1:t) and

ξt−1 := P (Xt−1, bt−1|Z1:t−1)

with decoding rules of the form:

X̂t = τt(ψt) (60)

where ψt := P (Xt = x|Z1:t) and τt is as defined in Definition
4.

Proof: The result follows from Theorem 5 using similar
arguments as in the proof of Theorem 8.

C. kth order Markov Source

Consider Problem P1 or P2 with a source model given by
the following equations:

X1
t+1 = F 1

t (X1
t , X

1
t−1, .., X

1
t+1−k, A,W

1
t ) (61a)

X2
t+1 = F 2

t (X2
t , X

2
t−1, .., X

2
t+1−k, A,W

2
t ) (61b)

Thus, conditioned on a global, time-invariant random variable
A, X1

t and X2
t are conditionally independent kth order Markov

processes. It is straightforward to consider a Markovian refor-
mulation of the source by defining

Bi
t := (Xi

1, X
i
2, ..., X

i
t)

for i = 1, 2 and t ≤ k and

Bi
t := (Xi

t , X
i
t−1, .., X

i
t+1−k)

for i = 1, 2 and t > k. We then have that

Bi
t+1 = F̃ 1

t (Bi
t, A,W

1
t ) (62)

for i = 1, 2. Thus, we now have a Markov system (when
conditioned on A) - with Bi

t as the encoder i’s observations -
for which our structural results directly apply.
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D. Communication with Finite Delay
Consider the models of Problem P1 or P2 with the following

objective function:
T+d∑

t=d+1

E[ρt(Xt−d, X̂t)]

The above objective can be interpreted as the total expected
distortion incurred when the receiver can allow a small fi-
nite delay, d, before making its final estimate on the state
of the source. Thus, the receiver produces a sequence of
source estimates X̂d+1, X̂d+2, ..., X̂T+d, and incurs a distor-

tion
T+d∑

t=d+1

E[ρt(Xt−d, X̂t)]. We can transform this problem

to our problem by the following regrouping of variables.
For i = 1, 2 and t = 1, 2, .., d define

Bi
t := (Xi

1, X
i
2, .., X

i
t) (63)

For t = d+ 1, ..., T , define

Bi
t := (Xi

t−d, X
i
t−d+1, .., X

i
t) (64)

and for t = T + 1, T + 2, ..T + d

Bi
t := (Xi

t−d, X
i
t−d+1, .., X

i
T ) (65)

Then, it is easily seen that conditioned on A, B1
t and B2

t

are two conditionally independent Markov chains. Moreover,
the distortion function ρt(Xt−d, X̂t) can be expressed as
ρ̃(B1

t , B
2
t , A, X̂t). Thus, we have modified the problem to

an instance of Problem P1 or P2 with Bi
t as the encoder i’s

observation.

VI. CONCLUSION

We considered a real-time communication problem where
two encoders make distinct partial observations of a discrete-
time Markov source and communicate in real-time with a
common receiver which needs to estimate some function of
the state of the Markov source in real-time. We assumed a
specific model for the source that arises in some applications
of interest. In this model, the encoders’ observations are con-
ditionally independent Markov chains given an unobserved,
time-invariant random variable. We formulated a communi-
cation problem with separate noisy channels between each
encoder and the receiver and a separated finite memory at the
receiver. We obtained finite-dimensional sufficient statistics for
the encoders in this problem. The structure of the source and
the receiver played a critical role in obtaining these results.

We then considered the communication problem over noise-
less channels and perfect receiver memory. We developed
a new methodology to identify structural results for this
problem. The new approach highlights the importance of
common information in decentralized team problems. We used
the presence of common information between an encoder and
the receiver to identify a sufficient statistic of the decoder that
has a time-invariant domain.

We have not addressed the problem of finding globally
optimal real-time encoding and decoding strategies in this
paper. A sequential decomposition of the global optimization
problem, for a special case of the problems formulated here,
appears in [34].

APPENDIX I
PROOF OF LEMMA 1

For a realization x1
1:t of X1

1:t, we have by definition,

b1t (a) =P (A = a|x1
1:t)

=P (A = a, x1
t |x1

1:t−1)/
∑
a′∈A

P (A = a′, x1
t |x1

1:t−1)

(66)

where we used Bayes’ rule in (66). The numerator in (66) can
be written as,

P (X1
t = x1

t |A = a, x1
1:t−1).P (A = a|x1

1:t−1)

=P (X1
t = x1

t |A = a, x1
t−1).b1t−1(a) (67)

where we used the Markov nature of X1
t when conditioned

on A. Thus, for a fixed a, the numerator in (66) depends
only on x1

t , x
1
t−1 and the previous belief b1t−1. Since the same

factorization holds for each term in the denominator, we have
that

b1t = α1
t (b1t−1, X

1
t , X

1
t−1),

where α1
t , t = 2, 3, ..., T are deterministic transformations.

