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Abstract. The degree of concurrency possible in an informationally decentral-
ized nonsequential system is determined by the precedence constraints imposed
by the system’s information structure on its controlled and uncontrolled inputs.
One approach to characterizing these constraints is to attempt to associate each
realization of the system’s inputs with the strongest partial ordering of the sys-
tem’s decision-making agents that is consistent with the system’s information
structure. If such an association is possible, it leads to a partial order character-
ization of the corresponding information structure. In this paper we show that, in
general, no such partial order characterization exists and we identify a sufficient
(but not necessary) condition for existence. The condition has design implications
that are important and intuitive and are discussed in the paper. Our results dem-
onstrate that partial-order-based descriptions of concurrency, sometimes used in
computer science, are not always correct.

Key words. Information structure, Concurrency, Nonsequential systems, Dead-
lock-freeness.

1. Introduction—Motivation

Most existing large-scale systems, including communication and computer net-
works, surveillance networks, economic systems, manufacturing systems, military
systems, database systems, power systems, are informationally decentralized and
nonsequential.’ These systems consist of several control stations (control agents,
decision-makers) that have access to different information, communicate with one
another and have to coordinate their strategies to optimize a common objective.
Two desirable features of any design of informationally decentralized non-
sequential systems are deadlock-freeness (see Section 2, and [2]) and a high degree
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! Systems where the order of controlled actions depends on the events that occur in nature and/or on
the system’s control laws are called nonsequential.
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of concurrency. Informationally decentralized nonsequential systems are subject to
deadlock (see Appendix A of [2], and [6]); deadlock-freeness allows the system to
accomplish all of its desired tasks (functions). A high degree of concurrency allows
the system to respond, in a timely fashion, to events critical to its operation.

Deadlock-freeness as well as the degree of concurrency of informationally
decentralized nonsequential systems depend, through the systems’ control laws (or
protocols), on the systems’ information structure, that is, on the information upon
which each operation may base its action. When under some set of control laws
no operation depends on any other’s action, complete concurrency is possible
(such a situation arises in static teams). Conversely, if under some set of laws all
operations but the first in a series depend on the action of their predecessor in the
series, no concurrency is possible. Between these extremes lie a host of alter-
natives. Under some control laws the dependencies may force operations to sat-
isfy a fixed partial order. Under other protocols the partial order may depend on
some exogenous input. Under still others the operations may be interdependent,
causing deadlock.

The relationship between the information structure and deadlock-freeness has
been investigated in [2], [3], and [10]. In this paper we explore the relationship be-
tween the information structure and concurrency. For that matter we investigate
two variants of the following problem: Consider an informationally decentralized
nonsequential system with a deadlock-free information structure .#. Characterize
the precedence constraints imposed by this information structure on the system’s
controlled and uncontrolled inputs in terms of a function, say J, that has the fol-
lowing characteristic: It associates each realization of the inputs with the strongest
partial ordering of the system’s decision-making agents that is consistent with the
information structure .#. By consistent we mean that for each realization of the
system’s controlled and uncontrolled inputs all total orders compatible with the
information structure’s precedence constraints are also compatible with the partial
order generated by J and vice versa.

The solution to the above problem, that is the function 9, if it exists, clearly
highlights the relationship between an informationally decentralized nonsequen-
tial system’s information structure and its degree of concurency; furthermore, ¢
provides a partial order characterization of the system’s information structure.
We formulate two problems, (P1) and (P2), that address the existence of partial
order characterizations of information structures. We show that, in general,
no partial order characterizations of information structures exist. We identify
for Problems (P1) and (P2) a sufficient condition for existence. This condition
reveals, along any realization of the controlled and uncontrolled inputs, the infor-
mation flow that results in a deadlock-free operation of the system. Furthermore,
the same condition has design implications that are important and intuitive, and
are discussed after the analysis of Problems (P1) and (P2).

To the best of our knowledge, the results of this paper present the first condi-
tion sufficient to ensure the existence of partial order characterizations of infor-
mation structures. The question of partial order existence was first raised by
Witsenhausen in [12]. More recently, the same question has been taken up in the
concurrency literature (see [7]). The results of this paper resolve Witsenhausen’s
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question and provide informational conditions to ensure that the “minimal cau-
sality” modeling discussed in [7] gives rise to unique partial order character-
izations. The results of this paper may be surprising to some, as they demonstrate
that partial-order-based descriptions of concurrency, sometimes used in computer
science, are not always correct.

The paper is organized as follows: In Section 2 we present Witsenhausen’s in-
trinsic model, a mathematical model that is appropriate for the investigation of
the relationship between the information structure and concurrency. In Section 3
we discuss the properties that characterize deadlock-free information structures.
In Section 4 we precisely formulate two problems addressing the relationship
between information structure and concurrency. We analyze these problems in
Section 5. In Section 6 we discuss possible extensions of the problems formulated
in Section 4. We conclude our discussion in Section 7.

