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Abstract. We present an approach to Service Provisioning with Quality of Service (QoS) requirements in ATM networks. The ATM
network provides services to users every T̂ units of time. Each service is characterized by its one way route, its input traffic constraints
and its provided QoS. The input traffic constraints consist of the maximum input rate and an upper bound on the burstiness curve. The
QoS provided is defined by the maximum percentage of cell loss along the route and the maximum end-to-end cell delay. The service
provisioning problem is defined as follows: determine the amount, price and required resources (bandwidth and buffers) for each type of
service, that maximize a social welfare function that consists of the network’s revenue and the users’ surplus. This problem is solved every
T̂ units of time and the allocation is made only over the available resources, that is, those that are not used by connections that are still
active. We prove the existence of a solution to the Service Provisioning Problem and we also suggest an iterative procedure that interprets
the solution. The network adjusts the prices to maximize the welfare function and also to guarantee that the allocated resources do not
exceed the available resources. Based on these prices, users request a new allocation that minimizes their cost and the network adjusts
again the prices based on the new allocation. The above procedure has the following features: (i) the network needs to know only the
average request rate for each type of service, their route and the resources requested by the users; (ii) users need to know only their private
information (input traffic constraints and QoS requirements), their route, and the prices for resources announced by the network.

1. Introduction

Asynchronous transfer mode (ATM) technology is widely regarded as the switching and multiplexing technique
for broadband integrated services digital networks (B-ISDN). The development of these networks is driven by
the emerging needs to provide real-time transport capabilities necessary for future multimedia applications
incorporating voice, video and high speed data.

In this study we are concerned with the problem of allocating resources (buffers and bandwidths) in ATM
networks so that the services provided by the network meet certain quality requirements expressed by maximum
percentage of cell loss and maximum end-to-end cell delay. Resource reservation has been proposed to be
the preferred approach to guarantee quality of service (QoS) in high speed applications. Most of the proposed
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resource reservation schemes and their analysis so far are restricted to a single node (see, for example, [3–6,
8–13,21,25,27]). Exceptions are [2,7,14,20,22], which analyze resource reservation schemes along fixed paths
consisting of multiple nodes. The work reported in [2,7,14,22] is based on deterministic models whereas the
study in [20] is based on a stochastic model.

Our approach to developing a methodology to service provisioning with QoS requirements in ATM networks
builds on the method proposed by Low and Varaiya [15,16,18]. The salient features of Low’s and Varaiya’s
approach are: (1) the ATM network offers several types of services differentiated by user traffic characteristics
and quality parameters; (2) the network offers for rent bandwidth and buffers and users purchase these resources
to meet their desired quality; (3) the objective is to maximize a welfare function subject to constraints that are
dictated by: (i) the available resources; (ii) the requirement that no cell loss is allowed during the data transfer;
and (iii) the maximum end-to-end delay (see [16]).

Our major contribution in this paper is the incorporation, in the resource allocation process, of the QoS
requirements expressed by the maximum percentage of cell loss Ls and the maximum end-to-end cell delay
Ds for each type of service s. The incorporation of the QoS requirements in the service provisioning process
is achieved by taking a worst case approach to the percentage of cell loss and the end-to-end cell delay. This
approach reveals the interaction among resource allocation, percentage of cell loss and end-to-end cell delay.
Service provisioning is achieved by a mechanism similar to the one described in [16]; the network offers for
rent its resources (bandwidth and buffers) and the users purchase them to meet their QoS requirements described
above.

Our analysis of quality of service can also be used to address the admission control problem in ATM networks
as follows: When the network receives a request for the admission of a certain type of service, it inspects its
available resources (bandwidth and buffers) and attempts to establish a route (connection) from the source to
the destination of the service request, so that there are sufficient available resources along that route to satisfy
the quality of service requirements on percentage of cell losses and end-to-end cell delay. If the network can
identify such a route it accepts the service request, otherwise it rejects it.

The remainder of the paper is organized as follows: in Section 2 we formulate the service provisioning
with QoS requirements problem as a mathematical programming problem that has to be solved every T̂ units
of time. In Section 3 we establish explicit expressions of the constraints on maximum percentage of cell
loss and maximum end-to-end cell delay, needed to guarantee that the offered services will satisfy their QoS
requirements. In Section 4 we present a solution procedure for the optimization problem of Section 2. In
Section 5 we summarize the results, delineate their practical implications and discuss some open problems
arising from our approach.

2. Problem formulation

We consider the network model of Fig. 1. It consists of a set L of links. Link l ∈ L comprises a transmission
capacity of Cl cps and a buffer of Bl cells. Bl is the size of the buffer at the preceding node that is supplied
for link l. Therefore output buffering is assumed at each node. Both bandwidth and buffer are supplied for the
direction of transmission shown in Fig. 1.

For our purposes, an ATM network provides a one-way connection between two end-points over a route for
a certain duration of time. A route between its end-points spans several nodes and links. A connection is used
to transport a data stream or message from one end-point to the other. The bandwidth and buffers, allocated to
a connection can vary over the links in its route. Whenever the message rate at a node exceeds the allocated
bandwidth, the excess cells are buffered and if the buffer is full they are lost.

When a service request is made, the network must decide (1) whether to admit that request; and if it is
admitted, the network (2) must assign a connection to it, and (3) provide enough bandwidth and buffer resources
to meet service quality. Decision (1) is usually called admission control, (2) is called routing, and (3) is called
resource allocation or service provisioning.
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Fig. 1. Network model.

We make the following assumptions:

(A1) Time is divided into intervals of length T̂ . Allocation decisions are made at the time instants kT̂ ,
k = 0, 1, 2, . . .

(A2) At the time instants kT̂ , k = 0, 1, 2, . . . , where allocation decisions are made, resources are not
reserved in anticipation of future requests.

(A3) Incoming traffic to the network (i.e., input messages to the network) is modeled as a deterministic ‘fluid
flow’ m(·) which represents the instantaneous rate in cps. Therefore m(·) is a nonnegative bounded
function:

0 6 m(t) 6 µ0, ∀t ∈ [0, T ],

where µ0
4
= sup06t6T m(t), and T is the duration of the message.

(A4) Input messages are characterized by the Message Burstiness Function which is given by the following
formula:

bm(µ)
4
= sup

06s6t6T

∫ t

s

[m(τ) − µ] dτ, µ > 0. (2.1)

(A5) The network offers a set S of different types of services. Each type s ∈ S of service is characterized
by the maximum cell rate µs0, the maximum burstiness curve bs(·), and its route. A type s message –
that is a message that requests a service of type s – must satisfy the following traffic constraints:

m(t) 6 µs0, ∀t ∈ [0, T ], (2.2)

bm(µ) 6 bs(µ), ∀µ ∈ [0, µs0]. (2.3)

(A6) A type s ∈ S service is sold by the network at a price ws per unit and is provided by a connection
over a fixed route rs, that is a set of links ls ∈ L, throughout its duration.

(A7) The quality of service supplied to a type s service is characterized by the following parameters, that
are defined over the allocation period T̂ :

(i) the maximum percentage of cell loss Ls,
(ii) the maximum end-to-end cell delay Ds (in units of time).

(A8) The demand (or user requests) for a type s service is given by the aggregate request function Rs(ws) =

λsT̂ exp(−ws), where λs exp(−ws) denotes the arrival rate of a type s request when the price per unit
of type s service is ws. The nonnegative number λs is known by the network.
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(A9) Users inform the network at the end of their service. The resources allocated to these users are then
released to the network, that uses them on the next service allocation decision.

(A10) At the time instants kT̂ , k = 0, 1, 2, . . . , where allocation decisions are made, the network reallocates
only those resources that are freed by the termination of services in ((k − 1)T̂ , kT̂ ].

(A11) There is no sharing of the allocated resources (bandwidth and buffers) at each ATM switch, among
the different connections that pass through the switch.

