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Dynamic Games with Asymmetric Information:
Common Information Based Perfect Bayesian

Equilibria and Sequential Decomposition
Yi Ouyang, Hamidreza Tavafoghi and Demosthenis Teneketzis

Abstract—We formulate and analyze a general class of stochas-
tic dynamic games with asymmetric information arising in
dynamic systems. In such games, multiple strategic agents control
the system dynamics and have different information about
the system over time. Because of the presence of asymmetric
information, each agent needs to form beliefs about other agents’
private information. Therefore, the specification of the agents’
beliefs along with their strategies is necessary to study the
dynamic game. We use Perfect Bayesian equilibrium (PBE) as
our solution concept. A PBE consists of a pair of strategy
profile and belief system. In a PBE, every agent’s strategy
should be a best response under the belief system, and the
belief system depends on agents’ strategy profile when there
is signaling among agents. Therefore, the circular dependence
between strategy profile and belief system makes it difficult to
compute PBE. Using the common information among agents, we
introduce a subclass of PBE called common information based
perfect Bayesian equilibria (CIB-PBE), and provide a sequential
decomposition of the dynamic game. Such decomposition leads
to a backward induction algorithm to compute CIB-PBE. We
illustrate the sequential decomposition with an example of a
multiple access broadcast game. We prove the existence of CIB-
PBE for a subclass of dynamic games.

Index Terms—stochastic dynamic games, asymmetric informa-
tion, perfect Bayesian equilibrium, common information, sequen-
tial decomposition, signaling

I. INTRODUCTION

Background and Motivation

Stochastic dynamic games arise in many socio-technological
systems such as cyber-security systems, electronic commerce
platforms, communication networks, etc. In all these systems,
there are many strategic decision makers (agents). In dynamic
games with symmetric information all the agents share the
same information and each agent makes decisions anticipating
other agents’ strategies. This class of dynamic games has been
extensively studied in the literature (see [1–5] and references
therein). An appropriate solution concept for this class of
games is sub-game perfect equilibrium (SPE), which consists
of a strategy profile of agents that must satisfy sequential
rationality [1, 2]. The common history in dynamic games with
symmetric information can be utilized to provide a sequential
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decomposition of the dynamic game. The common history (or
a function of it) serves as an information state and SPE can
be computed through backward induction.

Many instances of stochastic dynamic games involve asym-
metric information, that is, agents have different information
over time (such games are also called dynamic games of
incomplete information in the game and economic theory
literature). In communication networks, different nodes have
access to different local observations of the network. In elec-
tronic commerce systems, each seller has private information
about the quality of his product. In cyber-security systems,
a defender can not directly detect the attacker’s activities. In
this situation, if an agent wants to assess the performance of
any particular strategy, he needs to form beliefs (over time)
about the other agents’ private information that is relevant to
his objective. Therefore, perfect Bayesian equilibrium (PBE)
is an appropriate solution concept for this class of games.
PBE consists of a pair of strategy profile and belief system
for all agents that jointly must satisfy sequential rationality
and consistency [1, 2]. In games with asymmetric information
a decomposition similar to that of games with symmetric
information is not possible in general. This is because the
evaluation of an agent’s strategy depends, in general, on the
agent’s beliefs about all other agents’ private information over
time. Since private information increases with time, the space
of beliefs on the agents’ private information grows with time.
As a result, sequential computation of equilibria for stochastic
dynamic games with asymmetric information is available only
for special instances (see [6–16] and references therein).

In this paper, we consider a general model of a dynamic
game with a finite number of agents/players in a system with
asymmetric information. The information available to an agent
at any time can be decomposed into common information
and private information. Common information refers to the
part of an agent’s information that is known by all agents;
private information includes the part of an agent’s information
that is known only by that agent. We define a class of
PBE and provide a sequential decomposition of the game
through an appropriate choice of information state using ideas
from the common information approach for decentralized
decision-making, developed in [17]. The proposed equilibrium
and the associated decomposition resemble Markov perfect
equilibrium (MPE), defined in [18] for dynamic games with
symmetric information.

Games with asymmetric information have been investigated
in the economic literature within the context of repeated
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games of incomplete information (see [6–9] and references
therein). A key feature of these games is the absence of
dynamics. The problems investigated in [10–16] are the
most closely related to our problem. The authors of [10–
14] analyze zero-sum games with asymmetric information.
The authors of [15, 16] used a common information based
methodology, inspired by [17], to establish the concept of
common information based Markov perfect equilibria, and to
achieve a sequential decomposition of the dynamic game that
leads to a backward induction algorithm that determines such
equilibria. Our problem is different from those investigated
in [10–16] for the following reasons. It is a nonzero-sum
game, thus, it is different from the problems analyzed in
[10–14]. Our approach to analyzing dynamic games with
asymmetric information is similar to that of [15, 16]; the
key difference between our problem and those in [15, 16]
is in the information structure. The information structure in
[15, 16] is such that the agents’ common information based
(CIB) beliefs are strategy-independent, therefore there is no
signaling effect. This naturally leads to the concept of common
information based Markov perfect equilibrium. In our problem
the information structure is such that the CIB beliefs are
strategy-dependent, thus signaling is present. In such a case,
the specification of a belief system along with a strategy profile
is necessary to analyze the dynamic game. Signaling is a
key phenomenon present in stochastic dynamic games with
asymmetric information. Since it plays a fundamental role in
the class of games we investigate in this paper, we discuss
its nature and its role below. The discussion will allow us to
clarify the nature of our problem, after we formulate it, and to
contrast it with the existing literature, in particular [15, 16].

Signaling
In a dynamic game with asymmetric information, an agent’s

private information is not observed directly by other agents.
Nevertheless, when an agent’s strategy depends on his pri-
vate information, part of this private information may be re-
vealed/transmitted through his actions. We call such a strategy
a private strategy. When the revealed information from an
agent’s private strategy is “relevant” to other agents, the other
agents utilize this information to make future decisions. This
phenomenon is referred to as signaling in games [19] and in
decentralized control [20]. When signaling occurs, agents’ be-
liefs about the system’s private information (which is defined
to be the union of all agents’ private information) depend
on the agents’ strategies (see [19]). Signaling may occur in
games with asymmetric information depending on the system
dynamics, the agents’ utilities and the information structure
of the game. Below we identify game environments where
signaling occurs, as well as environments where signaling does
not occur.

To identify game environments where signaling occurs we
need to precisely define what we mean by the statement: an
agent’s private information is “relevant” to other agents. For
that matter we define the concepts of payoff relevant and
payoff irrelevant information.

We call a variable (e.g. the system state, an observation, or
an action) payoff relevant (respectively, payoff irrelevant) to

an agent at time t if the agent’s expected continuation utility
at t directly depends on (respectively, does not depend on) this
variable given any fixed realization of all other variables1. For
instance, in a dynamic game with Markov dynamics where
agents’ utilities at each time only depend on the current
states, the current states are payoff relevant and the history
of previous states is payoff irrelevant.

There are four types of game environments depending on
the payoff revelance of an agent’s private information.

(a) Agent n’s private information at t is payoff relevant to
him at t and from t + 1 on, but payoff irrelevant to other
agents from t+ 1 on. In this game environment, agent n may
use a private strategy at t because his private information is
payoff relevant to him at t. Then, other agents can infer part of
agent n’s privation information at t based on agent n’s action.
Although this revealed private information is payoff irrelevant
to other agents, they can use it to anticipate agent n’s future
actions since this information is payoff relevant to agent n’s
future utility. In this game environment, signaling from agent
n to other agents occurs.

(b) Agent n’s private information at t is payoff irrelevant
to him at t, and is payoff relevant to other agents from t+ 1
on. This class of games includes the classic cheap-talk game
[22]. In this game environment, other agents form beliefs about
agent n’s private information at t because it is payoff relevant
to them. By using a private strategy, agent n can affect other
agents’ beliefs about his private information, hence, affect
other agents’ future decisions. Signaling may occur in this
situation if agent n can improve his future utility when he
signals part of his private information through his actions
(e.g. perfectly informative/separating equilibria in the cheap-
talk game). There may be no signaling if by revealing part of
his private information agent n does not increase his future
utility (e.g. uninformative/pooling equilibria in the cheap-talk
game).

(c) Agent n’s private information at t is payoff relevant
to him at t, and payoff relevant to other agents from t + 1
on. This game environment has both effects discussed in the
previous two environments. As a result, we may have signaling
or no signaling from agent n, depending on whether or not
he can improve his future utility by using a private strategy.
Decentralized team problems are examples where signaling
occurs, because signaling strategies can help the collaborating
agents to achieve higher utilities (see [23–26] for examples of
signaling strategies in decentralized team problems). Pooling
equilibria in the classic two-step signaling game [19] is an
example of no signaling.