2. The Intrinsic Model—Nonsequential Systems

To investigate the relationship between the information structure and concurrency
it is essential to model systems in a framework where every action can, in princi-
ple, affect the information upon which every other action is based. One such
framework is provided by Witsenhausen’s intrinsic model [10], [12].

Formally, the intrinsic model has three components:

1. An information structure 5 := {(Q, %), (UK, %, g% k=1,. .., N} speci-
fies the system’s allowable decisions and distinguishable events.

(a) N e N denotes the number of control actions to be taken.

(b) (Q,4%) denotes the measurable space from which a random input  is
drawn.

(c) (U*,*) denotes the measurable space from which u*, the kth control
action, is selected.? It is assumed that card (U*) is greater than one, and
that #* contains the singletons of U*. The product space containing the
N-tuple of control actions, u := (u',u?, ..., u"), is denoted by (U, %) :=
(1Y, U@L, 7).

(d) The o-field #* ¢ #® % characterizes the maximal information that
can be used to select the kth control action.

2. A design constraint set I'c constrains the set of admissible N-tuples of con-
trol laws, y := (y',72,...,9"), called designs, to a nonempty subset of I' :=
Hiﬁl [’ where T¥, k = 1,2,..., N, denotes the set of all jk/%k-measurable
functions.

2 From a game theoretic perspective (see [9]), the control actions can be viewed as being the actions
of N distinct decision-making agents (computers, devices, processes, etc.). Similarly, the random inputs
can be viewed as a single action of nature (chance).

32 ®% denotes the product o-field of the o-fields 2 and %; ie., Z @ ¥ = o(ny] () U
[7y] " (#)) is the smallest o-field of X x Y for which the canonical projections 7y (mx (x,y) = x) and
ny(my(x,y) = y) are both measurable (see [4] and [5]).
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3. A probability measure P on (Q, %) specifies the mixed (randomized) deci-
sion policy to be used by nature to select w.

Note that the intrinsic model does not exclude the possibility of an agent
employing a mixed decision policy, or a policy that dictates that the agent not act.
To model the mixed policy, randomizing devices can be included as factors in
(Q, 4, P), and the effects of the devices’ outputs can be specified in ¢ k. To model
inaction, the agent can be allowed to make decisions that have no effect.

The intrinsic model, proposed by Witsenhausen [10], [12], has been used to
model informationally decentralized nonsequential systems [2], [3], [10], [12] and
to formulate and study decentralized nonsequential stochastic control problems
[1]-[3], [8], [10], [12]. Within the framework of Witsenhausen’s intrinsic model it
was shown that informationally decentralized nonsequential systems can poten-
tially perform better than sequential ones [2], that dynamic team problems are,
in most cases, equivalent to static team problems [13], and a framework for
the optimization of unconstrained decentralized nonsequential stochastic control
problems has been proposed [1]. Even though informationally decentralized
nonsequential systems can potentially perform better than sequential ones, they
are subject to deadlock [2]. Furthermore, in informationally decentralized non-
sequential systems it is not always possible to compute the performance associated
with certain designs precisely [8]. Consequently, optimization problems associated
with these systems are not always well-posed. That is why it is important to de-
termine conditions on the information structure that (i) guarantee deadlock-free
operation of informationally decentralized nonsequential systems and (ii) ensure
that the performance associated with each design can be precisely quantified. The
results of [10], [2], and [3] present properties of the information structure that are
necessary and sufficient [2], [3], or sufficient [10] to ensure deadlock-freeness* of
nonsequential systems for all designs [10], [2], or for particular designs [3]. Fur-
thermore, these properties of the information structure, called causality (Property
C) [10] and causal implementability (Property CI) (2], ensure that the performance
associated with each design can be precisely computed [10], [2]. Therefore, opti-
mization of informationally decentralized nonsequential systems possessing Prop-
erty C or Property CI is possible.

From the above discussion it is evident that it is desirable to design informa-
tionally decentralized nonsequential systems with an information structure that
possesses the abovementioned properties. For this reason, in this paper we con-
centrate on information structures that possess Property C or Property CI. We
find characterizations of these information structures that reveal the relationship
between the information structure and concurrency and provide deep insight into
fundamental issues associated with the performance of informationally decentral-
ized nonsequential stochastic controlled systems such as: Who should know what
and when? Who should communicate with whom and when?

+ An information structure .# is deadlock-free if for each y € T', and for every w € Q, there exists an
ordering of y’s N control laws, say y*(@) y2(@) »v@®) such that no control action u*©) n=
1,2,..., N, depends on itself or the control actions that follow.
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Before we formulate the technical problems that we investigate in this paper we
precisely define Properties C and CI as well as their design-dependent analogues,
Properties C* and CI*, respectively.