We now discuss and critique each of the above assumptions. The selection of the length T̂ of each allocation
period must take into account the overall delay constraints (end-to-end delay plus delay due to waiting for the
next allocation period) of the different types of services, the arrival rates of incoming traffic as well as the
duration of the different types of services. The determination of the optimal (or even near optimal) value of T̂ is
a challenging problem that will not be addressed in this paper. Here we assume that the value of T̂ is fixed and
given to us. Neglecting future requests at allocation instances usually leads to suboptimal allocations. On the
other hand, anticipation of future requests at allocation instances requires certain information, such as probability
distribution functions on the duration of different types of services or probability distribution functions of the
incoming traffic, which may not in general be available to us. Assumptions (A3)–(A5) provide a mathematical
description of the incoming traffic. The small, fixed-sized packets that are used to carry the information in
ATM networks justify the traffic approximation described by (A3). The description of input messages by their
burstiness function (A4) is by now accepted as a practically reasonable approach to characterizing input traffic.
The message burstiness bm(µ) is interpreted as the minimum buffer size of a fixed rate – µ cps – server that is
sufficient to prevent cell loss during the transmission of that message. The function bm(·) is nonnegative, convex,
strictly decreasing for µ < µ0, and bm(µ) = 0 for µ > µ0 (see [15]). The definition of message burstiness
is implicitly related to the tradeoff between bandwidth and buffers as substitutable resources for a specific
service quality on a single node. We can achieve the same quality requirements by increasing the bandwidth
and decreasing the buffers or vice versa. An assumption more realistic than (A5) would not distinguish among
services that have the same characteristics (maximum rate, maximum burstiness) and the same quality of service
requirements (cf. (A7)) but have different source and destination and different routes. Assumption (A6) implies
that the routing of messages has already been decided and allows us to concentrate on the resource allocation
(service provisioning) problem. Assumption (A7) explicitly describes the quality of service requirements on
each type of service. In the literature, [25], jitter is also included in the quality parameters used to characterize
the supplied quality of a type s service. In our situation it will become evident that jitter is zero as a result of
our problem formulation. In (A8) we have selected a family of strictly decreasing, convex functions to represent
the users’ demand for the different types of services. The following assumptions are implied by the choice of
these functions: (i) each user can only request one type of service; (ii) there is no interdependence between the
demands for different services, i.e., the demand for a particular service does not depend on the prices of the
other services; (iii) there is no income (or wealth) effect for the requested services, that is, the demand for a
particular service does not depend on the user’s income. This can be justified as follows. Since communication
services is just one good among others that the user is willing to buy, then because one extra unit of wealth will
spread itself around, the wealth effect for that good is bound to be small. The assumption that there is no income
effect implies that the Walrasian and Hicksian demand functions are identical [19]. This in turn implies that the
demand is a decreasing function of the price (Compensated Law of Demand). Assumption (A9) implies that
the network does not have to know the duration of any of the requests it receives. Assumption (A10) ensures
that services that have been admitted at some allocation instant and have not been completed over the next
T̂ units of time, continue to be served without any violation of their QoS requirements, until they inform the
network that they have been completed. Finally assumption (A11) does not allow any statistical multiplexing
of resources among different connections at ATM switches. An assumption more realistic than (A11) would
allow resource sharing among different connections at ATM switches. The implications of this assumption will
be further discussed in Section 5. Weakening assumptions (A5) and/or (A11), as discussed above, would result
in a problem considerably more difficult than the one we have formulated in this paper. Such a problem will
be the topic of future research.
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Let µsi , β
s
i

1 be the bandwidth and buffer allocation, respectively, for a type s service over the ith link along
its route rs = {1, 2, . . . , Ps}. Note that for l /∈ rs, µls = βls = 0. We define by Ms{µs0, bs(·)} the set of all
type s messages that are conformant, i.e., they satisfy Eqs (2.2) and (2.3). Let xs be the amount of a type s
service that is provided by the network and ws be the corresponding price. Then the service allocation decision:

(x,w,µ,β)
4
=
{
xs, ws, {µsi , βsi }i∈rs

}
s∈S

is conformant, if it satisfies the following equations:

0 6 xs 6 Rs(ws), ∀s ∈ S, (2.4)

ws > 0, ∀s ∈ S, (2.5)∑
s∈S

xsµ
s
l 6 Cl

(
kT̂
)

and
∑
s∈S

xsβ
s
l 6 Bl

(
kT̂
)
, ∀l ∈ L, (2.6)

Lm(µ,β) 6 Ls, ∀m(·) ∈Ms{µs0, bs(·)}, ∀s ∈ S, (2.7)

Dm(µ,β) 6Ds, ∀m(·) ∈Ms{µs0, bs(·)}, ∀s ∈ S, (2.8)

where: Cl(kT̂ ), Bl(kT̂ ) are the bandwidth and buffers, respectively, that are available for allocation at the
beginning of the kth allocation period at node l ∈ L 2; Lm(µ,β) is the percentage of cell loss and Dm(µ,β) is
the maximum end-to-end cell delay (in units of time) for messagem(·), resulting from the allocation (x,w,µ,β).

The first two inequalities (2.4), (2.5) state that the supply should not be greater than the demand and also
that the number of offered services and their corresponding prices should not be negative quantities. The next
family of inequalities (2.6) states that the allocation should not exceed the available resources. Finally (2.7) and
(2.8) guarantee that the offered services satisfy the quality requirements.

Based on the above assumptions and discussion we now propose the following two-step approach to formu-
lating the service provisioning problem.

Step 1: Find a family of functions L̂s(µ,β) and D̂s(µ,β), ∀s ∈ S such that,

Lm(µ,β) 6 L̂s(µ,β) and (2.9)

Dm(µ,β) 6 D̂s(µ,β), (2.10)

for all m(·) ∈Ms{µs0, bs(·)} and for all s ∈ S.
Step 2: Solve the following optimization problem:

Maximize the welfare function,

W (x,w,µ,β)
4
=
∑
s∈S

xsws +
∑
s∈S

∫ ∞
ws

min
(
xs, Rs(u)

)
du (2.11)

subject to conditions (2.4)–(2.6) and (2.12) which is given below:

L̂s(µ,β) 6 Ls and D̂s(µ,β) 6 Ds, ∀s ∈ S. (2.12)

1The letter l, when used as a subscript instead of i, is an index over the set L of all links of the network.
2This is consistent with assumption (A10). Note that Cl(0) = Cl and Bl(0) = Bl.



268 P. Thomas and D. Teneketzis / An approach to service provisioning with quality of service requirements in ATM networks

The first term of the welfare function (Eq. (2.11)), is the network revenue and the second is the user surplus [23].
We now discuss the features of our two step approach to the service provisioning problem. Ideally we would

like to solve the problem of maximizing (2.11) over the set of all conformant allocations (i.e., those that satisfy
(2.4)–(2.8)). We don’t do that. Instead, in Step 2, we replace (2.7) and (2.8) by (2.12). The consequence of that
is the following: If the upper bounds in Step 1 are tight then the solutions of the two problems are the same. If
not, then the set of all conformant allocations is a superset of the allocations that also satisfy (2.12). Therefore
the two problems may not have the same solution. As we will see in Section 3, where we compute the upper
bounds for Step 1, these bounds are not tight. Therefore, in our service provisioning approach the optimization
is done over a subset of all possible conformant service allocation decisions. Nevertheless, our approach to
service provisioning explicitly incorporates QoS requirements that capture the interaction of resource allocation
(bandwidth and buffers), percentage of cell loss and end-to-end cell delay.

We present the solution of Step 1 in the next section. The solution of the optimization problem in Step 2, is
given in Section 4.

3. Quality of service requirements

In this section we consider a type s service provided by a connection over the fixed route rs = {1, 2, . . . , Ps},
and the set Ms{µs0, bs(·)} of all type s messages. Given the fixed allocation {µsi , βsi }i∈rs along the route, we
want to determine upper bounds for the percentage of cell loss and the end-to-end cell delay, over all messages
in Ms{µs0, bs(·)}. For convenience we omit the subscript (superscript) s. Furthermore, we denote by (µ,β) the
fixed allocation {µk, βk}Pk=1 along the route.

3.1. An upper bound on the percentage of cell loss along a fixed route

Consider the multinode system of Fig. 2, and assume that the input message m0(·) belongs to the family
M{µ0, b(·)}. We denote by mk(·) the resulting message at the output of node k, 1 6 k 6 P . Let Tmk be the
duration (in units of time) and Vmk the volume (in cells) of message mk(·), 0 6 k 6 P .

Without any loss of optimality we can restrict attention to allocations that satisfy,

µk 6 µk−1, 1 6 k 6 P, (3.1a)

β1 6 min
(
b(µ1), T̂ (µ0 − µ1)

)
, (3.1b)

βk 6 T̂k−1(µk−1 − µk), 2 6 k 6 P, (3.1c)

where T̂k is an upper bound on Tmk . This is because if (3.1) is not satisfied at some node k, part of the resources
allocated to that node is never utilized. To find an upper bound on Tmk we notice the following:

Tm0 6 T̂ , and Tmk 6 Tmk−1 +
βk
µk
, 1 6 k 6 P − 1.

Therefore,

T̂k = T̂ +
k∑
j=1

βj
µj
, 1 6 k 6 P − 1. (3.2)

The main problem that we want to solve in this section is the following:
For a fixed resource allocation (µ,β) that satisfies (3.1), find a function L̂(µ,β) such that:

Lm0(µ,β) 6 L̂(µ,β), ∀m0(·) ∈M{µ0, b(·)},
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Fig. 2. Connection spanning P nodes in sequence.

Fig. 3. Single node model.

where Lm0(µ,β) is the percentage of cell loss for message m0(·) when it travels through the multinode system
of Fig. 2.

The percentage of cell loss Lkm0
(µ,β) at each individual node due to m0(·) is,

Lkm0
(µ,β) = 1− Vmk

Vmk−1

, 1 6 k 6 P,

whereas the percentage of cell loss along the route is,

Lm0(µ,β) = 1−
Vmp
Vm0

= 1−
P∏
k=1

Vmk
Vmk−1

= 1−
P∏
k=1

(
1−Lkm0

(µ,β)
)
. (3.3)

To find an upper bound on Lm0(µ,β) we solve two problems that refer to a single server with a finite buffer
β and a maximum service rate µ, as shown in Fig. 3.