(d) Agent n’s private information at t is payoff irrelevant
to all agents, including himself, from t + 1 on. In this game
environment no signaling occurs. Even if agent n uses a private
strategy at t, since his private information is payoff irrelevant
from t+1 on to all agents, no agent will incorporate it in their

1Decomposition of agents’ types to payoff-relevant type and payoff-
irrelevant type is a standard decomposition in the economic literature. Here,
we use term ’variable’ instead of ’type’ to match with the existing literature
in control theory. For a more rigorous definition consult with [21, ch.9].
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future decisions. 2 The model in [15, 16] are examples of this
situation where signaling of information does not occur.

When signaling occurs in a game, all agents’ beliefs on the
system’s private information are strategy dependent. Further-
more, each agent’s choice of (private) strategy is based on
the above mentioned beliefs, as they allow him to evaluate
the strategy’s performance. This circular dependence between
strategies and beliefs makes the computation of equilibria for
dynamic games a challenging problem when signaling occurs.
This is not the case for games with no signaling effects. In
these games, the agents’ beliefs are strategy-independent and
the circular dependence between strategies and belief breaks.
Then, one can directly determine the agents’ beliefs first,
and then, compute the equilibrium strategies via backward
induction [15, 16].

Contribution

The key contributions of the paper are: (1) The introduction
of a subclass of PBE called common information based perfect
Bayesian equilibria (CIB-PBE) for dynamic games with asym-
metric information. A CIB-PBE consists of a pair of strategy
profile and a belief system that are sequentially rational and
consistent. (2) The sequential decomposition of stochastic
dynamic games with the asymmetric information through an
appropriate choice of information state. This decomposition
provides a backward induction algorithm to find CIB-PBE for
dynamic games where signaling occurs. The decomposition
and the algorithm are illustrated by an example from multiple
access communication. (3) The existence of CIB-PBE for
a subclass of stochastic dynamic games with asymmetric
information.

Organization

The paper is organized as follows. We introduce the model
of dynamic games in Section II. In Section III, we define the
solution concept for our model and compare it with that for the
standard extensive game form. In Section IV, we introduce the
concept of CIB-PBE and provide a sequential decomposition
of the dynamic game. In Section V, we provide an example of
a multiple access broadcast game that illustrates the results of
Section IV. We prove the existence of CIB-PBE for a subclass
of dynamic games in Section VI. We conclude in Section
VII. The proofs of all of our technical results appear in the
Appendix.

2If one of the agents incorporates the belief on this private information
in his strategy from t + 1 on, all other agents may also incorporate it. The
argument is similar to situation (b) since all other agents will anticipate about
how this agent will act. We note that, agents can use such payoff irrelevant
information as a coordination instrument, and therefore, expand their strategy
space thereby resulting in additional equilibria. As an example, consider a
repeated prisoner’s dilemma game with imperfect public monitoring of actions
[9, ch. 7]. The agents can form a punishment mechanism that results in
new equilibria in addition to the repetition of the stage-game equilibrium. In
general, the idea of such a punishment mechanism is used to proof different
versions of folk theorem for different setups [9]. However, we do not call this
kind of cases signaling because the signals or actions of an agent serves only
as a coordination instrument instead of transmitting private information form
one agent to other agents.

Notation

Random variables are denoted by upper case letters,
their realization by the corresponding lower case letter.
In general, subscripts are used as time index while su-
perscripts are used to index agents. For time indices
t1 ≤ t2, Xt1:t2 (resp. ft1:t2(·)) is the short hand nota-
tion for the variables (Xt1 , Xt1+1, ..., Xt2) (resp. functions
(ft1(·), . . . , ft2(·))). When we consider the variables (resp.
functions) for all time, we drop the subscript and use X
to denote X1:T (resp. f(·) to denote f1:T (·)). For vari-
ables X1

t , . . . , X
N
t (resp. functions f1t (·), . . . , fNt (·)), we use

Xt := (X1
t , . . . , X

N
t ) (resp. ft(·) := (f1t (·), . . . , fNt (·))) to

denote the vector of the set of variables (resp. functions)
at t, and X−nt := (X1

t , . . . , X
n−1
t , Xn+1

t , . . . , XN
t ) (resp.

f−nt (·) := (f1t (·), . . . , fn−1t (·), fn+1
t (·), . . . , fNt (·))) to de-

note all the variables (resp. functions) at t except that of the
agent indexed by n. P(·) and E(·) denote the probability and
expectation of an event and a random variable, respectively.
For a set X , ∆(X ) denotes the set of all beliefs/distributions
on X . For random variables X,Y with realizations x, y,
P(x|y) := P(X = x|Y = y) and E(X|y) := E(X|Y = y).
For a strategy g and a belief (probability distribution) π, we
use Pgπ(·) (resp. Egπ(·)) to indicate that the probability (resp.
expectation) depends on the choice of g and π. We use 1{x}(y)
to denote the indicator that X = x is in the event {Y = y}.

II. SYSTEM MODEL

Consider a dynamic game among N strategic agents, in-
dexed by N := {1, 2, . . . , N}, in a system over time horizon
T := {1, 2, · · · , T}. Each agent n ∈ N is affiliated with a sub-
system n. At every time t ∈ T , the state of the system (Ct, Xt)
has two components: Ct ∈ Ct denotes the public state, and
Xt := (X1

t , X
2
t , . . . , X

N
t ) ∈ Xt := X 1

t × X 2
t × · · · × XNt ,

where Xn
t denotes the local state of subsystem n, n ∈ N . The

public state Ct is commonly observed by every agent, and the
local state Xn

t is privately observed by agent n, n ∈ N .
At time t, each agent n simultaneously selects an action

Ant ∈ Ant . Given the control actions At := (A1
t , A

2
t , . . . , A

N
t ),

the public state and local states evolve as

Ct+1 = f ct (Ct, At,W
C
t ), (1)

Xn
t+1 = fnt (Xn

t , At,W
n,X
t ), n ∈ N , (2)

where random variables WC
t and Wn,X

t capture the random-
ness in the evolution of the system, and C1, X

1
1 , X

2
1 , . . . , X

N
1

are primitive random variables. The functions fnt and f ct ,
n ∈ N , t ∈ T , are common information among all agents.

At the end of time t, after the actions are taken, each agent
n ∈ N observes Yt := (Y 1

t , Y
2
t , . . . , Y

N
t ), where

Y nt = `nt (Xn
t , At,W

n,Y
t ) ∈ Ynt , (3)

and Wn,Y
t denotes the observation noise. The functions `nt ,

n ∈ N , t ∈ T , are common information among all agents.
From the system dynamics (2) and the observations model

(3), we define, for any n ∈ N , t ∈ T , the probabil-
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ities pnt (xnt+1;xnt , at) and qnt (ynt ;xnt , at) such that for all
xnt+1, x

n
t ∈ Xnt , ynt ∈ Ynt and at ∈ At := A1

t × · · · × ANt

pnt (xnt+1;xnt , at) := P(fnt (xnt , at,W
n,X
t ) = xnt+1), (4)

qnt (ynt ;xnt , at) := P(hnt (xnt , at,W
n,Y
t ) = ynt ). (5)

We assume that Ct,Xnt ,Ant and Ynt are finite sets for all
n ∈ N , for all t ∈ T , and are common information among all
agents.3 We also assume that the primitive random variables
{C1, X

n
1 ,W

C
t ,W

n,X
t ,Wn,Y

t , t ∈ T , n ∈ N} are mutually
independent.

The actions At and the observations Yt :=
(Y 1
t , Y

2
t , . . . , Y

N
t ) are observed by every agent. Therefore,

at time t, all agents have access to the common history Hc
t

defined to be

Hc
t := {C1:t, A1:t−1, Y1:t−1}. (6)

Including private information, the history Hn
t of agent n’s

information, n ∈ N , at t is given by

Hn
t := {Xn

1:t, H
c
t } = {Xn

1:t, C1:t, A1:t−1, Y1:t−1}. (7)

Let Hct denote the set of all possible common histories at
time t ∈ T , and Hnt denote the set of all possible information
histories for agent n ∈ N at time t ∈ T .

Define Ht := ∪n∈NHn
t = {X1:t, H

c
t } to be the history of

states and observations of the whole system up to time t. The
hirtory Ht captures the system evolution up to time t.

A behavioral strategy of agent n, n ∈ N , is defined as a
map gnt : Hnt 7→ ∆(Ant ) where

Pg
n
t (Ant = ant |hnt ) := gnt (hnt )(ant ) for all ant ∈ Ant . (8)

The choice of strategy gnt is agent n’s private information. Let
Gnt denote the set of all possible behavioral strategies 4 gnt of
agent n ∈ N at time t ∈ T .