3. Properties CI, C, CI*, and C*

Before defining Properties CI, C, CI*, and C* we establish some notation. We
define by
7 :={1,2,...,N} (3.1)

the set of decision-making agents (see the specification of information structure,
Section 2, and footnote 2). For all k = 1,2,..., N, we define Sj to be the set of all
k-agent orderings, i.e., all injections of {1,2,... k} into N. We let

Th: S — S, (32)
j=0,1,2,....N, k=j,j+1,...,N, denote a truncation map that returns the

ordering s of the first j agents of a k-agent ordering; that is, Tjk restricts s € Si to

the domain {1,2,...,/} or to ¢J when j =0. For all se Sy and k =1,2,... N,
we define Z; to be the projection of Q x U onto Q x sz: , U%; that is,

P(w,u) = (o, u* u”, ... u™), Py(w,u) = w. (3.3)
For any H := {s1,82,...,8} = Z and any (w,u) € Q x U, we define
Py(w,u) = (w,u™,u”, ... u"). (3.4)
Forany yeT, y:= (y',9%,...,7"), we denote by
2= DN R ke URY,  k=1,2,...,N, (3.5)

the information partition of agent k induced by the control law y. Finally, for any
design y € I we define the graph of y as

G = {(w,u) : y(w,u) = u}. (3.6)

Definition 1 [2]. An information structure .# possesses Property CI when there
exists at least one map y : Q x U — Sy such that for all k=1,2,... N, and
(w,u) eQ x U,

I[Py o) (Prx (@,0) <D, [2ry o) (Pry (0w}, (3T)

when s := (51,82, ...,5y) = ¥(w,u).

Property CI ensures that for all outcomes (w,u) € Q x U there exists an order
s:=(81,8,...,5v) = ¥(w,u) such that for all k =1,2,..., N, the s;th agent’s in-
formation at the point (w, u) depends only on the random input @ and the actions
u w2, ..., u%1 of its predecessors in s.

Definition 2 [10]. An information structure .# possesses Property C when there
exists at least one map ¥ : Q x U — Sy such that for all s := (s1,s2,...,5) € Sk,
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ST o™ s) € F(TE (5), (3.8)
k

i=

where 7 (s) denotes the cylindrical extension of 4 ® ((X)
s€Si,k=1,2,...,N.

() to Q x U for all

As in Property CI, the order function iy maps every outcome in Q x U into an
N-agent ordering. However, unlike Property CI, the order functions s in Property
C are constrained to be (# ® %)-measurable (see [2]). Property C ensures that
there exists an order function y, such that for all possible orderings s € Sk,
k=1,2,...,N, the events that agent s; can distinguish (given that the ordering of
the first k& agents, as determined by y, is s) are events that are induced by the ran-
dom input @ and the actions of the s; agent’s predecessors in s.

As pointed out in Section 2, Properties CI and C are design-independent, since
they guarantee deadlock-free operation of informationally decentralized non-
sequential systems for each design, and ensure that the performance associated
with each design can be precisely quantified (see [2] and [10]). Properties CI and C
have design-dependent analogues that are described by Properties CI* and C*,
respectively.

Definition 3 [3]. A design y possesses Property CI* when Zx(G7) =Q, and
there exists at least one map  : G” — Sy such that for all k =1,2,... N, and
(w,u) € G7,

I Py o) Pry @) < 4D Py o) oy (@)} (39)
when s := (s1,52,...,5v) = ¥ (o, u).
Property CI* ensures that for all outcomes (w, u) € G?, the cylinder set
['@T/ﬁl(f)]_l ('@T/ﬁl (w,u)) = ['@Tk‘yl(&)]_l (w,u u™, .. u™") (3.10)

induced on Q x U by w and the action of the first kK —1 agents in s:=

(81,82,...,5v) = ¥(w,u) is a subset of all events containing (w, u) in the informa-
tion partition #”" induced by the s;th agent’s control law y*; that is, no event in
#7* containing (w,u) depends on u, w1 ... ufy.

Definition 4 [3]. A design y € I' possesses Property C* when Z5(G7) = Q and
there exists at least one map y : G — Sy such that for all 5 := (51,2, ...,5) € Sk
andk=1,2,...,N,

IS0 [g)rk{l(s)]il(Wr,ffl(s)([Tifv Y7s))
= F(TEL () A [Pr o) (Prs 1) (G7)). (3.11)
Property C* ensures that there exists an order function y such that for all pos-

sible orderings s € S,k = 1,2,..., N, the events agent s; can distinguish under y,
given that the ordering of the first k agents, as determined by y, is s, are events
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that can be induced in [PT,Zi 1(S)]fl(PT’L@)(GV)) by the random input @ and the
actions of the s;th agent’s predecesors in s.