In the first problem (P1) we find a message m̂0(·) that satisfies the following inequality,

(P1): L
m̂0

(µ, β) > max
m(·)∈M{µ0,b(·)}

Lm(µ, β), (3.4)

where Lm(µ, β) denotes the percentage of cell loss for message m(·) as it passes through the single node system.
This result establishes the fact that,

L1
m0

(µ,β) 6 L
m̂0

(µ1, β1), ∀m0(·) ∈M{µ0, b(·)}. (3.5)

In the second problem (P2) we consider the family M ′{µ0} of input messages with finite duration T and
maximum input rate µ0. That is,

M ′{µ0}
4
=
{
m(·), m(t) 6 µ0, 0 6 t 6 T

}
.

Then we prove that there exists a message m̂′0(·) ∈M ′{µ0} such that,

(P2): m̂′0(·) = arg max
m(·)∈M′{µ0}

Lm(µ, β), (3.6)

where Lm(µ, β) denotes, as before, the percentage of cell loss for message m(·).
Since for every m0(·) ∈ M{µ0, b(·)} we have that mk(·) ∈ M ′{µk}, 1 6 k 6 P − 1, the following set of

inequalities is true,

Lkm0
(µ,β) 6 L

m̂′
k−1

(µk, βk), ∀m0(·) ∈M{µ0, b(·)}, 2 6 k 6 P, (3.7)
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where,

m̂′k−1
4
= arg max

m(·)∈M′{µk−1}
Lm(µk, βk), 2 6 k 6 P. (3.8)

Equations (3.3), (3.5) and (3.7) establish the fact that,

Lm0(µ,β) 6 L̂(µ,β), ∀m0(·) ∈M{µ0, b(·)}, (3.9)

where,

L̂(µ,β) = 1−
(
1−L

m̂0
(µ1, β1)

) P∏
k=2

(
1−L

m̂′
k−1

(µk, βk)
)
. (3.10)

We now proceed in the formulation and solution of problem (P1).

3.1.1. The problem in the first node: formulation and solution of (P1)
Let the single node model of Fig. 3. We consider this system to be a work conserving server with finite buffer

β and maximum service rate µ.
We consider input messages m(·) that belong to the family M{µ0, b(·)} and have duration T̂ . This is in

accordance with assumptions (A3), (A4) and (A5). Since for µ > µ0 there are no cell losses we also make
the assumption that µ < µ0. Finally we assume that the buffer occupancy at the beginning of the transmission
session is zero.

Let Lm(µ, β) denote the percentage of cell loss for message m(·) as it passes through the single node system.
We also denote by Em(µ, β) the corresponding number of cells lost. We want to solve the following problem:
(P1) Determine an input message m̂0(·) such that,

Lm(µ, β) 6 L
m̂0

(µ, β), ∀m(·) ∈M{µ0, b(·)}. (3.11)

The main result of Section 3.1.1 is summarized by the following theorem:

Theorem 3.1. Let N̂ be the largest integer such that

N̂
b(µ)µ0

µ(µ0 − µ)
+

b(µ)

µ0 − µ
6 T̂ ,

and let

r̂
4
= T̂ − N̂ b(µ)µ0

µ(µ0 − µ)
− b(µ)

µ0 − µ
.

Then,

Lm(µ, β) 6 L
m̂0

(µ, β), ∀m(·) ∈M{µ0, b(·)},

where m̂0(·) has the following characteristics (see Fig. 4):

(i) It satisfies the burstiness constraint at the rate µ.
(ii) It consists of N̂ + 2 ‘ON’ intervals, during which m̂0(t) = µ0, and N̂ + 1 ‘OFF’ intervals, during which

m̂0(t) = 0. The duration of each ‘ON’ interval is equal to b(µ)/(µ0 − µ) and the duration of each
‘OFF’ interval is equal to b(µ)/µ.

(iii) If r̂ > βµ0/(µ(µ0 − µ)), then m̂0(·) ends with an ‘ON’ interval of duration α/(µ0 − µ) preceded by an

‘OFF’ interval of duration α/µ, where α
4
= r̂µ(µ0 − µ)/µ0. If r̂ 6 βµ0/(µ(µ0 − µ)) then m̂0(·) ends

with an ‘OFF’ interval of duration r̂.
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Fig. 4. Maximum cell loss message.

The message m̂0(·) described above has the following additional property:

Em(µ, β) 6 E
m̂0

(µ, β), ∀m(·) ∈M{µ0, b(·)}.

Discussion. The intuition behind the result presented in the theorem is the following. The requirement that
the message, that provides the upper bound on the percentage of cell loss, satisfies the burstiness constraint at
rate µ leads us to consider a fictitious buffer with capacity b(µ) and maximum service rate µ. This fictitious
buffer should never overflow by any message that satisfies the burstiness constraint at rate µ. The message
that incurs the maximum percentage of cell loss must fill in the fictitious buffer as quickly as possible and then
empty it as quickly as possible. As soon as the buffer becomes empty the message should start refilling it again
with the maximum rate. This pattern must continue through out the whole duration of the message. All these
considerations lead to the ‘ON-OFF’3 message that is described in the statement of the theorem. We prove that
this message indeed provides an upper bound on the percentage of cell loss. The main idea of the proof is the
following. We select an arbitrary input message m(·) ∈ M{µ0, b(·)}, and starting from m(·), we construct a
sequence of messages with the following feature: each of these messages results from a simple modification
of its precedent in the sequence; each resulting message satisfies the burstiness constraint at the rate µ; and
each message incurs an equal or higher percentage of cell loss than its precedent. The construction of the
abovementioned sequence of messages is described in a series of lemmas. The intuition behind each lemma is
discussed right after their statement.

We define the following quantities to be used in the proof of the theorem:

brm(t): buffer occupancy (in cells) at time t, due to message m(·),

bfm(t): buffer occupancy of the fictitious buffer at time t, due to message m(·),
XON: duration of an ‘ON’ period of an ON-OFF message,
XOFF: duration of an ‘OFF’ period of an ON-OFF message.

We also make the assumption that both the ‘real’ and the fictitious buffer are empty at time t = 0, that is:
brm(0) = bfm(0) = 0.

We now proceed to the series of lemmas that establish the result of Theorem 3.1.

Lemma 3.1. We can replace any message m(·) ∈M{µ0, b(·)}, that has strictly positive losses, by an ON-OFF
message m1(·) that satisfies the burstiness constraint at rate µ and has the same number of cell losses and a
greater or equal percentage of loss than the original. Furthermore, m1(·) is such that,on every ON interval it
has strictly positive losses and XOFF > β/µ.

3That is a message with rate that takes only two values, either zero or the maximum.
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Discussion. The intuition behind this lemma is the following. An ON-OFF message that satisfies the burstiness
constraint at rate µ can achieve the same cell loss as any other messagem(·) that satisfies the burstiness constraint
at rate µ, in less time and with the minimum volume. Indeed there is a minimum volume required to fill up the
buffer the first time and also between successive overflows. Any extra volume that does not contribute to the
cell loss can therefore be discarded.

Proof. Let m(·) be any message in M{µ0, b(·)} with strictly positive losses. We can then use the representation
proposed in [26], to find Em(µ, β), i.e., the number of cells dropped as a result of buffer overflow during the
transmission of that message. That is,

Em(µ, β) =
N∑
j=1

(∫ sj

τj

(
m(r)− µ

)
dr − β

)
, (3.12)

where N > 0 is finite and 0 6 τ1 < s1 < · · · < τN < sN 6 T̂ .
Although N and {τi, si}, i = 1, . . . , N , are not unique, we can define them as follows (see Fig. 5):

N
4
= number of times the buffer overflows, under the condition that the buffer becomes empty between

successive overflows (e.g., for the realization given in Fig. 5, N = 3),

τi
4
= time instant the buffer leaves the ‘empty’ state (i.e., brm(τi) = 0) and reaches the ‘full’ state (i.e.,
brm(τ ′i) = β, τ ′i > τi), before entering the ‘empty’ state again (i.e., brm(t) 6= 0, t ∈ (τi, τ

′
i)),

si
4
= time instant that the buffer leaves the ‘full’ state (i.e., brm(si) = β) and reaches the ‘empty’ state (i.e.,
brm(s′i) = 0, s′i > si), before entering the ‘full’ state again (i.e., brm(t) 6= β, t ∈ (si, s

′
i)).

We also define Ei to be the number of cells lost during the interval [τi, si], that is,

Ei
4
=

∫ si

τi

(
m(r) − µ

)
dr − β.

We now construct the ON-OFF message m1(·) as follows:

t̂1
4
= 0, t̂′1

4
=
β +E1

µ0 − µ
, t̂i

4
= t̂′i−1 + τi − si−1, t̂′i

4
= t̂i +

β +Ei
µ0 − µ

, i = 2, . . . , N, (3.13)

where t̂i is the time instant that the ith ON interval starts, and t̂′i is the time instant that the ith ON interval
ends (Fig. 6).

By construction, message m1(·) incurs positive losses on every ON interval. The remainder of the proof
proceeds in four steps.

Step I. We show that XOFF > β/µ.
By assumption τi > si−1. Hence,

brm(τi) = brm(si−1) +

∫ τi

si−1

(m(r) − µ) dr ⇒
∫ τi

si−1

m(r) dr + β = µ(τi − si−1)

⇒ τi − si−1 > β/µ⇒ t̂i − t̂′i−1 > β/µ.
The second equality is true because by definition brm(τi) = 0, brm(si−1) = β. The first inequality is
true because m(r) > 0 and the last one because of (3.13).