At each time t ∈ T , agent n, n ∈ N , has a utility

Unt = φnt (Ct, Xt, At) (9)

that depends on the state of the system at t, including the
public state and all local states, and the actions taken at t by
all agents. The functions φnt , n ∈ N , t ∈ T , are common
information among all agents.

Let g = (g1, g2, . . . , gN ) denote the strategy profile of all
agents, where gn = (gn1 , g

n
2 , . . . , g

n
T ). Then, the total expected

utility of agent n is given by

Un(g) = Eg
[
T∑
t=1

Unt

]
= Eg

[
T∑
t=1

φnt (Ct, Xt, At)

]
. (10)

Each agent wishes to maximize his total expected utility.
The problem defined above is a stochastic dynamic game

with asymmetric information. The common history Hc
t , sys-

tem dynamics, and agents’ functional forms of their utility,
given by (1)-(3) and (9), respectively, are common information

3The results developed in Section II-IV for finite Ct,Xn
t ,An

t and Yn
t still

hold when they are continuous sets under some technical assumptions. The
results of Section VI require An

t to be finite for all n ∈ N , t ∈ T .
4The results developed in this paper also holds when agent n’s set of

admissible actions depends on his current private state. That is, An
t ∈

An
t (xnt ) ⊆ An

t and gnt (hnt ) ∈ ∆(An
t (xnt )) when hnt = (xn1:t, h

c
t ).

among all agents; the local state Xn
t and the strategy choice

gnt is agent n’s private information.
As discussed above, signaling may occur in games of

asymmetric information. The game instances that can be
captured by our model could belong to any of the four game
environments (a)-(d) described in Section I.

III. SOLUTION CONCEPT

For non-cooperative static games with complete information
(resp. incomplete information), one can use Nash equilibrium
(resp. Bayesian Nash equilibrium) as a solution concept.
A strategy profile g = (g1, · · · , gN ) is a (Bayesian) Nash
equilibrium, if there in no agent n that can unilaterally deviate
to another strategy g′n and get a higher expected utility.
One can use (Bayesian) Nash equilibrium to analyze dynamic
stochastic games. However, the (Bayesian) Nash equilibrium
solution concept ignores the dynamic nature of the system
and only requires optimality with respect to any unilateral
deviation from the equilibrium g at the beginning of the game
(time 1). Requiring optimality only against unilateral deviation
at time 1 could lead to irrational situations such as non-credible
threats [1, 2]. In dynamic games, a desirable equilibrium g
should guarantee that there is no profitable unilateral deviation
for any agent at any stage of the game. That is, for any
t ∈ T , for any realization ht ∈ Ht of the system evolution,
the strategy gt:T = (g1t:T , g

2
t:T · · · , gNt:T ) must be a (Bayesian)

Nash equilibrium of the continuation game that follows ht.
This requirement is called sequential rationality [1, 2].

In this paper we study dynamic stochastic games of incom-
plete asymmetric information. At time t, the system evolution
Ht is not completely known to all agents; each agent n ∈ N
only observes Hn

t and has to form a belief about the complete
system evolution Ht up to time t. The belief that agent n
forms about Ht depends in general on both Hn

t and g−n1:t .
Knowing the strategy of the other agents, agent n can make
inference about other agents’ private information X−n1:t from
observing their actions. As pointed out in Section I, this
phenomenon is called signaling in games with asymmetric
information. Signaling results in agents’ beliefs that depend
on the strategy profile g (see the discussion in Section I).
Therefore, at an equilibrium such beliefs must be consistent
with the equilibrium strategies via Bayes’ rule. Moreover,
the sequential rationality requirement must be satisfied with
respect to the agents’ beliefs. We call the collection of all
agents’ beliefs at all times a belief system. A pair of strategy
profile and belief system that are mutually sequentially rational
and consistent form a perfect Bayesian equilibrium (PBE). We
use PBE as the solution concept in this paper to study the
dynamic game defined in Sectin II.

We note that the system model we use in this paper is
different from the standard model of extensive game form
used in the game theory literatures [1, 2]. Specifically, the
model of Section II is a state space model (that describes the
stochastic dynamics of the system), while the extensive game
form is based on the intrinsic model [27] whose components
are nature’s moves and users’ actions. The two models are
equivalent within the context of sequential dynamic teams
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[28]. In order to analyze the dynamic game of the state space
model of Section II, we need to provide the formal definition
of PBE for our model in the following.

A. Perfect Bayesian Equilibrium

To provide a formal definition of PBE for our state space
model defined in Section II, we first define histories of states,
beliefs and signaling-free beliefs on histories of states.

Definition 1 (History of States). The history of states at each
time t is defined to be X1:t.

Note that the history of states contains the trajectory of local
state Xn

1:t that is private information of agent n, n ∈ N .

Definition 2 (Belief System). Let µnt : Hnt 7→ ∆(X1:t). For
every history hnt ∈ Hnt , the map µnt defines a belief for agent
n ∈ N at time t ∈ T which is a probability distribution on the
histories of states X1:t. The collection of maps µ := {µnt , n ∈
N , t ∈ T } is called a belief system on histories of states.

That is, given a belief system µ, agent n ∈ N assigns the
probability distribution µnt (hnt ) on X1:t conditioning on the
realized history of observations hnt ∈ Hnt at t ∈ T , by

Pµ(x1:t|hnt ) := µnt (hnt )(x1:t). (11)

Then, given the beliefs µnt (hnt ) for agent n ∈ N at
hnt = (xn1:t, h

c
t) ∈ Hnt and a strategy gt at t ∈ T , when

agent n takes an action ant ∈ Ant , his belief about the system
following (hnt , a

n
t ) is given by Pgtµ (x1:t+1, yt, at|hnt , ant ) for

any x1:t+1 ∈ X1:t+1, yt ∈ Yt, at ∈ At, where

Pgtµ (x1:t+1, yt, at|hnt , ant )

:=µnt (hnt )(x1:t)
∏
k∈N

pkt (xkt+1;xkt , at)q
k
t (ykt ;xkt , at)∏

k 6=n
gkt (xk1:t, h

c
t)(a

k
t ). (12)

Definition 3 (Signaling-Free Beliefs). The signaling-free be-
lief system µ̂ := {µ̂nt : Hnt 7→ ∆(X1:t), n ∈ N , t ∈ T }
is defined on histories of states such that for each n ∈ N ,
t ∈ T , and hnt := (xn1:t, c1:t, a1:t−1, y1:t−1) ∈ Hnt

µ̂nt (hnt )(x1:t) :=P(A1:t−1=a1:t−1)(x1:t|y1:t−1, x
n
1:t)

for any x1:t ∈ X1:t. (13)

The right hand side of (13) gives the conditional probability
of {X1:t = x1:t} given {Y1:t−1 = y1:t−1, Xn

1:t = xn1:t} when
A1:t−1 = a1:t−1. This conditional probability is computed us-
ing the realization hnt of agent n’s information, the subsystem
dynamics (2), and the observation model (3).

Note that the signaling-free belief µ̂nt (hnt ) is strategy-
independent. One can think µ̂nt (hnt ) as the belief generated
by the open-loop strategy (a1, a2, · · · , at−1), so there is no
signaling and strategy-dependent inference present in the belief
system. The role of signaling-free belief will become evident
when we talk about consistency in the definition of PBE for
the state space model described in Section II.

The beliefs defined above are used by the agents to evalu-
ate the performance of their strategies. Sequential rationality

requires that at any time instant, each agent’s strategy is his
best response under his belief about the system states.

This relation between a strategy profile g and a belief system
µ is formally defined as follows.

Definition 4 (Sequential Rationality). A pair (g, µ) satisfies
sequential rationality if for every n ∈ N , gnt:T is a solution to

sup
g′nt:T∈Gnt:T

Eg
′n
t:T ,g

−n

µ

[
T∑
τ=t

φnτ (Cτ , Xτ , Aτ )|hnt

]
(14)

for every t ∈ T and every history hnt ∈ Hnt , where
Eg
′n
t:T ,g

−n

µ [·|hnt ] is computed using the probability measure
generated from (11)-(12) using the belief system µ and the
strategy profile (g′nt:T , g

−n) given the realization hnt .

The above definition of sequential rationality does not place
any restriction on the belief system. However, rational agents
should form their beliefs based on the strategies used by other
agents. This consistency requirement is defined as follows.