It was shown in [2] that Property C always implies Property CI; this means that
all order functions y for which the information structure .# possesses Property C
are functions for which .# possesses Property CI. In general there are order func-
tions  for which .# possesses Property CI but not Property C (see [2]). It was
proven in [2] that Properties C and CI are equivalent when the information struc-
ture .7 is sequential,® or when UX, k =1,2,..., N, are countable sets and % con-
tains the singletons of Q. Relations similar to the above hold between Properties
CI* and C* (see Section 3.4 of [3]). Since Properties C and CI are not equivalent
in general, the relationship between concurrency and information structures that
possess (i) Property CI and (ii) Property C, has to be investigated separately. Sim-
ilarly, a design’s degree of concurrency has to be investigated separately for
designs that possess (i) Property CI* and (ii) Property C*.

For an information structure .# possessing Property CI (Property C) the set W
(P') of all total order functions  : Q x U — Sy for which Property CI (C) holds
may be a large one. For example, as Witsenhausen points out in [12], when the
system is a static team, ¥’ contains, in particular, all Z (f)-measurable func-
tions, where 7 () denotes the cylindrical extension of # to Q x U. Similar
results hold for designs that possess Property CI* or Property C*. In this paper we
determine a condition (see Assumption Al in Section 5.1) under which we can
characterize the set ¥ (') in terms of a function § (§') from Q x U to partial
orders on the set of agents 2. That is, ¥ (W’) is precisely the set of total order
functions x: Q x U — Sy that are compatible with § (6"). The function § (6")
provides a partial-order characterization of the (deadlock-free) information struc-
ture .#, and describes the relationship between .# and the degree of concurrency of
the corresponding informationally decentralized nonsequential system. Further-
more, § (§') reveals, along each realization of controlled and uncontrolled inputs,
the information flow that results in a deadlock-free operation of the system. In the
next section we formulate precisely the problems of characterizing the sets ¥ and
¥’ in terms of the functions of § and J’, respectively, and then proceed to analyze
them. The design-dependent analogues of these problems are presented and dis-
cussed in Section 6.

4. Problem Formulation

We consider an informationally decentralized nonsequential system modeled by
the intrinsic model with an information structure .# = {(Q, A), (U*,%*), #*,
k=1,2,...,N} and I'c =T. We assume that .# possesses Property CI (Property
C). Let ¥ (W) be the set of total order functions  : Q x U — Sy for which .#
possesses Property CI (C). We wish to find a simple characterization of ¥ (¥') in

5 An information structure .# is said to be sequential when Property CI holds for some constant
order function.
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terms of a function 6 (6") from Q x U to partial orders on the set 2 of agents.
More specifically, we are concerned with the following problems:

(P1) Under what conditions is there a function ¢ from Q x U to partial orders
on Z such that ¥ = M, where M is the set of total order functions x : Q
x U — Sy that are compatible with 6?

(P2) Under what conditions is there a function ¢’ from Q x U to partial
orders on % such that W' = M’, where M’ is the set of total order
functions 4’ : Q x U — Sy that are compatible with ¢’ and have the fol-
lowing property: for all se Sy and all k=1,2,...,N, [T} ) e
F (T, ()2

If there is a function ¢ (6") from Q x U to partial orders on the set of agents 2
that solves Problem (P1) (Problem (P2)), then, along each intrinsic event (w,u) €
Qx U, d(w,u) (0'(w,u)) is the strongest partial order compatible with all
W(w,u),y e ¥ (respectively, all /' (w,u), ' € P').

We proceed with the analysis of Problems (P1) and (P2).

5. Analysis

5.1. The Main Condition
We make the following assumption:

(A1) For each intrinsic event (w, u) and for each agent s,, € Z there is a unique
smallest cardinality set A’ (w,u) = Z with the following properties:

(1) fsm N ['@N’" (a)ﬁu)]il ('@A"” (cw,u) (wv u))
< {Qv [QA"’" (w,u)]71 (y/\‘"” (c,u) (wv u))}v (5 1)
(i) [P (Po(0,0) 4D, [Po) (Po(0,u)} (5.2)

for any set ¥ <= & such that A’ (w,u) ¢ £.

Equation (5.1) in (Al) is equivalent to the following condition: VA4 € #% such
that (w,u) € A4,

AN [Prnioi)” (Paonwa(@,1)) = [Pan ()] (Pa (@ay (@, 1)). (5:3)
The meaning of Condition (5.1) (and its equivalent Condition (5.3)) is the follow-
ing: Agent s,,’s information at the point (w,u) depends on the random input w
and the actions of agents in A™ (w, u). The set A’ (w,u) specifies the smallest sub-
set of agents in Z that must communicate directly or indirectly with agent s,
along (w,u) so that s, can act. Consequently, along (w,u) agent s, cannot act
until w occurs and all agents in A’ (w,u) have acted; this is precisely expressed
by Condition (5.2). The sets A™(w, u) reveal, along any intrinsic event (w, u), the
information flow that results in a deadlock-free operation of an informationally
decentralized nonsequential system. That is, they specify the agents that must
communicate with one another along any intrinsic event so that deadlock-freeness
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is achieved. In fact, for nonsequential systems the sets A’ (w, u) play a role similar
to that of the last component of the triple (Y, U, L) that defines the ““field-basis”
[11, p. 1559] in sequential stochastic controlled systems.