Step II. We show that the duration of m1(·) is shorter than that of m(·).
By definition,

Ei =

∫ si

τi

(m(r) − µ) dr − β.
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Fig. 5. Example of a buffer occupancy realization.

Fig. 6. ON-OFF message.

Hence,

Ei + β 6
∫ si

τi

(µ0 − µ) dr⇒ β +Ei
µ0 − µ

6 si − τi ⇒ t̂′i − t̂i 6 si − τi. (3.14)

The first inequality is true becausem(r) 6 µ0 and the third inequality because of (3.13). Furthermore,

t̂′N =
N∑
i=2

(
t̂i − t̂′i−1

)
+

N∑
i=1

(
t̂′i − t̂i

)
6

N∑
i=2

(τi − si−1) +
N∑
i=1

(si − τi) = sN − τ1 6 sN .

The first inequality is true because of (3.13) and (3.14), and the last one because τ1 > 0.
Step III. We show that message m1(·) has the same losses as m(·) and a greater or equal percentage of loss.

The cell loss of message m1(·) is,

Em1(µ, β) =
N∑
i=1

(
(µ0 − µ)

(
t̂′i − t̂i

)
− β

)
=

N∑
i=1

Ei = Em(µ, β),

where the first equality is true because, according to Step I, br(t̂i) = 0, the second is true because
of (3.13), and the last one because of (3.12). This establishes the fact that messages m(·) and m1(·)
incur the same losses.
From the construction of message m1(·) (Eq. (3.13)) and the definition of Ei we have that,

(µ0 − µ)
(
t̂′i − t̂i

)
= β +Ei =

∫ si

τi

(
m(r)− µ

)
dr.

Therefore,

µ0
(
t̂′i − t̂i

)
=

∫ si

τi

m(r) dr + µ
((
t̂′i − t̂i

)
− (si − τi)

)
. (3.15)

Since by (3.14), si − τi > t̂′i − t̂i, it follows from (3.15) that,∫ si

τi

m(r) dr > µ0
(
t̂′i − t̂i

)
, 1 6 i 6 N.
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This implies that,∫ T̂

0
m1(r) dr =

N∑
i=1

µ0
(
t̂′i − t̂i

)
6

N∑
i=1

∫ si

τi

m(r) dr 6
∫ T̂

0
m(r) dr. (3.16)

Therefore the volume of message m(·) is at least as much as the volume of message m1(·). Since,
by the previous argument, they both have the same losses, it follows that the percentage of loss for
m1(·) is at least as much as the percentage of loss for m(·), that is,

Lm1(µ, β) > Lm(µ, β).

Step IV. We show that m1(·) satisfies the burstiness constraint at the rate µ.
For any j ∈ {1, . . . , N} we have:

bfm1
(t̂′j) =

j∑
i=1

(µ0 − µ)
(
t̂′i − t̂i

)
−

j∑
i=2

µ
(
t̂i − t̂′i−1

)
=

j∑
i=1

(β +Ei)−
j∑
i=2

µ(τi − si−1)

=

j∑
i=1

∫ si

τi

(
m(r) − µ

)
dr −

j∑
i=2

µ(τi − si−1) 6
∫ sj

τ1

(
m(r)− µ

)
dr = bfm(sj), (3.17)

where the second equality is true because of (3.13), the third equality is true because of
the definition of Ei, the inequality holds because m(r) > 0 and the last equality holds be-
cause bfm(0) = bfm(τ1) = 0. Since m(·) ∈ M{µ0, b(·)} we have that bfm(sj) 6 b(µ) and therefore
from (3.17), bfm1

(t̂′j) 6 b(µ). This implies that bfm1
(t) 6 b(µ), ∀t > 0.

The proof of Lemma 3.1 is complete. 2

Lemma 3.2. We can replace any segment s1(·) of m(·), that consists of two consecutive ON-OFF intervals,
where the OFF-intervals have duration XOFF > β/µ, by another segment ŝ1(·), that consists of either a single
or a double ON-OFF interval with the following characteristics: In both cases the OFF intervals have length
X̂OFF > β/µ, while in the second case, we have that: bf

ŝ1
(t̂′1) = bf

ŝ1
(t̂′2) = b(µ), where t̂′i, i = 1, 2, is the time

instant where the ith ON interval ends. The resulting message m2(·), satisfies the burstiness constraint at rate
µ, it is shorter in duration than m(·), and it has at least the same losses and a greater or equal percentage of
loss than the original.

Discussion. The intuition behind this lemma is that, given an ON-OFF message that satisfies the burstiness
constraint at rate µ, we can combine ON periods to form ON periods that bring the fictitious buffer to its
maximum occupancy.

Proof. Consider the segment s1(·) of m(·), shown in Fig. 7, where we assume that x′1 > β/µ and x′2 > β/µ,
and therefore that brm(t2) = brm(t3) = 0.

Define,

α
4
= bfm(t1) + (x1 + x2)(µ0 − µ)− b(µ). (3.18)

Since m(·) ∈M{µ0, b(·)},

bfm(t′2) 6 b(µ).

Consequently,

bfm(t1) + (x1 + x2)(µ0 − µ)− x′1µ 6 b(µ),
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or equivalently,

x′1 −
α

µ
> 0, (3.19)

where the last inequality is true because of (3.18).
If α < β, consider the modified message segment ŝ1(·) of Fig. 8, where

x̂1
4
= x1 + x2 −

α+

µ0 − µ
, x̂ ′1

4
= x′1 + x′2 −

α+

µ
, α+ 4= max(0, α), (3.20)

while if α > β, consider the segment shown in Fig. 9, where

x̂1
4
= x1 + x2 −

α

µ0 − µ
, x̂ ′1

4
=
α

µ
, x̂2

4
=

α

µ0 − µ
, x̂ ′2

4
= x′1 + x′2 −

α

µ
. (3.21)

In both cases we have by construction of the new message m2(·) that

bfm2
(t1) = bfm(t1) and brm2

(t1) = brm(t1). (3.22)

Our goal is to show that for the two cases above the new segment ŝ1(·) satisfies the burstiness constraint at rate µ,
has at least the same losses as the original, less or equal volume, smaller duration, and brings the system at the
same buffer occupancy (both for the real and the fictitious buffer). That would prove that by substituting any
‘type-s1(·)’ segment in m(·) by a ‘type-ŝ1(·)’ segment, the resulting message m2(·): (i) satisfies the burstiness
constraint at rate µ; (ii) has less or equal volume than the original; (iii) it has greater or equal losses (since the
loss for the other part of the message has not changed). Therefore the number of cells lost and the percentage
of cell loss are at least as much as for the original message m(·).

Fig. 7. Original message segment.

Fig. 8. Modified message segment when α < β.

Fig. 9. Modified message segment when α>β.
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The proof of each of the two cases (α < β, α > β) consists of five steps.

Case 1: α < β.

Step I. We prove that segment ŝ1(·)’s losses are more than those of segment s1(·). Furthermore,
we show that the volume of segment ŝ1(·) is less than or equal to that of segment s1(·).
The losses for segment ŝ1(·) are,

E
ŝ1

(µ, β) = brm2
(t1) + x̂1(µ0 − µ)− β

= brm(t1) + x1(µ0 − µ) + x2(µ0 − µ)− α+ − β

> brm(t1) + x1(µ0 − µ)− β + x2(µ0 − µ)− β = Es1(µ, β),

where the second equality is true because of (3.20) and (3.22), the first inequality because
α+ < β (since α < β), and the last equality because brm(t2) = 0.

Since by (3.20), µ0x̂1 6 µ0(x1 + x2), the volume of segment s1(·) is at least as much as
the volume of segment ŝ1(·).

Step II. We prove that the occupancy of the real buffer at the end of the two segments s1(·) and
ŝ1(·) is the same.
We note that,

x̂ ′1 = x′1 + x′2 −
α+

µ
> x′2 >

β

µ
,

where the first equality is true because of (3.20) and the first inequality because
x′1 − α+/µ > 0 (from (3.19)). The inequality x̂ ′1 > β/µ implies that brm2

(t̂2) = 0. Since
brm(t3) = 0 we conclude that brm2

(t̂2) = brm(t3).

Step III. We show that the occupancy of the fictitious buffer at the end of the two segments s1(·)
and ŝ1(·) is the same.
Indeed,

bfm2
(t̂2) = bfm2

(t1) + x̂1(µ0 − µ)− x̂ ′1µ

= bfm(t1) + x1(µ0 − µ)− x′1µ+ x2(µ0 − µ)− x′2µ− α+ + α+ = bfm(t3),

where the second equality is true because of (3.22) and (3.20).

Step IV. We prove that m2(·) satisfies the burstiness constraint at rate µ.
Note that,

bfm2
(t̂′1) = bfm2

(t1) + x̂1(µ0 − µ) = bfm(t1) + (x1 + x2)(µ0 − µ)− α+

6 bfm(t1) + (x1 + x2)(µ0 − µ)− α = b(µ),

where the second equality is true because of (3.22) and (3.20), the first inequality because
α+ > α and the last equality because of (3.18). Therefore bfm2

(t̂′1) 6 b(µ) and this inequality
together with bfm2

(t̂2) = bfm(t3) prove that m2(·) satisfies the burstiness constraint at the
rate µ.