Definition 5 (Consistency). A pair (g, µ) satisfies consistency
if µ can be computed by Bayes’ rule whenever possible. That
is, for n ∈ N , t ∈ T , such that Pgtµ (yt, at|hnt , ant ) > 0,

µnt+1(hnt+1)(x1:t+1) =1{xnt+1}(h
n
t+1)

Pgtµ (x1:t+1, yt, at|hnt , ant )

Pgtµ (xnt+1, yt, at|hnt , ant )

for any x1:t+1 ∈ X1:t+1 (15)

where Pgtµ (·|hnt , ant ) is the probability measure given by (12).
Furthermore, when Pgµ(yt, at|hnt , ant ) = 0, µnt+1(hnt+1) is a
probability distribution in ∆(X1:t+1) such that

µnt+1(hnt+1)(x1:t+1) = 0 if µ̂nt+1(hnt+1)(x1:t+1) = 0. (16)

Note that the signaling-free belief system µ̂ is used in
(16) of the definition for consistency. We will explain in the
discussion below the importance of signaling-free beliefs on
agents’ rational behavior.

Using the above definitions, we define PBE for the stochas-
tic dynamic game with asymmetric information described by
the model of Section II.

Definition 6 (Perfect Bayesian Equilibrium). A pair (g, µ)
is called a perfect Bayesian equilibrium (PBE) if it satisfies
sequential rationality and consistency.

B. Discussion

As we mentioned earlier, the state space model and the
extensive game form are different but equivalent representa-
tions of sequential dynamic teams. We discuss the connection
between these two models for dynamic games. The table below
summarizes the key components of our state space model and
the extensive game form (see [1, 2]).

State Space Model Extensive Game Form
State Xt No State

History Ht History of Actions
History Hn

t Information Sets
Belief µnt (hnt )(x1:t) Belief on an Information Set

Support of µ̂nt (hnt )(x1:t) Nodes in an Information Set
PBE PBE
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The state variable Xt in the state space model allows us to
easily describe the system dynamics by (2). Without an explicit
state variable in the extensive form, it may be complex to
describe and analyze the system dynamics. In the state space
model, the system’s evolution is captured by the history of
states and observations Ht. This is the analogue of the history
of (agents’ and nature’s) actions in the extensive game form
that captures the game’s evolution trajectory. The history of
information Hn

t defined in the state space model includes
all information available to agent n at time t. This history
determines what agent n knows about the system, and is the
analogue of an information set in the extensive game form.
Similarly, agent n’s belief on histories of states (conditional
on Hn

t ) in the state space model is the analogue of agent n’s
belief over an information set in the extensive game form.

Generally, a belief µnt (hnt )(x1:t) can have a fixed support
that includes the entire state space X1:t. However, a belief on
an information set has a variable support that includes nodes
in that particular information set. Given a strategy profile,
one can determine the belief using the Bayes’ rule, given
by (15), whenever possible for our state space model and
(similarly) for the extensive game form model. However, when
the denominator is zero in (15), or we reach an information
set of measure zero in the extensive game form, one needs to
assign values for the belief on X1:t and on the nodes of the
information set. In the extensive game form, the consistency
condition allows for any arbitrary probability distribution over
the nodes of the (reached) information set of measure zero.
However, in our state space model we need to make sure
that the belief assigned is consistent with the dynamics of
the system. As a result, the belief does not necessarily assign
a positive probability to a history of states and must be more
carefully defined. This is where signaling-free beliefs play an
important role.

To establish the equivalence between the belief
µnt (hnt )(x1:t) in our state space model and the belief
on the information set of the corresponding extensive
game form, we introduce the signaling-free beliefs. The
signaling-free belief µnt (hnt )(x1:t) defined by (13) for
hnt = (xn1:t, c1:t, a1:t−1, y1:t−1) is constructed by actions
A1:t−1 = a1:t−1 conditioned on the history of observations
y1:t−1, xn1:t using the system dynamics. In forming a signaling-
free belief no underlying strategy profile is assumed, and we
do not make any further inference by tracing back how the
observed actions are generated (i.e. the observed actions are
generated by an open loop strategy). Therefore, if a history of
states x1:t does not belong to the support of the signaling-free
belief (i.e. µ̂nt (hnt )(x1:t) = 0), this history of states x1:t can
not happen under any possible strategy profile. A rational
agent should not assign positive probability on any history of
states that is outside the support of the signaling-free belief.
This leads to the second part of the consistency requirement
(16). With this additional requirement, the definition of
consistency in our state space model is the analogue of the
consistency in the extensive game form, and the definitions
of PBE in the two models become identical.

We note that the signaling-free beliefs are strategy-
independent. In systems where any agent’s belief on system’s

states is strategy-independent (e.g. the finite games considered
in [15] and linear-Gaussian systems [16]), one can show that
for any strategy profile g, the only consistent belief system
is the signaling-free belief system µ̂. In this type of systems,
consistency is trivially satisfied using the signaling-free belief
system µ̂. As a result, it is sufficient to verify sequential
rationality to establish a PBE for systems with strategy-
independent beliefs.

IV. COMMON INFORMATION BASED PERFECT BAYESIAN
EQUILIBRIA AND SEQUENTIAL DECOMPOSITION

In this section, we introduce the common information based
(CIB) belief system and CIB beliefs. The CIB beliefs generally
depend on the agents’ strategies because of the presence of
signaling in dynamic games with asymmetric information.
We use CIB beliefs to construct CIB strategy profiles for
the agents. Using the concept of CIB belief system and CIB
strategy profile, we define a subclass of PBE called common
information based perfect Bayesian equilibria (CIB-PBE). The
main result of this section provides a sequential decomposition
for the dynamic game model in Section II; this decomposition
leads to a backward induction algorithm to compute CIB-PBE.

A. Preliminaries

Based on common histories, we first define CIB signaling-
free belief system

Definition 7 (CIB Signaling-Free Belief System). The CIB
signaling-free belief system is γ̂ := {γ̂t : Hct 7→ ∆(Xt), t ∈
T } where for each t ∈ T and hct = (c1:t, a1:t−1, y1:t−1) ∈ Hct ,
γ̂t(h

c
t) is a belief on states Xt, with

γ̂t(h
c
t)(xt) :=P{A1:t−1=a1:t−1}(xt|y1:t−1) for xt ∈ Xt. (17)

The right hand side of (17) is interpreted in the same way
as the right hand side of (13). Note that, γ̂t(hct)(x

−n
t ) =

µ̂nt (hnt )(x−nt ) from its definition, when hnt = (xn1:t, h
c
t) for any

n ∈ N . We use Π̂t := γ̂t(H
c
t ) to denote the CIB signaling-free

belief at time t. Similar to signaling-free beliefs on histories of
states defined in (13), the CIB signaling-free belief Π̂t depends
only on the system dynamics and the observation model.

The CIB signaling-free beliefs have the following dynamics.

Lemma 1 (Evolution of CIB Signaling-Free Beliefs). The CIB
signaling-free beliefs {Π̂t, t ∈ T } can be updated by

Π̂t+1 =

N∏
n=1

Π̂n
t+1, where (18)

Π̂n
t+1 = ψ̂nt (Y nt , At, Π̂

n
t ), (19)

ψ̂nt (ynt , at, π̂
n
t )(xnt+1)

:=

∑
xnt ∈Xnt p

n
t (xnt+1;xnt , at)q

n
t (ynt ;xnt , at)π̂

n
t (xnt )∑

x′nt ∈Xnt q
n
t (ynt ;x′nt , at)π̂

n
t (x′nt )

. (20)

Similar to the belief system defined in Section II, we need
a belief system to form an equilibrium. We define CIB belief
systems based on the agents’ common histories together with
CIB update rules.
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Definition 8 (CIB Belief System and CIB Update Rule). A
collection of maps γ := {γt : Hct 7→ ∆(Xt), t ∈ T } is called a
CIB belief system. A set of belief update functions ψ = {ψnt :
Ynt × At × Ct ×∆(Xt) ×∆(Xt) 7→ ∆(Xnt ), n ∈ N , t ∈ T }
is called a CIB update rule.

From any CIB update rule ψ, we can construct a CIB belief
system γψ by the following inductive construction:

1) γψ,1(hc1)(x1) := P(x1) =
∏
n∈N P(xn1 ) ∀x1 ∈ X1.

2) At time t+ 1, after γψ,t(hct) is defined, set

γψ,t+1(hct+1)(xnt+1)

:=ψnt (ynt , at, ct, γψ,t(h
c
t), γ̂t(h

c
t))(x

n
t+1), (21)

γψ,t+1(hct+1)(xt+1) :=

N∏
n=1

γψ,t+1(hct+1)(xnt+1), (22)

for every history hct+1 = (hct , ct+1, at, yt) ∈ Hct+1 and
for all xt+1 ∈ Xt+1.