We present here one instance where Assumption (A1) is satisfied. Consider the
following thought experiment. Take an intrinsic event (w,u) and proceed as fol-
lows: First determine all agents j € 2 such that for all 4 € #/ that contain (o, u)
the following condition is satisfied:

A0 2y (Py(0,u) = [Py (Py(o,u). (5.4)

Record all these agents. Call this set of agents Z;(w, u). This is the largest set of
agents that can act based only on the occurrence of w. Let card (Z(w,u)) = k.
Because .# possesses Property CI, k > 1. Next, consider (w,u®,u®,... u%),
where Zj(w,u) := (s1,52,...,5). Determine all agents 7 € {1,2,..., N}\Z|(w, u)
such that for all 4 € #/ that contain (e, u) the following condition is satisfied:

An [921((0,14)}71(yzl(w,u)(wv u)) = [‘@Z](w,u)}il(gzl(w.u)(wvu))' (55)

Record all these agents, and call this set of agents Z,(w, u). This is the largest set
of agents that can act based on w and (u*,u®, ... u%). Again, because .# pos-
sesses Property CI, card (Z>(w,u)) > 1. Continue this process along (w,u) until
all agents are accounted for. Repeat the same process as above for all intrinsic
events (w,u) € Q x U. This completes the thought experiment.
Consider now the situation where the following is true: For every intrinsic event
(w,u) and every agent sg, k = 1,2,..., N, if s € Z,(w, u), then
n—1
N (w,u) = | ) Z(w,u). (5.6)
(=1
Then Assumption (A1) is satisfied. That is, Assumption (A1) is satisfied if along
every intrinsic event (w, u) the information of any agent depends on the actions of
all the agents that act in the preceding stages of the experiment described above.
It is worth noting that, for any design y € I' and any w € Q, the thought experi-
ment described above specifies the partial ordering of agent actions that a passive
observer would record (given w) if y were implemented in a “maximally” concur-
rent fashion.
We proceed to analyze Problems (P1) and (P2) under Assumption (Al).

5.2. Analysis of Problem (P1)

The following theorem, that is the main result of Section 5.2, shows that Problem
(P1) has a solution if Assumption (A1) is satisfied.

Theorem 1. Consider an informationally decentralized nonsequential system mod-
eled by the intrinsic model. Assume that the information structure $ possesses
Property CI, and let ¥ be the set of total order functions  : Q x U — Sy for
which ¥ possesses Property CL Then there exists a function é from Q x U to par-
tial orders on the set Z of agents such that ¥ = M, where M is the set of total
order functions u: Q x U — Sy that are compatible with o, if (A1) holds.
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Proof. Consider, for each intrinsic event (w,u) and for each agent s,, € Z, the
set A (w,u) (defined in (A1)). For each intrinsic event (w, u) define a precedence
relation d(w, u) on the set & of agents as follows: s;0(w, u)s,, (s; is a precedent of
sm along (w,u)), if s; satisfies one of the following two conditions:

(C1) s; € A" (w,u) U {sm};
(C2) there exists at least one sequence of agents s, ,Ss,...,S, such that
s; € N (w,u), Sy € N2 (0, u), 54 € A (0,u), ..., 8y, € A" (0, u).

The precedence relation defined above has the following characteristics:

(i) If sx0(w,u)s, and s;0(w, u)sy, then s = s, because the information structure
 possesses Property CI.
(i) If sxo(w, u)s, and s,0(w, u)sy,, then spd(w, u)sy,.

Consequently, for all (w,u) e Q x U, d(w,u) is antisymmetric and transitive.
Furthermore, because of (Cl1), it is reflexive. Hence, for every (w,u), o(w,u) is a
partial order on the set Z of agents.

We now prove that all total order functions yy compatible with ¢ are such that
# possesses Property CI. Consider any total order function y,

W:QX U—>SN

that is compatible with J, and consider any intrinsic event (w,u). Let (o, u) =
(s1,82,...,5v) := s, and consider any agent s,. We want to prove that

S0Py o) Py g @,0) S {D (Pry o] (Pry g (@,u)}, (5.7)
or equivalently that VA € #° such that (w,u) € 4,
A Zry ] ( Py g(@,0) = [Py o) (Pry (). (5.8)

Since ¥ is compatible with ¢ it follows, from the definition of ¢, that
{81,82, .-, 8k_1} © A*(w,u). Therefore,

[@ﬂ;\ll(s)}il(gﬂﬁl(s) (CO, u)) < [9/\5’((0)‘,14)]71(y/\sk(a),u) (CO, u)) (59)
Combining (5.9) with (5.3) we conclude that VA4 € #% such that (w,u) € 4,
APy o) Py g(o,0) = [Pry o] (Pry g (0,u). (5.10)