Step V. We show that the duration of the segment ŝ1(·) is less than or equal of the duration of s1(·).
We have,

t̂2 = t1 + x̂1 + x̂ ′1 = t1 + x1 + x2 + x′1 + x′2 −
α+

µ0 − µ
− α+

µ

= t3 −
α+µ0

µ(µ0 − µ)
6 t3,
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where the second equality is true because of (3.20) and the last inequality because α+ > 0
and µ0 > µ.

Case 2: α > β.
If α > β then x̂ ′1 > β/µ because of (3.21) and therefore brm2

(t̂2) = 0.

Step I. We prove that the segments s1(·) and ŝ1(·) have the same losses and the same volume.
The number of cells lost from segment ŝ1(·) is,

E
ŝ1

(µ, β) = brm2
(t1) + x̂1(µ0 − µ)− β + brm2

(t̂2) + x̂2(µ0 − µ)− β

= brm(t1) + x1(µ0 − µ)− β + brm(t2) + x2(µ0 − µ)− β − α+ α

= Es1 (µ, β),

where the second equality is true because of Eq. (3.21), (3.22) and the fact that brm(t2) = 0.
Since by (3.21),

µ0
(
x̂1 + x̂2

)
= µ0

(
x1 + x2 −

α

µ0 − µ
+

α

µ0 − µ

)
,

segments ŝ1(·) and s1(·) have the same volume.
Step II. We show that the occupancy of the real buffer at the end of the two segments s1(·) and

ŝ1(·) is the same.
We have

x̂ ′2 = x′1 + x′2 −
α

µ
> x′2 >

β

µ
,

where the first inequality is true because of (3.19) and the second is true by assumption.
The inequality x̂ ′2 > β/µ implies that brm2

(t̂3) = 0. Since brm(t3) is also zero, we conclude
that brm2

(t̂3) = brm(t3).
Step III. We prove that the occupancy of the fictitious buffer at the end of the two segments s1(·)

and ŝ1(·) is the same.
Indeed,

bfm2
(t̂3) = bfm2

(t1) + x̂1(µ0 − µ)− x̂ ′1µ+ x̂2(µ0 − µ)− x̂ ′2µ

= bfm(t1) + x1(µ0 − µ) + x2(µ0 − µ)− α− α+ α− x′1µ− x′2µ+ α

= bfm(t3),

where the second equality is true because of (3.21) and (3.22).
Step IV. We show that bfm2

(t̂′1) = bfm2
(t̂′2) = b(µ).

From the construction of the segment m2(·) it follows that

bfm2
(t̂′1) = bfm2

(t1) + x̂1(µ0 − µ)

= bfm(t1) + (x1 + x2)(µ0 − µ)− α = b(µ), (3.23)

and

bfm2
(t̂′2) = bfm2

(t1) + x̂1(µ0 − µ)− x̂ ′1µ+ x̂2(µ0 − µ)

= bfm(t1) + (x1 + x2)(µ0 − µ)− α− α+ α = b(µ), (3.24)

where the second equality in (3.23) and (3.24) is true because of (3.21) and (3.22), and the
last equality in both (3.23) and (3.24) is true because of (3.18). So bfm2

(t̂′1) = bfm2
(t̂′2) = b(µ),

and therefore ŝ1(·) satisfies the burstiness constraint at rate µ.
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Step V. We prove that the duration of the segment ŝ1(·) is equal to that of the segment s1(·).
Note that,

t̂3 = t1 + x̂1 + x̂ ′1 + x̂2 + x̂ ′2

= t1 + x1 + x2 + x′1 + x′2 −
α

µ0 − µ
+
α

µ
+

α

µ0 − µ
− α

µ
= t3,

where the second equality is true because of (3.21).

Consequently we can replace any segment s1(·) of m(·) that consists of two consecutive ON-OFF intervals
having XOFF > β/µ, with the corresponding segment ŝ1(·) and the resulting message m2(·) will have the
properties described by Lemma 3.2. This completes the proof of Lemma 3.2. 2

Lemma 3.3. We can replace any segment s2(·) of m(·), that consists of two consecutive ON-intervals that are
spaced by X̂OFF > b(µ)/µ, with another segment of two consecutive ON-intervals with the same duration each,
but separated by X̂OFF = b(µ)/µ. The resulting message m3(·) satisfies the burstiness constraint at the rate µ,
has the same losses and percentage of loss as m(·), and has a smaller duration than m(·).

Discussion. The intuition behind this lemma is that any OFF periods that have duration greater than the maximum
time b(µ)/µ needed to empty the fictitious buffer, can be shortened to b(µ)/µ without affecting the cell losses
or the percentage of cell loss.

Proof. Consider the segment s2(·) as shown in Fig. 10a and based on this construct the segment ŝ2(·) as shown
in Fig. 10b. We assume that x′1 > b(µ)/µ and x̂ ′1 = b(µ)/µ.

An immediate consequence of the above assumptions is that:

bfm3
(t̂2) = bfm(t2) = brm3

(t̂2) = brm(t2) = 0.

Therefore the new segment ŝ2(·) has the same cell loss and results in the same final buffer occupancy as the
original segment s2(·). Also they both have the same volume µ0(x1 + x2). Thus, replacing any ‘type-s2(·)’
segment by a ‘type-ŝ2(·)’, results in a new message m3(·) that has the properties described by Lemma 3.3. This
completes the proof of Lemma 3.3. 2

Fig. 10. Original (a) and modified (b) message segment.
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Fig. 11. Resulting message after repeated application of Lemmas 3.1–3.3.

Fig. 12. Maximum cell loss message.

Repeated application of Lemmas 3.1–3.3, prove that for any m(·) ∈ M{µ0, b(·)} that has strictly positive
losses we can find an ON-OFF message m4(·) such that: (i) m4(·) has the form shown in Fig. 11, where
bfm4

(0) = brm4
(0) = 0, β 6 αi 6 b(µ), 1 6 i 6 N , 0 6 αN+1 < b(µ); (ii) m4(·) satisfies the burstiness

constraint at rate µ; (iii) m4(·) has a greater or equal percentage of loss than m(·); and (iv) m4(·) has equal or
more losses than the original message m(·).

Lemma 3.4. Consider a message m4(·) that results from repeated application of Lemmas 3.1–3.3 (see Fig. 11),
and the message m̂0(·) shown in Fig. 12. Let these messages be inputs to the single node system of Fig. 3.
Assume that br

m̂0
(0) = 0 and 0 6 α < b(µ). Then, m̂0(·) satisfies the burstiness constraint at the rate µ, it has

equal or greater percentage of cell loss than m4(·) and incurs equal or more losses than m4(·).

Discussion. This lemma shows that the cell loss and the percentage of cell loss are maximized when we
continuously empty and then immediately refill the fictitious buffer at the maximum rate.

Proof. By construction, the content of the fictitious buffer at the end of every ON-interval, for both messages,
is equal to b(µ). Therefore they both satisfy the burstiness constraint at the rate µ.
We will now show that message m̂0(·) incurs more or equal losses than m4(·).

Equating the length of the two messages m4(·) and m̂0(·), we get:(
N∑
i=1

αi + αN+1

)
µ0

µ(µ0 − µ)
=
(
N̂b(µ) + α

) µ0

µ(µ0 − µ)

⇔
N∑
i=1

αi + αN+1 = N̂b(µ) + α. (3.25)
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We also have,

Em4(µ, β) = b(µ)− β +
N∑
i=1

(αi − β) + (αN+1 − β)+

= b(µ)− β + N̂b(µ)−Nβ + α− αN+1 + (αN+1 − β)+, (3.26)

where the second equality is true because of (3.25). Furthermore,

E
m̂0

(µ, β) = b(µ)− β + N̂
(
b(µ)− β

)
+ (α− β)+. (3.27)

From (3.26) and (3.27) we get,

E
m̂0

(µ, β)− Em4(µ, β) =
(
N − N̂

)
β + αN+1 − α+ (α− β)+ − (αN+1 − β)+. (3.28)

Since αi 6 b(µ), 1 6 i 6 N, it follows that N > N̂ .
We consider next the following two cases: N = N̂ and N > N̂ .

Case 1: N = N̂ .
Since αi 6 b(µ), 1 6 i 6 N , and N = N̂, it follows that

b(µ)

µ0 − µ
+

N∑
i=1

(
αi
µ

+
αi

µ0 − µ

)
6 b(µ)

µ0 − µ
+

N̂∑
i=1

(
b(µ)

µ
+

b(µ)

µ0 − µ

)
or equivalently that,

T̂ −
(
αN+1

µ
+

αN+1

µ0 − µ

)
6 T̂ −

(
α

µ
+

α

µ0 − µ

)
,

which implies that αN+1 > α. We show that for all possible situations, E
m̂0

(µ, β) > Em4(µ, β).

(i) αN+1 > α > β,

E
m̂0

(µ, β)− Em4(µ, β) = αN+1 − α+ α− β − αN+1 + β = 0,

(ii) αN+1 > β > α,

E
m̂0

(µ, β)− Em4(µ, β) = αN+1 − α− αN+1 + β = β − α > 0,

(iii) β > αN+1 > α,

E
m̂0

(µ, β)− Em4(µ, β) = αN+1 − α > 0.