For a CIB belief system γψ , we use Π
γψ
t to denote the belief,

under γψ , on Xt conditional on Hc
t ; that is,

Π
γψ
t := γψ,t(H

c
t ) ∈ ∆(Xt). (23)

We also define the marginal beliefs on Xn
t at time t as

Π
n,γψ
t (xnt ) := γψ,t(H

c
t )(xnt ) ∀xnt ∈ Xnt . (24)

Since the CIB beliefs {Πγψ
t , t ∈ T } are common infor-

mation to all agents, all agents can use Π
γψ
t to evaluate the

performance of their strategies. Furthermore, if a CIB update
rule ψ is properly chosen, the CIB signaling-free belief Π̂t

and the CIB belief Π
γψ
t together can summarize the agents’

common knowledge about the current system states Xt from
all previous actions A1:t−1 and observations Y1:t−1 available
to all of them at time t. This motivates the concept of CIB
strategies defined below.

Definition 9 (CIB Strategy Profile). We call a set of functions
λ = {λnt : Xnt × Ct ×∆(Xt)×∆(Xt) 7→ ∆(Ant ), n ∈ N , t ∈
T } a CIB strategy profile.

For notational simplicity, let Bt := Ct×∆(Xt)×∆(Xt) and

bt = (ct, πt, π̂t) ∈ Bt (25)

denote the realization of the part of common information used
in a CIB strategy.

If agent n uses a CIB strategy λnt , then any action ant ∈ Ant
is taken by agent n at time t with probability λnt (xnt , bt)(a

n
t )

when Xn
t = xnt ∈ Xnt (Ct,Π

γψ
t , Π̂

γψ
t ) = bt ∈ Bt. Note that

the domain Xnt ×Bt of a CIB strategy λnt is different from the
domain Hnt of a behavioral strategy gnt . However, given a CIB
strategy profile λ and a CIB update rule ψ, we can construct
a behavioral strategy profile g ∈ G by

gnt (hnt ) := λnt (xnt , ct, γψ,t(h
c
t), γ̂t(h

c
t)). (26)

In the following we provide a definition of a CIB belief
system consistent with a CIB strategy profile.

Definition 10 (Consistency). For a given CIB strategy λnt
of user n ∈ N at t ∈ T , we call a belief update function

ψnt consistent with λnt if (27) below is satisfied when the
denominator of (27) is non-zero;

ψnt (ynt , at, bt)(x
n
t+1)

=

∑
xnt ∈Xnt p

n
t (xnt+1;xnt , at)η

n
t (xnt , y

n
t , at, bt)π

n
t (xnt )∑

x′nt ∈Xnt η
n
t (x′nt , y

n
t , at, bt)π

n
t (x′nt )

, (27)

where

ηnt (xnt , y
n
t , at, bt) :=qnt (ynt ;xnt , at)λ

n
t (xnt , bt)(a

n
t ). (28)

When the denominator of (27) is zero,

ψnt (bt, at, y
n
t )(xnt+1) = 0 if ψ̂nt (π̂t, at, y

n
t )(xnt+1) = 0. (29)

For any t ∈ T , if ψnt is consistent with λnt for all n ∈ N ,
we call ψt consistent with λt. If ψt is consistent with λt for
all t ∈ T , we call the CIB update rule ψ = (ψ1, . . . , ψT )
consistent with the CIB strategy profile λ = (λ1, . . . , λT ).

Remark 1. Note that when the denominator of (27) is zero,
ψnt (bt, at, y

n
t ) can be arbitrarily defined as a probability distri-

bution in ∆(Xt+1) satisfying (29) and consistency still holds.
One simple choice is to set ψnt (ynt , at, bt) = ψ̂nt (ynt , at, π̂t)
when the denominator of (27) is zero; this choice trivially
satisfies (29). Thus, for any CIB strategy profile λ, there always
exists at least a CIB update rule that is consistent with λ.

The following lemma establishes the relation between the
consistency conditions given by Definition 5 and 10.

Lemma 2. If λ is a CIB strategy profile along with its
consistent CIB update rule ψ, there exists a pair, denoted by
(g, µ) = f(λ, ψ), such that g is the strategy profile constructed
by (26) from (λ, ψ), and µ is a belief system consistent with the
strategy profile g. Furthermore, for all hnt ∈ Hnt , x1:t ∈ X1:t

µnt (hnt )(x1:t) = 1{xn1:t}(h
n
t )
∏
k 6=n

µct(h
c
t)(x

k
1:t) (30)

where µct : Hct 7→ ∆(X1:t) satisfies the relation

µct(h
c
t)(x

k
t ) =

∑
x−k1:t∈X−k1:t ,x

k
1:t−1∈Xk1:t−1

µct(h
c
t)(x1:t) = γψ,t(h

c
t)(x

k
t ) (31)

for all hct ∈ Hct , k ∈ N and xkt ∈ X kt .

Lemma 2 implies that using a CIB strategy profile λ along
with its consistent update rule ψ we can construct a behavioral
strategy profile g along with its consistent belief system µ.

Note that, equation (30) in Lemma 2 implies that for any
agent n, his local states Xn

1:t are independent of X−n1:t under
µ conditional on any history hnt ∈ Hnt . Furthermore, the
conditional independence described by (30) still holds even
when agent n uses another strategy since the right hand side
of (30) depends only on the CIB update rule ψ. This fact is
made precise in the following lemma.

Lemma 3 (Conditional Independence). Suppose λ is a CIB
strategy profile and ψ is a CIB update rule consistent with λ.
Let (g, µ) = f(λ, ψ). If every agent k 6= n uses the strategy
gk along with the belief system µ, then under any policy g′n
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of agent n, agent n’s belief about the states X1:t for hnt ∈ Hnt
is given by

Pg
′n,g−n(x1:t|hnt ) = µnt (hnt )(x1:t)

=1{xn1:t}(h
n
t )
∏
k 6=n

µct(h
c
t)(x

k
1:t) for all x1:t ∈ X1:t. (32)

According to Lemma 3, for any (g, µ) = f(λ, ψ) generated
from Lemma 2, we use

Pµ(x−n1:t |hct) := µnt (hnt )(x−n1:t ) = µct(h
c
t)(x

−n
1:t ) (33)

to indicate that µnt (hnt )(x−n1:t ) depends only on hct and µ.

B. Common Information Based Perfect Bayesian Equilibria

Based on the concept of CIB beliefs and CIB strategies, we
focus on CIB-PBE defined below.

Definition 11 (CIB-PBE). A pair (λ∗, ψ∗) of a CIB strategy
profile λ∗ and a CIB update rule ψ∗ is called a Common
Information Based Perfect Bayesian Equilibrium (CIB-PBE)
if ψ∗ is consistent with λ∗ and the pair (g∗, µ∗) = f(λ∗, ψ∗)
defined in Lemma 2 forms a PBE.

The following lemma plays a crucial role in establishing the
main results of this paper.

Lemma 4 (Closeness of CIB Strategies). Suppose λ is a CIB
strategy profile and ψ is a CIB update rule consistent with λ.
If every agent k 6= n uses the CIB strategy λk along with the
belief generated by ψ, then, there exists a CIB strategy λ′n

that is a best response for agent n under the belief generated
by ψ at every history hnt ∈ Hnt for all t ∈ T .

Lemma 4 says that the set of CIB strategies is closed
under the best response mapping. Since sequential rationality
(Definition 4) requires a strategy profile to be a fixed point
under the best response mapping (see (14)), Lemma 4 allows
us to restrict attention to the set of CIB strategies to find a
fixed point and to search for CIB-PBE.

Below we provide a sequential decomposition of the dy-
namic game of Section II that enables us to sequentially
compute CIB-PBE via dynamic programming.

In order to sequentially compute CIB-PBE we define a stage
game for each time t ∈ T as follows.

Definition 12. (Stage Game Gt) Given a set of functions
Vt+1 = {V nt+1 : Xnt × Bt 7→ R, n ∈ N} and a belief update
function ψt, for any realization bt = (ct, πt, π̂t) ∈ Bt we
define the following Bayesian game Gt(Vt+1, ψt, bt).
Stage Game Gt(Vt+1, ψt, bt)

• There are N players indexed by N .
• Each player n ∈ N observes private information Xn

t ∈
Xnt ; bt = (ct, πt, π̂t) are common information.

• Xt = (X1
t , . . . , X

N
t ) has a prior distribution πt.