Since (5.10) is true for any intrinsic event (w,u) € Q x U and for any agent s, it
follows that all total order functions iy compatible with J are such that .# pos-
sesses Property CI. Hence,

McVW. (5.11)

Next we prove that all total order functions i/ such that .# possesses Property
CI are compatible with 6. Suppose there is a total order function  such that .#
possesses Property CI and i is not compatible with . Then there exists at least
one intrinsic event (w,u) such that the total order y(w,u) = (s1,52,...,5y) := s
cannot be obtained by Jd(w, ). This means that there exist agents sx, s, such that
si’s action precedes s,’s action according to W(w,u) =s and s:0(w,u)s;. Since
s/0(w, u)si it follows that either s, € A* (w, u) or there exists a sequence of agents
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SiyySiyy - - -4 8, such that s, € A%t (w,u), s;, € N2 (w,u),...,s;, € N*(w,u). Consider
first the case where s, € A% (w, u). In this case, since, according to , s, ¢ T, (s),
it follows from (5.2) that

A [@TA‘YI(S)]_I(@TAXI(S)(C‘Lu)) = {ga [@Tk\il(s)]_l(O/Tk'!](x)(wau))} (512)

However, (5.12) contradicts the fact that y is such that .# possesses Property CI
(see relation (3.7)). Consequently, it is not possible to have s, € A% (w, u).

Suppose next that there exist agents s;,s;,...,s;, such that s, € A% (w,u),
sy, € N2 (w,u),...,s;, € AN*(w,u). Since  is such that .# possesses Property CI
and s, € A’ (w, u), it follows from (5.1) and (5.2) that, according to y, s;, must act
after s, along (w,u). By successive applications of the same argument we find
that, according to y, s;,,si,...,s;,, must act after s, along (w,u). Consequently,
si, & TN | (s) because s;’s action precedes s,’s action according to y(w, u). Hence
A*(w,u) ¢ T |(s), and (5.2) implies that

JHN WT,({1<S)]71(:’/"TA{\;1<S>(W»”)) £{D, 21y o)) (Pry (@)} (5.13)

However, (5.13) contradicts the fact that ¥ is such that .# possesses Property CI
(see relation (3.7)). Therefore, it is impossible to have a total order function ¥
such that .# possesses Property CI and an intrinsic event (w,u) such that
U(w,u) = (51,82, 3 Sky- 357, - ,5,) and s,0(w, u)s, for some sy, s,.

Consequently, there does not exist any total order function iy for which .#
possesses Property CI and that is incompatible with J. Hence,

¥ c M. (5.14)

Relations (5.11) and (5.14) imply that ¥ = M.
The proof of Theorem 1 is now complete. |

Next we illustrate that if (A1) is not satisfied, Problem (P1) does not, in general,
have a solution.

Example 1. Consider the following information structure .#:

N =3, (5.15)
Q=U'=U*=0U°={0,1}, (5.16)
B=u"=u*=U ={Z,{0},{1},{0,1}}, (5.17)
S ={DA(ou) 0 =0}, {(0,u) : 0 =1},Q x U}, (5.18)
I ={DA(ou) : 0 =0}, {(0,u) : 0 =1},Q x U}, (5.19)
2 ={D {(0,u) : u'u? = 0}, {(w,u) : u'u? = 1},Q x U}. (5.20)

Along any of the intrinsic events (w,0,0,4°),w € {0,1}, u? € {0, 1}, there is not a
unique smallest cardinality set A°(w, 0, 0,3) satisfying (5.1) and (5.2). We have

A} (@,0,0,17) = {1} and A3(®,0,0,u4%) = {2} (5.21)
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satisfying (5.1) and (5.2). Thus, Assumption (A1) is not satisfied. Suppose there
is a function J from Q x U to partial orders on the set {1, 2, 3} of agents that
solves Problem (P1). Consider the total order functions y; : Q x U — S3,i = 1,2,

defined by
(2.3,1), i wl=ut=0,
_ 5.22
¥y (o, u) { (2,1,3), otherwise, >
and
(1,3,2), it u :u2:0,
e . 5.23
Vs (w,u) {(27 1,3),  otherwise. >

The functions y; and y, are such that (3.7) is satisfied for all (w,u) and for all
agents. Therefore, /; and y/, are order functions such that .# possesses Property
CI. Since by assumption ¢ solves Problem (P1), i, and y, are compatible with J.
Then the total order function 5 : Q x U — 3, defined by

(3,2,1), if ul'=u?>=0,

5.24
(2,1,3), otherwise, (5.24)

o) = {

is compatible with 6. Hence, /5 is such that .# possesses Property CI. However, at
(0,0,0,0), where 5(0,0,0,0) = (3,2,1), (3.7) is not satisfied because
({0} x U ' x U x U?) ¢ {@,{0} x U' x U* x U*}.  (5.25)

Thus, under the assumption that there is a function J from Q x U to partial
orders on the set {1,2,3} of agents that solves Problem (P1), a contradiction is
reached. Consequently, there is no function ¢ from Q x U to partial orders on
{1,2, 3} that solves Problem (P1).