APPENDIX II
PROOF OF LEMMA 2

By definition of µ1
t , we have

µ1
t (m) = P (M1

t−1 = m|Z1
1:t−1, l

1
1:t−1)

= P (l1t−1(M1
t−2, Y

1
t−1) = m|Z1

1:t−1, l
1
1:t−1) (68)

With the memory update rules l11:t−1 fixed, the probability
in (68) can be evaluated from the conditional distribution
P (M1

t−2, Y
1
t−1|Z1

1:t−1, l
1
1:t−1). For m′ ∈ M1 and y ∈ Y1,

this conditional distribution is given as

P (M1
t−2 = m′, Y 1

t−1 = y|Z1
1:t−1, l

1
1:t−1) (69)

=P (Y 1
t−1 = y|M1

t−2 = m′, Z1
1:t−1, l

1
1:t−1)×

P (M1
t−2 = m′|Z1

1:t−1, l
1
1:t−1)

=P (Y 1
t−1 = y|Z1

t−1).P (M1
t−2 = m′|Z1

1:t−2, l
1
1:t−2) (70)

=P (Y 1
t−1 = y|Z1

t−1).µ1
t−1(m′) (71)

where we used the fact that the channel noise at time t (N1
t ) is

independent of the past noise variables and the Markov source
in (70). Thus, we only need Z1

t−1 and µ1
t−1 to form the joint

belief in (69). Consequently, we can evaluate µ1
t (m) just from

Z1
t−1 and µ1

t−1. Thus,

µ1
t = β1

t (µ1
t−1, Z

1
t−1)

where β1
t , t = 2, 3, ..., T are deterministic transformations.

APPENDIX III
PROOF OF LEMMA 5

For fixed f2
1:T and for a given realization of the received

symbols z1
1:t, z

2
1:t and the partial encoding functions w̃1

1:t, the
receiver’s belief on the state of the source at time t is given
as:

ψt(x) := P (Xt = x|z1
1:t, z

2
1:t, w̃

1
1:t, f

2
1:t) (72)
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where x = (x1, x2, a). Using Bayes’ rule, we have

ψt(x) = P (Xt = x, Z2
1:t = z2

1:t|z1
1:t, w̃

1
1:t, f

2
1:t)/∑

x′∈X
P (Xt = x′, Z2

1:t = z2
1:t|z1

1:t, w̃
1
1:t, f

2
1:t) (73)

The numerator in right hand side of (73) can be written as

P (Z2
1:t = z2

1:t|z1
1:t, Xt = x, w̃1

1:t, f
2
1:t)

× P (Xt = x|z1
1:t, w̃

1
1:t, f

2
1:t)

=P (Z2
1:t = z2

1:t|X2
t = x2, A = a, f2

1:t)

× P (X2
t = x2|A = a)× P (X1

t = x1
t , A = a|z1

1:t, w̃
1
1:t)

(74)

where we used conditional independence of Z2
1:t, X

2
t and

Z1
1:t, X

1
t given A for the first term in (74) and the fact that

Xt = (X1
t , X

2
t , A) in the second term of left hand side of

(74).
Since the second encoder is fixed, the first term in the right

hand side of (74) is a known statistic which depends on z2
1:t.

The second term is again a known source statistic. Consider
the last term in (74). It can be expressed as follows:∫

b′∈∆(A)

P (X1
t = x1

t , A = a, b1t = b′|z1
1:t, w̃

1
1:t)

=
∫

b′∈∆(A)

[P (A = a|b1t = b′, x1
t , z

1
1:t, w̃

1
1:t)

× P (X1
t = x1

t , b
1
t = b′|z1

1:t, w̃
1
1:t)] (75)

=
∫

b′∈∆(A)

b′(a)× P (X1
t = x1

t , b
1
t = b′|z1

1:t, w̃
1
1:t)

=
∫

b′∈∆(A)

b′(a)× ξ̃1
t (x1

t , b
′) (76)

Similar representations also hold for each term in the denom-
inator of (73). It follows then that with a fixed f2

1:t, ψt(x)
depends only on the realization of second encoder’s messages
Z2

1:t and ξ1
t . Thus, from (74) and (76), we conclude that ψt

can be evaluated from ξ1
t and Z2

1:t by means of deterministic
transformations. We will call this overall transformation as δt.
Thus, we have