• Each player n ∈ N selects an action Ant ∈ Ant .
• Each player n ∈ N has utility

UnGt(Vt+1,ψt,bt)

:=φnt (ct, Xt, At) + V nt+1(Xn
t+1, Bt+1), where (34)

Bt+1 := (Ct+1, ψt(Yt, At, bt), ψ̂t(Yt, At, π̂t)). (35)

If for each t ∈ T , the functions Vt+1 are associated with
the agents’ future utilities, the Bayesian game Gt(Vt+1, ψt, bt)
becomes a stage game at t of the original game defined in
Section II. Therefore, we consider Bayesian Nash equilibria
(BNE) of the game Gt(Vt+1, ψt, bt). For all Vt+1 and ψt, we
define, the BNE correspondence as follows

Definition 13. (BNE Correspondence)

BNEt(Vt+1, ψt) :=

{λt : ∀bt ∈ Bt, λt|bt is a BNE of Gt(Vt+1, ψt, bt),

where λnt |bt(xnt ) := λnt (xnt , bt)∀n ∈ N , xnt ∈ Xnt }. (36)

If λt|bt is a BNE of Gt(Vt+1, ψt, bt), then for all n ∈ N
and any realization xnt ∈ Xnt , any ant ∈ Ant such that
λnt |bt(xnt )(ant ) > 0 should satisfy

ant ∈ arg max
a′nt ∈Ant

{
Eλ
−n
t
πt

[
UnGt(Vt+1,ψt,bt)

|xnt , a′nt
]}

. (37)

Similar to the dynamic program in stochastic control, for
each time t ∈ T we define the value update function
Dn
t (Vt+1, λt, ψt) for each n ∈ N .

Definition 14. (Value Update Function)

Dn
t (Vt+1, λt, ψt)(x

n
t , bt) := Eλtπt

[
UnGt(Vt+1,ψt,bt)

|xnt
]
. (38)

If V nt = Dn
t (Vt+1, λt, ψt), for any realization xnt ∈ Xnt

and bt ∈ Bt, the value V nt (xnt , bt) denotes player n’s expected
utility under the strategy profile λt|bt in game Gt(Vt+1, ψt, bt).

Using the concept of stage games and value update func-
tions, we provide a dynamic programming method to sequen-
tially compute CIB-PBE in the following theorem.

Theorem 1. (Sequential Decomposition) A pair (λ∗, ψ∗) of a
CIB strategy profile λ∗ and a CIB update rule ψ∗ is a CIB-
PBE if (λ∗, ψ∗) solves the dynamic program for the value
functions V nt (·), n ∈ N , t ∈ T ∪ {T + 1} defined below.

V nT+1(·) := 0 ∀n ∈ N ; (39)

for all t ∈ T

λ∗t ∈ BNEt(Vt+1, ψ
∗
t ), (40)

ψ∗t is consistent with λ∗t , (41)
V nt = Dn

t (Vt+1, λ
∗
t , ψ
∗
t ) ∀n ∈ N . (42)

Note that, from the dynamic program, the value function
V n1 (xn1 , (c1, π1, π1)) at time t = 1 gives agent n’s expected
utility corresponding to the CIB-PBE (λ∗, ψ∗) conditional on
his private information Xn

1 = xn1 and public state C1 = c1
when the prior distribution of X1 is π1.

Using Theorem 1, we can compute CIB-PBE of the dynamic
game. The following algorithm uses backward induction to
compute CIB-PBE based on Theorem 1.
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Algorithm 1 Backward Induction for Computing CIB-PBE
1: VT+1 ← 0, λ∗ ← ∅, ψ∗ ← ∅
2: for t = T to 1 do
3: for every bt ∈ Bt do
4: Construct the stage game Gt(Vt+1, ψt, bt)
5: Compute (λ∗t |bt , ψ∗t |bt) such that ψ∗t |bt is consistent

with λ∗t |bt , and λ∗t |bt is a BNE of Gt(Vt+1, ψ
∗
t |bt , bt)

6: for every n ∈ N do
7: λ∗nt (xnt , bt)← λ∗t |bt(xnt ), xnt ∈ Xnt
8: ψ∗nt (yt, at, bt)← ψ∗t |bt(yt, at), (yt, at) ∈ Yt×At
9: V nt (xnt , bt)←Dn

t (Vt+1, λ
∗
t , ψ
∗
t )(xnt , bt), xnt ∈ Xnt

10: end for
11: end for
12: λ∗ ← (λ∗t , λ

∗), ψ∗ ← (ψ∗t , ψ
∗)

13: end for

Note that in line 5, for different (λ∗t |bt , ψ∗t |bt) the al-
gorithm will produce different CIB-PBE. Finding the pair
(λ∗t |bt , ψ∗t |bt) in line 5 of Algorithm 1 requires solving a
fixed point problem to get a BNE along with a consistent
belief system. The complexity for this step is the same as the
complexity of finding a PBE for a two-stage dynamic game.

Remark 2. As pointed out in Section III-B, π̂t is needed
for the update of πt (See (27)-(29)), hence, π̂t must be part
of the information state. Below, we provide an alternative
explanation (from the decision making point of view) as to why
π̂t must be part of the information state. Since each agent’s
strategy is privately selected in the dynamic game, an agent,
say agent n, may want to deviate at time t to a strategy that
is different from the one in equilibrium. To decide whether or
not to deviate, agent n needs to know how other agents will
react/respond to his deviation, by predicting the CIB belief
πt+1 at time t + 1 resulting from his deviation. Since πt+1

depends on both πt and π̂t, agent n needs to include both
beliefs as part of his information state if he wants to evaluate
the effect of possible deviations.

V. EXAMPLE: MULTIPLE ACCESS BROADCAST GAME

In this section, we illustrate the sequential decomposition
developed in Section IV with an example of a two-agent
multiple access broadcast system.

Consider a multiple access broadcast game where two
agents, indexed by N = {1, 2}, share a common collision
channel over time horizon T . At time t, Wn

t ∈ {0, 1} packets
arrive at each agent n ∈ N according to independent Bernoulli
processes with P(W 1

t = 1) = P(W 2
t = 1) = p = 0.5.

Each agent can only store one packet in his local buffer/queue.
Let Xn

t ∈ Xnt = {0, 1} denote the queue length (number of
packets) of agent n at the beginning of t. If a packet arrives
at agent n when his queue is empty, the packet is stored in
agent n’s buffer; otherwise, the packet is dropped, and agent
n incurs a dropping cost of c = 2 units.

At each time t, agent n can transmit Ant ∈ Ant = {0, 1}
packets through the shared channel. If Xn

t = 0 then Ant = 0
always. If only one agent transmits, the transmission is suc-
cessful and the transmitted packet is removed from the queue.
If both agents transmit simultaneously, a collision occurs and

both collided packets remain in their queues. We assume that
any packet arriving at time t, t ∈ T , can be transmitted after t.
Then, the queue length processes have the following dynamics.
For n = 1, 2

Xn
t+1 = min

{
Xn
t −Ant (1−A−nt ) +Wn

t , 1
}
. (43)

Assume that agents’ transmission results at t are broadcast
at the end of time t. Then agent n’s transmission decision Ant
at time t is made based on his history of observation Hn

t =
(Xn

1:t, A1:t−1) that consists of his local queue lengths and all
previous transmissions from both agents.

Suppose each agent gets a unit reward at t if there is a
successful transmission at t. Then, agent n’s utility at time t
is the reward minus the (expected) dropping cost given by

Unt = φnt (Xt, At) =

Ant⊕A−nt − cP(Xn
t −Ant (1−A−nt ) +Wn

t > 1|Xt, At) (44)

where x⊕ y denotes the binary XOR operator, and n ∈ N .
The multiple access broadcast game described above is an

instance of the general dynamic model described in Section
II. In the following, we use Algorithm 1 developed in Section
IV to compute a CIB-PBE of this multiple access broadcast
game for two time periods, i.e. T = {1, 2}.

Before applying Algorithm 1, we note some special features
of this multiple access broadcast game. First, there is no
Ct, Yt in this multiple access broadcast game. Second, since
the private state Xn

t can take only values in Xnt = {0, 1},
any CIB belief in ∆(Xnt ) can be described by a number
πnt ∈ [0, 1] for all n = 1, 2, t = 1, 2. Furthermore, given
any realization bt = (πt, π̂t) ∈ Bt, any CIB strategy
λnt (xnt , bt), x

n
t ∈ {0, 1}, of agent n can be characterized by

a number βnt := λnt (1, bt)(1) ∈ [0, 1]. This is because Ant
is binary, and λnt (0, bt)(1) = 0 because no packet can be
transmitted from an empty queue.