Case 2: N > N̂ + 1.
Using the above inequality in (3.28) we get,

E
m̂0

(µ, β)− Em4(µ, β) > β + αN+1 − α+ (α − β)+ − (αN+1 − β)+.

We consider all the possible cases and show that for each one; E
m̂0

(µ, β) > Em4(µ, β).

(i) α > β and αN+1 > β,

E
m̂0

(µ, β)− Em4(µ, β) = β + αN+1 − α+ α− β − αN+1 + β = β > 0,

(ii) αN+1 > β > α,

E
m̂0

(µ, β)− Em4(µ, β) = β + αN+1 − α− αN+1 + β = β − α+ β > 0,
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(iii) α > β > αN+1,

E
m̂0

(µ, β)− Em4(µ, β) = β + αN+1 − α+ α− β = αN+1 > 0,

(iv) β > αN+1 and β > α,

E
m̂0

(µ, β)− Em4(µ, β) = αN+1 + β − α > 0.

What remains to be shown is that message m̂0(·) has a greater or equal percentage of cell loss than m4(·).
The volume for message m4(·) is,

µ0

µ0 − µ
b(µ) +

µ0

µ0 − µ

(
N∑
i=1

αi + αN+1

)
,

whereas the volume for message m̂0(·) is,

µ0

µ0 − µ
b(µ) +

µ0

µ0 − µ
(
N̂b(µ) + α

)
. (3.29)

Equation (3.25) establishes the fact that the two volumes are equal. Since there are equal or more losses for
message m̂0(·) than for m4(·), it is clear that the percentage of loss for m̂0(·) is at least as much as for m4(·).

The proof of Lemma 3.4 is now complete. 2

Proof of Theorem 3.1. The proof of Theorem 3.1 follows directly from Lemmas 3.1–3.4. 2

The upper bound on the percentage of cell loss in the first node among all m(·) in M{µ0, b(·)}, that is the
percentage of cell loss for the message m̂0(·), is given by the following equation:

L
m̂0

(µ, β) =
(N̂ + 1)(b(µ)− β) + (α− β)+

(N̂ + 1)b(µ)µ0/(µ0 − µ) + αµ0/(µ0 − µ)

=
µ0 − µ
µ0

· (N̂ + 1)(b(µ)− β) + (α − β)+

(N̂ + 1)b(µ) + α
, (3.30)

where the first equality is true because of (3.27) and (3.29).
Because Theorem 3.1 guarantees that the message m̂0(·) satisfies the burstiness constraint only at the rate µ,

this upper bound may not be tight.
From (3.30) it is clear that when α 6 β,

L
m̂0

(µ, β) 6 µ0 − µ
µ0

· b(µ)− β
b(µ)

. (3.31)

In the case where α > β we have,

(N̂ + 1)(b(µ)− β) + α− β
(N̂ + 1)b(µ) + α

6 (N̂ + 1)(b(µ)− β) + α− β + b(µ)− α
(N̂ + 1)b(µ) + α+ b(µ)− α

.

The above inequality is true because b(µ) − α > 0, and the fraction on the left side is not greater than 1.
Therefore since µ0 > µ, inequality (3.31) is also true when α > β.

We now proceed in the formulation and solution of Problem (P2).
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3.1.2. The problem in the remaining nodes: formulation and solution of (P2)
Consider the work conserving system of Fig. 13 that has a finite buffer β and a maximum service rate µ.
We consider input messages m(·) that have a finite duration T and maximum input rate µ0; that is m(·) ∈

M ′{µ0} where,

M ′{µ0}
4
=
{
m(·); m(t) 6 µ0, 0 6 t 6 T

}
.

We make the same assumptions as in Section 3.1.1. That is we assume that µ0 > µ, and that the buffer
occupancy at the beginning of the transmission session is zero. We also denote by Lm(µ, β) the percentage of
cell loss and by Em(µ, β) the number of cells lost for message m(·) as it passes through the single node system.
The problem that we want to solve is the following:

(P2) Determine an input message m̂′0(·) ∈M ′{µ0} such that,

Lm(µ, β) 6 L
m̂′0

(µ, β), ∀m(·) ∈M ′{µ0}. (3.32)

The main result of this section is summarized by the following theorem:

Theorem 3.2. The message m̂′0(·) that belongs to M ′{µ0} and suffers the maximum percentage of loss when
passing through the single node system of Fig. 13, is the one that inputs cells with the maximum input rate µ0.
That message also incurs the maximum number of losses.

Proof of Theorem 3.2. Let m(·) be any message in M ′{µ0} with strictly positive losses. We can then use
(3.12) to represent the number of cells dropped as a result of buffer overflow during the transmission of m(·).
That is,

Em(µ, β) =
N∑
i=1

(∫ si

τi

(
m(r) − µ

)
dr − β

)
, (3.33)

where N , {τi, si}Ni=1 are defined as in (3.12). Let A
4
=
⋃N
i=1[τi, si] and define m̂′0(·) as follows,

m̂′0(t)
4
=

{
µ0 if 0 6 t 6 T ,

0 otherwise.
(3.34)

The following then is true,

Em(µ, β) =

∫
A

(
m(r) − µ

)
dr −Nβ 6

∫
A

(µ0 − µ) dr −Nβ

= (µ0 − µ)
N∑
i=1

(si − τi)−Nβ 6 (µ0 − µ)T −Nβ

6 (µ0 − µ)T − β = E
m̂′0

(µ, β), (3.35)

Fig. 13. Single node model.
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where the first inequality is true because m(·) 6 µ0, the second because
∑N
i=1(si − τi) 6 T and the last one

because N > 1.
Inequality (3.35) establishes the fact that m̂′0(·) incurs the maximum number of losses among all messages in

M ′{µ0}. We now need to show that m̂′0(·) incurs also the maximum percentage of loss.
We define Ā to be the complement of A in [0, T ], that is,

Ā
4
=

N⋂
i=1

[τi, si]
c ∩ [0, T ].

The following then is true,

Lm(µ, β) =

∫
A

(
m(r) − µ

)
dr −Nβ∫

Am(r) dr +
∫
Ā
m(r) dr

6
∫
A

(
m(r) − µ

)
dr −Nβ∫

Am(r) dr

6
∫
A

(
µ0 −m(r)

)
dr +

∫
A

(
m(r) − µ

)
dr −Nβ∫

A

(
µ0 −m(r)

)
dr +

∫
A
m(r) dr

=

∫
A(µ0 − µ) dr −Nβ∫

A
µ0 dr

= 1− µ

µ0
− Nβ

µ0
∑N
i=1(si − τi)

, (3.36)

where the first inequality is true because
∫
Ā
m(r) dr > 0, and the second because

∫
A

(
µ0 −m(r)

)
dr > 0 and

the fact that the fraction on the right part of the first inequality is less than one.
The percentage of loss for message m̂′0(·) is,

L
m̂′0

(µ, β) =
(µ0 − µ)T − β

µ0T
= 1− µ

µ0
− β

µ0T
. (3.37)

Furthermore,

N > 1 >
∑N
i=1(si − τi)

T
. (3.38)

From (3.36), (3.37) and (3.38) we obtain,

Lm(µ, β) 6 L
m̂′0

(µ, β), ∀m(·) ∈M ′{µ0},

and this completes the proof of Theorem 3.2. 2

In the next section we combine the results from problems (P1) and (P2), to find an upper bound on the
percentage of cell loss along the route.

3.1.3. An expression on the maximum percentage of cell loss along the route
Theorem 3.1 and inequality (3.31) establish the fact that,

L1
m0

(µ,β) 6 µ0 − µ1

µ0
· b(µ1)− β1

b(µ1)
, ∀m0(·) ∈M

{
µ0, b(·)

}
. (3.39)

From Theorem 3.2 and Eq. (3.37) we have that,

Lim0
(µ,β) 6 1− µi

µi−1
− βi

µi−1T̂i−1

, ∀m0(·) ∈M
{
µ0, b(·)

}
, 2 6 i 6 P, (3.40)
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where T̂i is the upper bound on the duration of message mi(·), and is given by Eq. (3.2).
From (3.39), (3.40) and (3.3) we conclude that,

Lm0(µ,β) 6 L̂(µ,β), ∀m0(·) ∈M
{
µ0, b(·)

}
, (3.41)

where,

L̂(µ,β) = 1−
(
µ1

µ0
+
β1(µ0 − µ1)

µ0b(µ1)

) P∏
i=2

(
µi
µi−1

+
βi

µi−1(T̂ +
∑i−1
j=1 βj/µj)

)
. (3.42)

Equation (3.42) provides, for a fixed allocation, an upper bound on the percentage of cell loss along a fixed
route. Even though this upper bound is not tight, it is intuitively pleasing as it captures the interaction between
resource allocation and percentage of cell loss along a fixed route.

The upper bound on the end-to-end cell delay along a fixed route is discussed in the next section.

3.2. Upper bound on the end-to-end cell delay along a fixed route

Consider the multinode system of Fig. 14, where di is the sum of the processing time in node i and the
propagation delay from node i to node i+ 1. Node P + 1 refers to the destination. We assume that the input
message m0(·) belongs to the family M{µ0, b(·)}.