ψt = δt(ξ1
t , Z

2
1:t) (77)

Since the estimate X̂t is a function of ψt (cf. Theorem 3), we
conclude that

X̂t = τt(δt(ξ1
t , Z

2
1:t))

APPENDIX IV
PROOF OF LEMMA 6

1) Consider a realization z1
1:t and w̃1

1:t.
By definition, the realization of ξ1

t−1 is given as

ξ̃1
t (x1

t , b̃
1
t ) = P (X1

t = x1
t , b

1
t = b̃1t |z1

1:t, w̃
1
1:t) (78)

Using Bayes’ rule, we have

ξ̃1
t (x1

t , b̃
1
t ) = P (X1

t = x1
t , b

1
t = b̃1t , Z

1
t = z1

t |z1
1:t−1, w̃

1
1:t)

/
∑

x′∈X1

∫
b′∈∆(A)

P (X1
t = x′, b1t = b′, Z1

t = z1
t |z1

1:t−1, w̃
1
1:t)

(79)

We can write the numerator as:

P (Z1
t = z1

t |X1
t = x1

t , b
1
t = b̃1t , z

1
1:t−1, w̃

1
1:t)

× P (X1
t = x1

t , b
1
t = b̃1t |z1

1:t−1, w̃
1
1:t)

= P (Z1
t = z1

t |X1
t = x1

t , b
1
t = b̃1t , w̃

1
t )

× P (X1
t = x1

t , b
1
t = b̃1t |z1

1:t−1, w̃
1
1:t) (80)

the first term in (80) is true since z1
t = w1

t (x1
t , b̃

1
t ). The second

term in (80) can be further written as:∑
x′′∈X1,

a∈A

∫
b′∈∆(A)

P (X1
t = x1

t , b
1
t = b̃1t , X

1
t−1 = x′′

, A = a, b1t−1 = b′|z1
1:t−1, w̃

1
1:t)

=
∑

x′′∈X1,
a∈A

∫
b′∈∆(A)

[P (b1t = b̃1t |b1t−1 = b′, X1
t = x1

t , X
1
t−1 = x′′)

× P (X1
t = x1

t |A = a,X1
t−1 = x′′)

× P (A = a|b1t−1 = b′, X1
t−1 = x′′,

z1
1:t−1, w̃

1
1:t−1)

× P (X1
t−1 = x′′, b1t−1 = b′|z1

1:t−1, w̃
1
1:t−1)]

(81)

=
∑

x′′∈X1,
a∈A

∫
b′∈∆(A)

[P (b1t = b̃1t |b1t−1 = b′, X1
t = x1

t , X
1
t−1 = x′′)

× P (X1
t = x1

t |A = a,X1
t−1 = x′′)

× P (A = a|b1t−1 = b′)× ξ̃1
t−1(x′′, b′)] (82)

where we used Lemma 1 and the Markov property of X1
t

given A in (81). The first term in (82) is simply 1 or 0 since
b1t is a deterministic function of b1t−1, X1

t and X1
t−1. The

second term is a known source statistic and the third term is
b′(a). Similar expressions hold for the denominator in (79).
Thus, from (79)-(82), we conclude that to evaluate ξ1

t (x1
t , b̃

1
t )

we only need Z1
t , w

1
t and ξ1

t−1. This establishes equation (43).

2) With encoder 2’s strategy fixed, the expected instanta-
neous cost from the coordinator’s perspective is given as:

E
{
ρt(Xt, X̂t)

∣∣∣ z1
1:t, w̃

1
1:t

}
=E

{
ρt(X1

t , X
2
t , A, τt(δt(ξ

1
t , Z

2
1:t)))

∣∣∣ z1
1:t, w̃

1
1:t, ξ̃

1
t

}
, (83)

since ξ̃1
t is a function of z1

1:t, w̃
1
1:t, hence it can be included in

the conditioning variables. Thus, the only random variables in
the above expectation are X1

t , X
2
t , A and Z2

1:t. Therefore, the
above expectation is a function of the following probability
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mass function:

P (X1
t = x1

t , X
2
t = x2

t , A = a, Z2
1:t = z2

1:t|z1
1:t, w̃

1
1:t, ξ̃

1
t )

=P (Z2
1:t = z2

1:t, X
2
t = x2

t |A = a,X1
t = x1

t , z
1
1:t, w̃

1
1:t, ξ̃

1
t )