We now use Algorithm 1 to sequentially compute a CIB-
PBE of the multiple access broadcast game.
Construction of the stage game at t = 2

At t = 2, for any b2 = (π2, π̂2) ∈ B2, we construct the
stage game G2(b2) which is a Bayesian finite game (no need to
consider a CIB update function because this is the last stage).
Computation of BNE at t = 2

Using standard techniques for static games, we obtain
a BNE of G2(b2) that is characterized by β∗2(b2) =
(β∗12 (b2), β∗22 (b2)), and β∗2(b2) is given by

β∗2(b2) =


(1, 1) if π1

2 , π
2
2 < c∗,

(0, 1) if π1
2 < c∗, π2

2 ≥ c∗,
(1, 0) if π1

2 ≥ c∗, π2
2 < c∗,

( c
∗

π1
2
, c
∗

π2
2
) if π1

2 , π
2
2 ≥ c∗,

(45)

where c∗ := 1+cp
2+cp . Then we obtain a CIB strategy

λ∗n2 (1, b2)(1) = β∗n2 (b2) for n = 1, 2 at time t = 2.
Value functions’ update at t = 2



10

V n2 (xn2 , b2) = Dn
2 (λ∗2)(xn2 , b2), n = 1, 2, are given by

V n2 (1, b2)=


1−π−n2 (1 + cp) if π1

2 , π
2
2 < c∗,

π−n2 − cp if πn2 < c∗, π−n2 ≥ c∗,
1 if πn2 ≥ c∗, π−n2 < c∗,
c∗ − cp if π1

2 , π
2
2 ≥ c∗.

(46)

V n2 (0, b2) =


π−n2 if π1

2 , π
2
2 < c∗,

π−n2 if πn2 < c∗, π−n2 ≥ c∗,
0 if πn2 ≥ c∗, π−n2 < c∗,
c∗ if π1

2 , π
2
2 ≥ c∗.

(47)

Construction of the stage game at t = 1
At t = 1, for any b1 = (π1, π̂1) ∈ B1 and a CIB update

function ψ1, we construct the stage game G1(V2, ψ1, b1) such
that each player n, n = 1, 2, has utility

UnG1(V2,ψ1,b1)

=φn1 (X1, A1) + V n2 (Xn
2 , (ψ1(A1, b1)), ψ̂1(A1, π̂1))). (48)

Computation of BNE and belief update function at t = 1
When the players use CIB strategies λ1 characterized by

β1 = (β1
1 , β

2
1), from (27) and (29), we obtain a CIB update

function ψ1, given below, that is consistent with λ1 (we select
ψn1 (a1, b1) = ψ̂n1 (a1, π̂1) when the denominator of (27) is
zero).

ψn1 (a1, b1) =


1 if an1 = 1, a−n1 = 1,
p if an1 = 1, a−n1 = 0,
p+πn1 (1−p−βn1 )

1−πn1 βn1
if an1 = 0.

(49)

Substituting (49) into (48), we have the utilities of the
two players in game G1(V2, ψ1, b1). We numerically com-
pute a BNE of G1(V2, ψ

∗
1 , b1), characterized by β∗1(b1) =

(β∗11 (π1), β∗21 (π1)) such that ψ∗1 satisfies (49) when β1 = β∗1 .
The values of β∗11 (π1) and β∗21 (π1) are shown in Fig. 1 for
different π1 ∈ ∆(Xt) = [0, 1]× [0, 1].

0

0.5

1 0

0.5

1

0

0.5

1

π2
1

β∗1
1 (π1)

π1
1 0

0.5

1 0

0.5

1

0

0.5

1

π2
t

β∗2
1 (π1)

π1
t

Fig. 1. Strategies β∗1
1 (π1) and β∗2

1 (π1) in the stage game at time t = 1.

Then, we obtain a CIB strategy λ∗n1 (1, b1)(1) = β∗n1 (π1)
for n = 1, 2 at time t = 1.
CIB-PBE and agents’ expected utilities

From the above computation at t = 1, 2, we obtain a CIB-
PBE (λ∗, ψ∗), where λ∗ = (λ∗1, λ

∗
2) and ψ∗ = (ψ∗1 ,−).

Using (48), we numerically compute the value functions
V 1
1 (x11, b1) = V 1

1 (x11, π1) = D1
1(V2, λ

∗
1, ψ
∗
1)(x11, b1) for x1t =

0, 1, for agent 1. The results are shown in Fig. 2. These
value functions give agent 1’s (conditional) expected utilities
in the CIB-PBE (λ∗, ψ∗). Agent 2’s expected utilities can be
computed in a similar way.

0

0.2
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0.6

0.8

1 0

0.2

0.4

0.6

0.8

1

−0.5

0

0.5

1

1.5

π2
1

V 1
1 (1, π1)

π1
1

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

π2
1

V 1
1 (0, π1)

π1
1

Fig. 2. Agent 1’s expected utility V n
1 (xn1 , π1) in the CIB-PBE (λ∗, ψ∗).

Remark 3. The results show that agents’ beliefs depend on
their strategies (see (49)). Therefore, there is signaling in this
multiple access broadcast game. Moreover, the value functions
are discontinuous in the agents’ beliefs (see (46) and (47) for
time t = 2, and Fig. 2 for time t = 1). The presence of
signaling together with the discontinuity of value functions
make the agents’ utilities discontinuous in their (behavioral)
strategies.

VI. EXISTENCE OF COMMON INFORMATION BASED
PERFECT BAYESIAN EQUILIBRIA

We prove the existence of a CIB-PBE for a subclass of the
dynamic games described in section II. This subclass includes
dynamic games with uncontrolled dynamics and no private
values. No private values simply means that each agent’s
private information Xn

t is payoff irrelevant to himself, but
possibly payoff relevant to the other agents. The classic cheap-
talk game [1] and the problem considered in [29] are examples
of this subclass. We conjecture that there always exists a
CIB-PBE for the general model described in Section II. We
discuss this conjecture and elaborate more on the difficulty
of establishing the existence proof for the general model of
Section II at the end of this section.

To proceed formally, let Game M denote a dynamic game
with uncontrolled dynamics, no private values, finite action
spaces Ant , n ∈ N , t ∈ T , and (possibly) sequential moves.
Let T := {t1, t2, · · · , tK} ⊂ T denote the set of time
instants in which the system evolves according to the following
uncontrolled dynamics

Xn
t+1 =

{
Xn
t if t 6= tk for all tk ∈ T ,

fntk(Xn
tk
,Wn,X

tk
) if t = tk for tk ∈ T .

(50)

At tk < t ≤ tk+1 agents make decisions sequentially in tk+1−
tk epochs. We assume that the order according to which the
agents take decisions is known a priori. Furthermore, agents
observe the other agents’ decisions in previous epochs; this
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fact is captured by including/appending previous actions in
the common state Ct as follows

Ct+1 =

{
(Ct, At) if t 6= tk for all tk ∈ T ,
f ctk(Ctk−1+1,W

C
tk

) if t = tk for tk ∈ T .
(51)

The agents have a common observation Ytk at each time tk ∈
T when the system evolves. The observations Y nt , n ∈ N , t ∈
T are described by

Y nt =

{
empty if t 6= tk for all tk ∈ T ,
`ntk(Xn

tk
,Wn,Y

tk
) if t = tk for tk ∈ T .

(52)

Agent n, n ∈ N has instantaneous utility

Unt = φnt (Ct, X
−n
t , At). (53)

for time t, t ∈ T . Thus, each agent n ∈ N has no private
values, hence his private information Xn

t is payoff irrelevant.
From the above description, it is evident that Game M is

indeed a subclass of the class of dynamic games described
by the model of Section II. The dynamic oligopoly game
presented in [29] is an instance of Game M.

The main result of this section is stated in the theorem below
and asserts the existence of a CIB-PBE in Game M.

Theorem 2. Game M described in this section has a CIB-
PBE which is a solution to the dynamic program defined by
(39)-(42) in Theorem 1.

The proof of Theorem 2 is constructive. We construct an
equilibrium for Game M in which agents use non-private
strategies and have signaling-free beliefs which are consistent
with the non-private strategy profile.

There are three reasons why Game M has a CIB-PBE with
non-private strategies. First, the instantaneous utility Unt =
φnt (Ct, X

−n
t , At) of agent n, n ∈ N does not depend on his

private information. Therefore, the agent’s best response is
the same for all realizations of his private information, and
a private strategy doest not provide any advantage in terms
of higher instantaneous utility. Second, the system dynamics
are strategy independent. Therefore, an agent cannot affect the
evolution of the system by using a strategy that depends on his
private information about the state of the system. Third, any
private strategy does not provide any advantage to an agent in
terms of his utility if it can not affect other agents’ decisions,
and this is the case when all agents use the signaling-free
beliefs.

As we showed before, the CIB-PBE introduced in this paper
are PBE. It is known that for finite dynamic games there
always exists one sequential equilibrium, and therefore one
PBE [1, 2]. The proof of existence of sequential equilibria is
indirect; it is done by showing the existence of a trembling
hand equilibrium [1, 2] which is also a sequential equilibrium.
The proof of existence of trembling hand equilibrium follows
the standard argument in game theory. It uses a suitable fixed
point theorem to show the existence of a trembling equilibrium
in an equivalent agent-based model representation [1, 2].