For the same reason as in Section 3.1 we restrict attention to allocations that satisfy:

µk 6 µk−1, 1 6 k 6 P, (3.43)

β1 6 min
(
b(µ1), T̂ (µ0 − µ1)

)
, (3.44)

βk 6 T̂k−1(µk−1 − µk), 2 6 k 6 P, (3.45)

where,

T̂k = T̂ +
k∑
i=1

βk
µk
, 1 6 k 6 P − 1. (3.46)

The problem that we want to solve in this section is the following:
For a fixed resource allocation (µ,β) = {µi, βi}16i6P that satisfies the assumptions given by (3.43)–(3.46),

find a function D̂(µ,β) such that:

Dm0(µ,β) 6 D̂(µ,β), ∀m0(·) ∈M{µ0, b(·)},

where Dm0(µ,β) is the maximum possible end-to-end delay over all packets in message m0(·), as they travel
through the multinode system of Fig. 14.

Fig. 14. Connection spanning P nodes in sequence.
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The maximum end-to-end delay suffered by a cell that travels along the fixed route of Fig. 14, without being
lost, can be obtained by inspection and is given by the following equation:

D̂(µ,β) =
P∑
k=1

(
βk
µk

+ dk

)
. (3.47)

Here we present a message that satisfies the burstiness constraint at rate µ1 and achieves this bound.
Given that, β1/(µ0 − µ1) 6 T̂ (see (3.44)), we consider the following message m̂0(·):

m̂0(t) =


µ0, if 0 6 t 6 β1

µ0 − µ1

µ1, if
β1

µ0 − µ1
< t 6 T̂ .

(3.48)

The burstiness of m̂0(·) at the rate µ1 is given by,

b
m̂0

(µ1)
4
= sup

06s6t6T̂

∫ t

s

(
m̂0(r) − µ1

)
dr = (µ0 − µ1)

β1

µ0 − µ1
= β1 6 b(µ1),

and this shows that m̂0(·) satisfies the burstiness constraint at rate µ1.
Consider next the last packet of m̂0(·), i.e., the packet that arrives to the first node at time T̂ . We will show

that this packet may suffer the maximum possible delay, given by Eq. (3.47).
We assume that the last packet of m̂0(·) is not lost due to buffer overflow and we denote by t̂k, 1 6 k 6 P

the arrival time of that packet to the k + 1 node. We also denote by ξ̂k(t), 1 6 k 6 P the buffer occupancy of
buffer k at time t and by m̂k(·), 1 6 k 6 P the input message at the k + 1 node.

Based on the above, the following is true:

At the first node:

ξ̂1(T̂ ) = min
(
(µ0 − µ1)β1/(µ0 − µ1), β1

)
= β1,

t̂1 = T̂ + β1/µ1 + d1,

m̂1(t) = µ1, d1 6 t 6 t̂1.

At the subsequent nodes: 2 6 k 6 P

ξ̂k(t̂k−1) = min

(
(µk−1 − µk)

(
t̂k−1 −

k−1∑
j=1

dj

)
, βk

)

= min

(
(µk−1 − µk)

(
T̂ +

k−1∑
j=1

βj/µj

)
, βk

)
= βk,

t̂k = t̂k−1 + βk/µk + dk = T̂ +
k∑
j=1

(βj/µj + dj),

m̂k(t) = µk,
k∑
j=1

dj 6 t 6 t̂k,

where we have used the assumptions made in (3.45), (3.46).
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The total end-to-end cell delay is then given by the following expression:

D
m̂0

(µ,β) = t̂P − T̂ =
P∑
k=1

(
βk
µk

+ dk

)
,

which shows that m̂0 achieves the upper bound given by (3.47).
The above discussion can be summarized as follows:

Theorem 3.3. The maximum end-to-end cell delay over all messages in M{µ0, b(·)} and over all packets on
these messages, is upper bounded by the following function:

D̂(µ,β) =
P∑
k=1

(
βk
µk

+ dk

)
. (3.49)

There is a message that satisfies the burstiness constraint at rate µ1 and achieves this upper bound.

Even though the upper bound in (3.49) is not tight, it is intuitively pleasing as it captures the interaction
among resource allocation and end-to-end cell delay along a fixed route.

Equations (3.49) and (3.42) conclude the solution of Step 1 as presented in Section 2. The solution of Step 2
is given in the next section.

4. The optimization problem

Define the set N of all service allocation decisions:

(x,w,µ,β)
4
=
{
xs, ws, {µsi , βsi }i∈rs

}
s∈S ,

that satisfy the following conditions:

0 6 xs 6 Rs(ws), ∀s ∈ S, (4.1)

ws > 0, ∀s ∈ S, (4.2)∑
s∈S

xsµ
s
l 6 Cl

(
kT̂
)

and
∑
s∈S

xsβ
s
l 6 Bl

(
kT̂
)
, ∀l ∈ L, (4.3)

{
0 < µsi 6 µsi−1

}
i∈rs , ∀s ∈ S, (4.4)

0 6 βs1 6 min
(
bs(µ

s
1), T̂ (µs0 − µs1)

)
, ∀s ∈ S, (4.5)

0 6 βsi 6 (µsi−1 − µsi )T si , ∀i > 1, ∀s ∈ S, (4.6)

L̂s(µ,β) 6 Ls, ∀s ∈ S, (4.7)

D̂s(µ,β) 6 Ds, ∀s ∈ S, (4.8)

where: Rs(ws) = λsT̂ exp(−ws) is the aggregate user demand function; Cl(kT̂ ) and Bl(kT̂ ) are the bandwidth
and buffers, respectively, that are available for allocation at the beginning of the kth allocation period at node
l ∈ L; T s1 = T̂ ; T si = T si−1 + βsi /µ

s
i , i > 1; and the functions L̂s(µ,β) and D̂s(µ,β) are given by Eqs (3.42)
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and (3.49), respectively. The constraints expressed by (4.1)–(4.3), (4.7) and (4.8) are the same as (2.4)–(2.6)
and (2.12), respectively, and they have been discussed in Section 2. The constraints (4.4)–(4.6) are the same as
(3.1a)–(3.1c), respectively, and have been discussed in Section 3.1.

Using the results from Section 3, we can conclude that if a service allocation decision belongs to the set N ,
it is conformant. Therefore, the optimization problem of Step 2 of our approach to Service Provisioning (cf.
Section 2) becomes:

Find a service allocation decision (x̄, w̄, µ̄, β̄) ∈ N , if such one exists, that maximizes the welfare function:

W (x,w,µ,β) =
∑
s∈S

xsws +
∑
s∈S

∫ ∞
ws

min
(
xs, Rs(u)

)
du. (4.9)

The existence of a welfare maximizing solution to the optimization problem formulated above is given by
Theorem 4.1 that follows. The theorem also suggests a procedure for determining a welfare maximizing solution.
This procedure is informationally decentralized in nature and is similar in spirit to the iterative solution process
proposed in [16].

Theorem 4.1. (i) There exists a (conformant) service allocation decision (x̄, w̄, µ̄, β̄) ∈ N that is welfare max-
imizing. (ii) Determining a welfare maximizing allocation is equivalent to solving the following multi-person
game:

Player N (Network) : min
(λ1,λ2)>0

G
(
µ,β,λ1,λ2), (4.10)

Player Us (Users of Service s; s ∈ S) : min
(µs,βs)∈Ks

(
〈λ1,µs〉+ 〈λ2,βs〉

)
, (4.11)

where: (µs,βs) = {µsi , βsi }i∈rs; Ks is the set of resource allocations, for a type s service, that satisfy
conditions (4.4)–(4.8); 〈x,y〉 is the inner product of the vectors x, y; λj = {λjl }l∈L, j = 1, 2; C ′ =

{C′l}l∈L, B′ = {B′l}l∈L; G(µ,β,λ1,λ2)
4
=
∑
s∈S

(
λsT̂ exp(−〈λ1,µs〉 − 〈λ2,βs〉)

)
+ 〈λ1,C ′〉 + 〈λ2,B′〉.

The solution (λ̄, λ̄, µ̄, β̄) of the above multiperson game determines the price ws = 〈λ̄1
, µ̄s〉+ 〈λ̄2

, β̄s〉 for
a type s service, and the corresponding offered amount x̄s = λsT̂ exp(−ws).

Proof of (i). The proof of part (i) of the theorem is based on Lemmas 4.1 and 4.2 that follow. Qualitatively,
the optimization problem formulated in this section is similar to the one investigated in [16]. For that reason
the proofs of the two lemmas are omitted. A detailed proof of the lemmas can be found in [24].

Let K be the set of resource allocations that satisfy conditions (4.4)–(4.8).

Lemma 4.1. For any fixed resource allocation {µ,β} ∈ K, the maximum of the social welfare function (4.9)
subject to (4.1)–(4.3) is given by

W (x̄,w,µ,β) = min
(λ1,λ2)>0

G(µ,β,λ1,λ2), (4.12)

where:G(µ,β,λ1,λ2) is the function defined in the statement of Theorem 4.1; (λ̄
1
, λ̄

2
) is the minimizer in (4.12);

ws = 〈λ̄1
, µ̄s〉+ 〈λ̄2

, β̄s〉, x̄s = λsT̂ exp(−ws), for all s ∈ S.