× P (X1
t = x1

t , A = a|z1
1:t, w̃

1
1:t, ξ̃

1
t )

=P (Z2
1:t = z2

1:t, X
2
t = x2

t |A = a)×∫
b′∈∆(A)

[P (X1
t = x1

t , A = a, b1t = b′|z1
1:t, w̃

1
1:t, ξ̃

1
t )]

=P (Z2
1:t = z2

1:t, X
2
t = x2

t |A = a)×∫
b′∈∆(A)

[P (A = a|b1t = b′, z1
1:t, w̃

1
1:t, ξ̃

1
t ) (84)

× P (X1
t = x1

t , b
1
t = b′|z1

1:t, w̃
1
1:t, ξ̃

1
t )]

=P (Z2
1:t = z2

1:t, X
2
t = x2

t |A = a)×
∫

b′∈∆(A)

[b′(a)

× P (X1
t = x1

t , b
1
t = b′|z1

1:t, w̃
1
1:t, ξ̃

1
t )]

=P (Z2
1:t = z2

1:t, X
2
t = x2

t |A = a)×
∫

b′∈∆(A)

[b′(a)

× ξ̃1
t (x1

t , b
′)] (85)

where we used conditional independence of the encoder’s
observations and actions given A in (84). In (85), the first
term is a fixed statistic when encoder 2’s strategy is fixed and
the second term depends only on ξ̃1

t . Thus, the expectation in
(83) can be evaluated using ξ̃1

t . This establishes the second
part of the Lemma (equation 44).

APPENDIX V
PROOF OF THEOREM 4

For ξ ∈ ∆(X 1 ×∆(A)), define the following functions:

VT (ξ) =ρT (ξ) (86)
Vt−1(ξ) =ρt−1(ξ)+

inf
w

[E
{
Vt(γt(ξ, Z1

t , w
1
t ))
∣∣ ξ1

t−1 = ξ, w1
t = w

}
]

(87)

for t = T, T − 1, . . . , 2 and

V0 = inf
w

[E
{
V1(γt(ξ, Z1

1 , w
1
1))
∣∣ w1

1 = w
}

] (88)

The functions ρt and γt are from Lemma 6. Note that the
infimum in (87) is over all functions from the space (X 1 ×
∆(A)) to the space Z1 and the infimum in (88) is over all
functions from the space X 1 to the space Z1.

Consider an arbitrary selection rule Λ := (Λt, t = 1, 2..., T )
for the coordinator. That is, the coordinator selects the partial-
encoding function at time t as follows:

w1
t = Λt(Z1

1:t−1, w
1
1:t−1) (89)

Then the coordinator’s expected cost to go from time t
onwards under the selection rule Λ is given as :

Jt(Z1
1:t, w

1
1:t) = E

{
T∑

k=t

ρk(Xk, X̂k)

∣∣∣∣∣ Z1
1:t, w

1
1:t

}
(90)

for t = 1, 2, . . . , T . Also, the overall expected cost under
selection rule Λ is

J0 = E
{
J1(Z1

1 , w
1
1)
}

(91)

We will show for all t = T, T − 1, .. . . . , 1, we have the
following inequality

Vt(ξ1
t ) ≤ Jt(Z1

1:t, w
1
1:t) (92)

where the ξ1
t is the belief on X1

t , b
1
t conditioned on Z1

1:t, w
1
1:t.

We proceed by backward induction. At time T , we have

JT (Z1
1:T , w

1
1:T ) =E

{
ρT (XT , X̂T )

∣∣∣ Z1
1:T , w

1
1:T

}
(93)

=ρT (ξ1
T ) = VT (ξ1

T ) (94)

where we used part 2 of Lemma 6 (equation 44) in (94). Thus
(92) is true for t = T . Assume that (92) is true for time t. At
t− 1, for a realization z1

1:t−1, w̃
1
1:t−1, we have

Jt−1(z1
1:t−1, w̃

1
1:t−1)

=E

{
T∑

k=t−1

ρk(Xk, X̂k)

∣∣∣∣∣ z1
1:t−1, w̃

1
1:t−1

}
(95)

=E
{
ρt−1(Xt−1, X̂t−1)

∣∣∣ z1
1:t−1, w̃

1
1:t−1

}
+

E

{
T∑

k=t

ρk(Xk, X̂k)

∣∣∣∣∣ z1
1:t−1, w̃

1
1:t−1

}
(96)

=ρt−1(ξ̃1
t−1)+

E

{
E

{
T∑

k=t

ρk(Xk, X̂k)