The validity of Assumption (A1) is sufficient to ensure that Problem (P1) has a
solution, but it is not necessary as the following example shows.

Example 2. Consider the following information structure .7
N =3, (5.26)
Q=U'=U>=U={0,1}, (5.27)
B=u'=w=u={Z,{0},{1},{0,1}}, (5.28)
I ={DA(0u) 0 =0}, {(0,u) : 0 =1},Qx U}, (5.29)
I ={D A(ou) :u' =0}, {(w,u) :u' =1},Q x U}, (5.30)
I ={DA(ou) :u'® = 0}, {(w,u) s u'u® = 1},Qx U} (531)

Along any of the intrinsic events (w, 0,0, u?), w € {0, 1}, u* € {0, 1}, there is not a
unique smallest cardinality set A*(w, 0,0, 43) satisfying (5.1) and (5.2). We have

A (0,0,0,u%) = {1} and A*(®,0,0,143) = {2} (5.32)
satisfying (5.1) and (5.2). Hence, Assumption (Al) is not satisfied. Consider the
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following function o, constructed as in the proof of Theorem 1:

At (w7 07 u2’ u3)7

16(w, 0, 1%, u*)2 (5.33)
and

16(w, 0,u%,u*)3. (5.34)
At (o, 1,u,u?),

16(w, 1,u?, u)2 (5.35)
and

20(w, 1,u?, u?)3. (5.36)

There are 28 total order functions u : Q x U — S3 that are compatible with the
function ¢ defined by (5.33)—(5.36). These are precisely the total order functions
for which .# possesses Property CI. Thus, M =¥, and the function J from Q x U
to partial orders on {1,2,3}, defined by (5.33)—(5.36), solves Problem (P1) even
though (A1) is not satisfied.

5.3. Analysis of Problem (P2)

The following theorem, that is the main result of Section 5.3, shows that Problem
(P2) has a solution if Assumption (A1) is satisfied.

Theorem 2. Consider an informationally decentralized nonsequential system
modeled by the intrinsic model. Suppose that the information structure .9 possesses
Property C, and let W' be the set of total order functions ' : Q x U — Sy for
which .% possesses Property C. Then there exists a function 6’ from Q x U to par-
tial orders on the set 2 of agents such that V' = M' if Assumption (A1) holds. M’
is defined to be the set of total order functions ' : Q x U — Sy that are compatible
with &' and have the following property: for all s€ Sy and all k=1,2,...,N,
T 1) () € F(TE L (5)).

Proof. Take ¢’ =, where ¢ is the function from Q x U to partial orders on &
constructed in the proof of Theorem 1. We prove that ¢ solves Problem (P2).

(i) Consider any /' € W'. Since Property C implies Property CI (see Corollary 1
of [2]), ' € ¥ (where W is the set of total order functions from Q x U to Sy such
that .# possesses Property CI). From Theorem 1 it follows that /' is compatible
with J. Furthermore, since i’ € W/, Lemma 5 of [10] implies that for all s € Sy and
allk=1,2,...,N, (TN -y")"'(s) € Z(T}_,(s)). Consequently,

Y <M. (5.37)
(ii) Suppose there is u' € M’ such that ' ¢ P'. Then there exists at least one
intrinsic event (w,u), some k = 1,2,..., N, and 4 € #°* such that
An[TY - @) (s) ¢ Z(TE(s), (5.38)
where

5= (51,82, ., 86) = T (¢ (w,u)) € Sk. (5.39)
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Since by assumption [T} w7 N(s) e F(TF |(s)), (5.38) implies that

A¢ (T (5). (5.40)

Hence, along (w,u) agent s;’s information depends on the action of at least
one of its successors in u'(w,u), say agent s,. This means that s,0(w, u)sy (by the
construction of d) which in turn implies that x’ is not compatible with J. Thus, a
contradiction is reached (because by assumption u’ € M’). Consequently, every
' € M’ is such that u' € ¥'. Hence

M W, (5.41)

Combining (5.37) and (5.41) we obtain M’ = ¥’. The proof of Theorem 2 is now
complete.

Remarks. 1. In the information structures considered in Examples 1 and 2, Q
and U*, k =1,2,3, are finite sets and # contains the singletons of Q. Therefore,
by Theorem 4 in [2], Properties C and CI are equivalent. Consequently, Example
1 illustrates that if (A1) is not satisfied, Problem (P2) does not, in general, have
a solution. Furthermore, Example 2 shows that (Al) is a condition sufficient to
ensure that Problem (P2) has a solution, but it is not necessary. The determination
of conditions necessary and sufficient to ensure that Problems (P1) and (P2) have
a solution remains an open problem.