In view of Lemma 4.1 the maximum welfare function is given by:

W (x̄,w, µ̄, β̄) = max
(µ,β)∈K

W (x̄,w,µ,β) = max
(µ,β)∈K

min
(λ1,λ2)>0

G
(
µ,β,λ1,λ2). (4.13)

Thus, determining the maximum of the welfare function is equivalent to solving the max-min problem in (4.13).
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Lemma 4.2. There exists a saddle point (µ̄, β̄, λ̄
1
, λ̄

2
) to the max-min problem in (4.13) that is welfare maxi-

mizing.

The proof of part (i) follows directly from Lemmas 4.1 and 4.2. 2

Proof of (ii). In view of Eq. (4.13) and the expression forG(µ,β,λ1,λ2) (given in the statement of the theorem),
determining a welfare maximizing allocation is equivalent to solving the following multi-person game:

Player N (Network): min
(λ1,λ2)>0

G
(
µ,β,λ1,λ2), (4.14)

Player Us (Users of Service s; s ∈ S): min
(µs,βs)∈Ks

(
〈λ1,µs〉+ 〈λ2,βs〉

)
, (4.15)

where Ks is the set of resource allocations for a service of type s, that satisfy the following conditions:{
0 < µsi 6 µsi−1

}
i∈rs , (4.16)

0 6 βs1 6 min
(
bs(µ

s
1), T̂ (µs0 − µs1)

)
, (4.17)

0 6 βsi 6
(
µsi−1 − µsi

)
T si , ∀i > 1, (4.18)

L̂s(µ,β) 6 Ls, (4.19)

D̂s(µ,β) 6 Ds, (4.20)

where: T s1 = T̂ ; T si = T si−1+βsi /µ
s
i , i > 1; and L̂s(µ,β), D̂s(µ,β) are given by (3.42) and (3.49), respectively.

The values λ1
l , λ

2
l can be interpreted as the rent, for one unit of bandwidth and buffer, respectively, in link l ∈ L,

that the network (operator) charges. By Lemma 4.1, the price for a service of type s is ws = 〈λ̄1
, µ̄s〉+〈λ̄

2
, β̄s〉

and the corresponding offered amount is x̄s = λsT̂ exp(−ws).
The proof of part (ii) of the theorem is now complete. 2

In the above stated game, if player N (the network operator) chooses the prices (λ̄
1
, λ̄

2
) (defined in the proof

of Lemma 4.2) then, because of Lemma 4.2, each player Us (the user of service s) will request (µ̄si , β̄
s
i )i∈rs

units of bandwidth and buffers along the route rs, s ∈ S. This welfare maximizing allocation is the result of the
following t̂atonnement [1]. At stage n, n = 0, 1, 2, . . . , the network operator announces a rent (λ1

n,l, λ
2
n,l)l∈L

for each unit of resources (bandwidth and buffers) at each link. Based on these prices, each user Us requests a
certain amount of resources (µsi,n+1, βsi,n+1)i∈rs for each type of service s ∈ S. These requests are

(
µsi,n+1, β

s
i,n+1

)
i∈rs

4
= (µs,n+1, βs,n+1) = arg min

(µs,βs)∈Ks

(
〈λ1
n,µs〉+ 〈λ2

n,βs〉
)
. (4.21)

Upon receiving all the requests (µn+1,βn+1) the network readjusts its prices to

(
λ1
l,n+1, λ

2
l,n+1

)
l∈L

4
= (λ1

n+1,λ
2
n+1) = arg min

(λ1,λ2)>0
G
(
µn+1,βn+1,λ

1,λ2), (4.22)

and the process continues as described above.
Several comments are in order.



P. Thomas and D. Teneketzis / An approach to service provisioning with quality of service requirements in ATM networks 289

(1) The t̂atonnement leading to the welfare maximizing solution is informationally decentralized in nature.
Given the prices (λ1,λ2), the bandwidth and buffer requests that minimize the service cost per request
and satisfy the quality of service requirements, depend only on the characteristics of the type of service
requested (i.e., on the upper bound on the burstiness of the incoming traffic, the maximum tolerable
percentage of loss and end-to-end delays) and on the (fixed) route designated for that service. All this
information is available to the user requesting the service. The user’s request is made without any
knowledge of other users and service requests present in the network. On the other hand, the network
operator has no knowledge of the number of users that are going to request service, or of the types of
service requests. The network operator readjusts the prices per unit of bandwidth and buffer at each link
based only on the users’ response to the latest prices and on the knowledge of the aggregate demand for
each type of service (cf. Assumption (A8)). Thus, the decentralized nature of the t̂atonnement described
above is a striking feature of our solution. This feature is similar to the characteristics of the solution of
the service provisioning problem formulated in [16].

(2) Contrary to the situation in [16] (where the determination of the resources required at each link of a fixed
route is done locally at the corresponding node), nodes along a specific route for a specific service cannot
make independent allocation decisions. This difference arises because the quality of service requirements
included in our problem formulation, couple the decisions (allocations) made in different nodes along a
route of a specific service. The coupling among allocations at individual links of a fixed route is a result
of the interaction between resource allocation, percentage of cell loss and end-to-end cell delay.

(3) The optimal prices (λ̄
1
, λ̄

2
), set by the network, determine a minimum cost allocation (µ̄, β̄) for the

users; (µ̄, β̄, λ̄
1
, λ̄

2
) determine, for each type of service s, the price ws = 〈λ̄1

, µ̄s〉+ 〈λ̄
2
, β̄s〉 per request

and the amount x̄s = λsT̂ exp(−ws) of service s ∈ S, that is produced (cf. Lemma 4.1).

In the next Section we discuss the characteristics of the service provisioning procedure.

5. Conclusions – reflections

We have presented an approach to Service Provisioning with Quality of Service requirements in ATM networks.
The main contribution of the paper is the incorporation of quality of service requirements into the service

provisioning approach originally proposed in [16]. Our approach to analyzing quality of service in ATM
networks is intuitively appealing as it captures the interaction among resource allocation, percentage of cell loss,
and end-to-end cell delays along the fixed routes that provide the connection for the different types of services.

The results of our analysis of quality of service can also be used to address the admission control problem in
ATM networks as follows: When the network receives a request for the admission of a certain type of service
s (s ∈ S), it checks its available resources, and attempts to identify a route along which there is an allocation
of available bandwidth and available buffers that satisfies the requirements on percentage of losses and delay.
The requirements are expressed by Eqs (4.7) and (4.8), where the left-hand-sides of (4.7) and (4.8) are given
by expressions similar to (3.42) and (3.49), respectively. If such an allocation exists, the network admits the
service request, otherwise it rejects it.

The main features of our approach are:

(1) The network model is deterministic. A fluid approximation is used to describe the flow of messages that
travel through the network. Input messages are categorized into different types of services according
to their maximum input rate, the upper bound on their burstiness curve, and their Quality of Service
requirements expressed by the maximum percentage of cell loss, maximum end-to-end cell delay, and
maximum jitter.

(2) There is no sharing of resources (bandwidth and buffers) at each ATM switch among the different virtual
circuits that pass through the switch. The implications of this feature of our approach are: (i) the behavior
of one connection does not affect the quality of service of other connections that share the same nodes;
and (ii) jitter is zero.
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(3) Service provisioning is achieved through an iterative pricing scheme, where at each step of the iteration
the network sets prices for its resources and users respond by requesting a resource allocation along their
entire route that satisfies their quality of service requirements (and minimizes the cost of their service)
(cf. Section 4).

(4) To incorporate quality of service requirements into service provisioning we take a worst case approach.
For a fixed resource allocation (bandwidth and buffers) along the route of a service we derive expressions
for the maximum percentage of loss and the maximum end-to-end cell delay for that service. We require
that the maximum percentage of loss and the maximum end-to-end cell delay remain below certain limits.

(5) Centralization of information is not required by our approach. The network needs to know only the
average request rate of each type of service, the route of each service, the resources requested by the
users, and the time each admitted service terminates. The users need to know only their input traffic
constraints, their quality of service requirements, and the prices the network announces for its resources.

(6) Contrary to the situation in [16] the determination of resources required at each link of a fixed service
route has to be made jointly by all the nodes along the route. This coupling among the nodes of a fixed
route, corresponding to a certain type of service, arises because of the quality of service requirements
(for that service) that are included in the formulation of the service provisioning problem.

(7) The network reallocates its available resources every T̂ seconds. At allocation instances resources are
not reserved in anticipation of future requests. The determination of an optimal or near optimal value
of T̂ remains an open and challenging problem. Its selection must take into account the overall delay
constraints (end-to-end cell delay plus the delay due to waiting for the next allocation epoch) of the
different types of services, the arrival rates of incoming traffic, and the duration of the different types of
services.

Important open problems, some of which will be addressed in future work, are: (i) the investigation of resource
sharing among services and service scheduling at each ATM switch (cf. discussion of Section 2); (ii) the
incorporation of routing as an optimization component into the overall service provisioning approach; and
(iii) the comparison of the approach developed here with service provisioning approaches using stochastic
network models.
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