∣∣∣∣∣ Z1
1:t, w

1
1:t

} ∣∣∣∣∣ z1
1:t−1, w̃

1
1:t−1

}
(97)

≥ρt−1(ξ1
t−1) + E

{
Vt(ξ1

t )
∣∣ z1

1:t−1, w̃
1
1:t−1

}
(98)

where we used part 2 of lemma 6 for the first term in (97)
and the induction hypothesis at time t for the second term in
(98). We will focus on the second term in (98). We have

E
{
Vt(ξ1

t )
∣∣ z1

1:t−1, w̃
1
1:t−1

}
= E

{
Vt(ξ1

t )
∣∣∣ z1

1:t−1, w̃
1
1:t−1, ξ̃

1
t−1, w̃

1
t

}
(99)

Note that we have included ξ̃1
t−1 and w̃1

t in the conditioning
of the right hand side of (99) since under the selection
rule Λ, they are functions of the original conditioning terms
z1

1:t−1, w̃
1
1:t−1. Further, using Lemma 6 for ξ1

t in (99), we get

E
{
Vt(ξ1

t )
∣∣∣ z1

1:t−1, w̃
1
1:t−1, ξ̃

1
t−1, w̃

1
t

}
= E

{
Vt(γt(ξ̃1

t−1, Z
1
t , w

1
t )
∣∣∣ z1

1:t−1, w̃
1
1:t−1, ξ̃

1
t−1, w̃

1
t

}
≥ inf

w
E
{
Vt(γt(ξ̃1

t−1, Z
1
t , w))

∣∣∣ z1
1:t−1, w̃

1
1:t−1, ξ̃

1
t−1, w

1
t = w

}
= inf

w
E{Vt(γt(ξ̃1

t−1, w(X1
t , b

1
t ), w))|z1

1:t−1,

w̃1
1:t−1, ξ̃

1
t−1, w

1
t = w} (100)

We will now show that the right hand side in (100) is same as
the second term in (87) evaluated at ξ̃1

t−1. . The expectation
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in (100) depends only on P (X1
t , b

1
t |z1

1:t−1, w̃
1
1:t−1, ξ̃

1
t−1, w

1
t =

w). Now,

P (X1
t , b

1
t |z1

1:t−1, w̃
1
1:t−1, ξ̃

1
t−1, w

1
t = w)

=
∑

x′∈X1,
a∈A

∫
b′∈∆(A)

[P (X1
t , b

1
t , X

1
t−1 = x′, A = a, b1t−1 = b′|z1

1:t−1,

w̃1
1:t−1, ξ̃

1
t−1, w

1
t = w)]

=
∑

x′∈X1,
a∈A

∫
b′∈∆(A)

[P (b1t |X1
t , b

1
t−1 = b′, X1

t−1 = x′)

× P (X1
t |X1

t−1, A = a)× P (A = a|b1t−1 = b′)

×ξ̃1
t−1(x′, b′)] (101)

where we used the Lemma 1 and Markov nature of
X1

t when conditioned on A in right hand side of (101).
The right hand side of (101) depends only on ξ̃1

t−1

(and the known source statistics). Thus, the probability
P (X1

t , b
1
t |z1

1:t−1, w̃
1
1:t−1, ξ̃

1
t−1, w

1
t = w) is the same as the

probability P (X1
t , b

1
t |ξ̃1

t−1, w
1
t = w), hence the expression in

the right hand side of (100) is the same as

inf
w

[E{Vt(γt(ξ̃1
t−1, w(X1

t , b
1
t ), w))|ξ̃1

t−1, w
1
t = w}]

which is the second term in (87) evaluated at ξ̃1
t−1. Therefore,

using (98), we get

Jt−1(Z1
1:t−1, w

1
1:t−1)

≥ρt−1(ξ1
t−1)+

inf
w

[E
{
Vt(γt(ξ1

t−1, Z
1
t , w

1
t ))
∣∣ ξ1

t−1, w
1
t = w

}
]

= Vt−1(ξ1
t−1) (102)

This completes the induction argument. Thus, we have that
under any selection rule for the coordinator

V1(ξ1
1) ≤ J1(Z1

1 , w
1
1) (103)

Taking expectations on both side of (103) and using the
definition of V0, we get

V0 ≤ J0

for any selection rule Λ for the coordinator. Now a selection
rule found using equations (86) and (87) that at each step
selects a w1

t based on ξ1
t−1 such that it is at least as close to

the infimum Vt as Jt will achieve a performance that is no
worse than Λ. This establishes the Theorem.
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