2. In retrospect, we can expect that if Problems (P1) and (P2) have a solution,
then the same function J from Q x U to partial orders on the set Z of agents will
solve both Problems (P1) and (P2). This happens because the sets ¥/ (V' = ¥)
and M’ (M’ = M) are obtained by the same restriction on ¥ and M, respec-
tively. Specifically, W' (M’) consists of all the elements of ¥ (M) that are
(# ® U)-measurable (see Section 3 and the definition of M and M").

6. Discussion

It is possible to obtain results similar to those of Section 5 for particular designs
y € I' that possess Property CI* or Property C*. Consider the same information
structure as in Section 4, a design y € I', and assume that y possesses Property
CI* (respectively, Property C*). Let W) (respectively, W) be the set of maps
V" : G" — Sy such that y possesses Property CI* (respectlvely, Property C*). We
wish to find a simple characterization of W (respectively, /) in terms of a func-
tion 6* (respectively, 6*) from G’ to part1al orders on the set 2 of agents. More
specifically, we are concerned with the following problems:

(P1)* Determine the conditions under which there is a function §* from G to
partial orders on £ such that ‘I’* M, where M is the set of all total
order functions u* : G7 — Sy that are compat1ble Wlth 0.

(P2)* Determine the conditions under which there is a function 6* from G” to
partial orders on & such that ‘?; =M ,» wWhere M , 1s the set of total or-
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der functions ii* : G” — Sy that are compatible with * and have the
following property: for all s € S and allk =1,2,..., N,

Pry o] (P (T 1) (9)
e F(TE1(9) 0 [Pre ] (Pre (y(G)). (6.1)

Let ¢ " be the information partition of agent k, induced by the control law
yel,y:= (9% ...,7Y) (see (3.5)). We make the following assumption:

(A2) For each intrinsic event (w,u) € G” and for each agent s,, € Z there is a
unique smallest cardinality set A (w,u) = Z with the following proper-
ties:

(1) fys'” N [‘W/\‘Z” (@uﬂil (g/\i’" (cw,u) (60, u))
< {@7 [y/\i’”(w,u)}71 (9/\‘2“ (cw,u) (CO, u))}v (62)

i) 2] (2o (o) E{D [P (2o (@)} (63)
for any set ¥* <= Z such that A)"(w,u) ¢ £*.

Assumption (A2) is the design-dependent analogue of Assumption (Al) and has
an interpretation similar to that of (Al).
Under Assumption (A2) we can show that there exists a function 6" (respec-

tively, 0*) from G7 to partial orders on the set 2 of agents that solves Problem
(P1)* (respectively, Problem (P2)*) using arguments similar to those of Section 5.

7. Conclusions—Reflections

Investigation of the interaction between the information structure and con-
currency reveals, for each intrinsic event (o, u), the information flow that results
in a deadlock-free operation of the corresponding informationally decentralized
nonsequential stochastic controlled system. Specifically, the sets A* (w, 1), defined
in Section 5, determine ‘““who must communicate with whom along each intrinsic
event” to avoid deadlock. The sets A™(w,u) are the nonsequential analogue of
the field basis that is defined on p. 1559 of [11] and plays a fundamental role in the
analysis of sequential stochastic controlled systems.

The design implications of Assumption (Al) (respectively, Assumption (A2))
are important and intuitive. Specifically, these assumptions make clear the intu-
ition that if in any informationally decentralized nonsequential system it is desir-
able that a particular decision be immune to information losses, it is necessary
that multiple nonintersecting sets A™ (w, u) (respectively, A% (w,u)) that possess
Property (5.1) (respectively, Property (6.2)) and do not satisfy Assumption (Al)
(respectively, Assumption (A2)) exist for each agent and each intrinsic event that
includes the decision. Consider, for example, routing in a mobile network. If the
objective is to transmit a message from Node A to Node B through the network,
one would like to have more than one alternative route available, so that in the
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event anode along one of the routes fails the message can still reach its destina-
tion. This requirement implies that multiple nonintersecting sets A’ (w,u) of
mobiles, that possess Property (5.1) (respectively, Property (6.2)) but do not sat-
isfy Assumption (A1) (respectively, Assumption (A2)), must exist for each mobile
that is included in one or more of the routes. Thus, the results of this paper point
out potential advantages of decentralized concurrent systems that have “informa-
tional redundancy,” that is, they have, along each intrinsic event (w,u) and for
each agent s,,, multiple nonintersecting sets A™ (w,u) with the properties stated
above. The results of this paper also make clear that partial-order-based con-
currency models are valid when every action can be traced to sets of predecessors
actions that satisfy Assumption (Al) (respectively, Assumption (A2)). This last
observation may be surprising to some. Computer scientists are accustomed to
using partial orders to describe concurrency (see [7]). The results of this paper
highlight the fact that such descriptions are not always correct.
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