There are some technical difficulties in establishing the ex-
istence of a CIB-PBE for the general game model considered
in this paper. The standard argument in using fixed point
theorems is applicable to finite games where the expected

utilities are continuous in the agent’s mixed strategies. In each
stage game arising in the sequential decomposition, say the
game at stage t, agent n’s expected utility (see (34)) depends
on the functions {V nt+1, n ∈ N}. However, the function V nt+1

is not always continuous in the strategies of agent n. (see
Remark 3 for the multiple access broadcast game in Section
V and the example in [29]). Therefore, the standard argument
for establishing the existence of an equilibrium fails for our
general model. Even though we can not prove the existence
of a CIB-PBE equilibrium, we conjecture that there always
exists a CIB-PBE for the general dynamic game described in
this paper.

We note that for the problem formulated in Section II,
{Xt

t , Ct,Πt, Π̂t}, t ∈ T , are sufficient statistics from the
decision making point of view (i.e. control theory). This makes
a CIB strategy a more natural strategy choice for an agent,
and consequently, a CIB-PBE is a more plausible equilibrium
to arise in practice. However, this does not imply that from
the game theory point of view, at all equilibria agents’ best
responses can be generated using only {Xt

t , Ct,Πt, Π̂t}. In
a game problem, agents can incorporate a payoff irrelevant
information in their strategy choice as a coordination instru-
ment. For example, consider the classic repeated prisoner’s
dilemma game. In this game, agents can use previous outcomes
of the game, that are payoff irrelevant, to sustain a punishment
mechanism that results in additional equilibria beyond the
repetition of the stage-game equilibrium [9]. The indirect
proof for existence of sequential equilibria and PBE (described
above) allows for this type of equilibria that depend on payoff
irrelevant information for coordination. Nevertheless, we con-
jecture that there always exists an equilibrium for the game
described in Section II that depends only on {Xt

t , Ct,Πt, Π̂t}.
The example of the dynamic multiple access broadcast game
in Section V is an instance of a dynamic game that does
not belong to the subclass of Game M, but has a CIB-PBE.
To make our conjecture more precise, we provide below a
sufficient condition for the existence of a CIB-PBE.

Let (g∗, µ∗) be a strategy profile that is a PBE. Consider
the following condition.

Condition C: For all hct , h
′c
t ∈ Hct such that

Pµ∗(xt|hct) = Pµ∗(xt|h
′c
t ),∀xt ∈ Xt,∀n ∈ N ,∀t ∈ T , (54)

we have, for all xn1:t ∈ Xn1:t,

gn∗t (xn1:t, h
c
t) = gn∗t (xn1:t, h

c′

t ). (55)

If Condition C is satisfied for a PBE (g∗, µ∗), then a CIB-
PBE exists. We conjecture that Condition C is satisfied for at
least a PBE in the dynamic games considered in this paper.

VII. CONCLUSION

We studied a general class of stochastic dynamic games with
asymmetric information. We identified game environments that
can lead to signaling in dynamic games. We considered a state
space model to analyze dynamic games with private states and
controlled Markovian dynamics. We provided a comparison
between our state space model and classic extensive game
form model. We showed that the two models are equivalent
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as long as one ensures that the belief system associated with
the state space model is compatible with the system dynamics.
To ensure the compatibility, we introduced the signaling-
free belief system. Using the signaling-free belief system,
we provided a formal definition of PBE in our state space
model. We used the common information among agents to
define a subset of PBE called CIB-PBE that consists of a pair
of CIB strategy profile and CIB update rule. We obtained a
sequential decomposition for dynamic games that leads to a
backward induction algorithm for the computation of CIB-
PBE even when signaling occurs. We illustrated our results
with an example of multiple access broadcast game. We proved
the existence of CIB-PBE for a subclass of dynamic games
and provided a sufficient condition for the existence of CIB-
PBE for the general class of dynamic games considered in this
paper.

APPENDIX

Proof of Lemma 1. The lemma is proved by induction. Since
the initial states are independent, (18) holds at t = 1.
Suppose the lemma is true at time t. Given any hct+1 =
{c1:t+1, y1:t, a1:t} at t+ 1, we have from Bayes’ rule

π̂t+1(xt+1) = P(A1:t=a1:t)(xt+1|y1:t)

=
P(A1:t=a1:t)(xt+1, yt|y1:t−1)∑

x′t+1∈Xt+1
P(A1:t=a1:t)(x

′
t+1, yt|y1:t−1)

. (56)

The numerator in (56) can be further expressed by

P(A1:t=a1:t)(xt+1, yt|y1:t−1)

=
∑
xt∈Xt

P(A1:t=a1:t)(xt+1, yt, xt|y1:t−1)

(a)
=
∑
xt∈Xt

N∏
n=1

pnt (xnt+1;xnt , at)q
n
t (ynt ;xnt , at)π̂

n
t (xnt )

=

N∏
n=1

∑
xnt ∈Xnt

pnt (xnt+1;xnt , at)q
n
t (ynt ;xnt , at)π̂

n
t (xnt ). (57)

Equation (a) in (57) follows from the system dynamics, the
fact At = at and the induction hypothesis for the lemma.
Substituting (57) into both the numerator and denominator of
(56) we get

π̂t+1(xt+1)

=

N∏
n=1

∑
xnt ∈Xnt p

n
t (xnt+1;xnt , at)q

n
t (ynt ;xnt , at)π̂

n
t (xnt )∑

x′nt ∈Xnt q
n
t (ynt ;x′nt , at)π̂

n
t (x′nt )

=

N∏
n=1

ψ̂nt (ynt , at, π̂t)(x
n
t+1). (58)

�

Proof of Lemma 2. If λ is a CIB strategy profile and ψ is a
CIB update rule consistent with λ, we define g ∈ G to be the
strategy profile constructed by (26) from (λ, ψ).

We proceed to recursively define a belief system µ and maps
{µct , t ∈ T } that satisfy (30)-(31), and are such that µ is con-
sistent with g. For that matter, we first define the signaling-free

belief µ̂ct : Hct 7→ ∆(X1:t) given hct = {a1:t−1, y1:t−1} ∈ Hct
such that for any x1:t ∈ X1:t

µ̂ct(h
c
t)(x1:t) := P(A1:t−1=a1:t−1)(x1:t|y1:t−1). (59)

At time t = 1 we define, for all hn1 = (xn1 , h
c
1) ∈ Hn1 , n ∈

N and for all x1 ∈ X1

µc1(hc1)(x1) :=P(x1), (60)

µn1 (hn1 )(x1) :=1{xn1 |hn1 }P(x−n1 ). (61)

Then, (30) and (31) are satisfied at time 1, and g is consistent
with µ before time 1. (basis of induction)

Suppose µct(h
c
t)(·) and µnt (hnt )(·) are defined, (30) and (31)

are satisfied at time t, and g is consistent with µ before time
t (induction hypothesis).

We proceed to define µct+1(hct+1)(·), and µnt+1(hnt+1)(·), and
prove that (30) and (31) are satisfied at time t + 1, and g is
consistent with µ before time t+ 1. We first define

ηkt (xkt , y
k
t , at, h

c
t) := ηkt (xkt , y

k
t , at, (ct, γψ,t(h

c
t), γ̂t(h

c
t)))

=qkt (ykt ;xkt , at)λ
k
t (xnt , ct, γψ,t(h

c
t), γ̂t(h

c
t))(a

n
t ). (62)

At time t+ 1, for any histories hct+1 and hnt+1, n ∈ N , we
define the beliefs

µct+1(hct+1)(x1:t+1) :=
∏
k∈N

µct+1(hct+1)(xk1:t+1), (63)

µnt+1(hnt+1)(x1:t+1)

:=1{xn1:t+1}(h
n
t+1)

∏
k 6=n

µct+1(hct+1)(xk1:t+1), (64)

where for for any k ∈ N

µct+1(hct+1)(xk1:t+1)

:=
pkt (xkt+1;xkt , at)η

k
t (xkt , y

k
t , at, h

c
t)µ

c
t(h

c
t)(x

k
1:t)∑

x′kt ∈Xkt η
k
t (x′kt , y

k
t , at, h

c
t)µ

c
t(h

c
t)(x

′k
t )

(65)

when the denominator of (65) is non-zero; when the denomi-
nator of (65) is zero, µct+1(hct+1)(xk1:t+1) is defined by

µct+1(hct+1)(xk1:t+1)

:=


0 when µ̂ct+1(hct+1)(xk1:t+1) = 0,

γψ,t+1(h
c
t+1)(x

k
t+1)

|{x′k1:t∈Xk1:t: µ̂ct+1(h
c
t+1)(x

′k
1:t,x

k
t+1)6=0}|

when µ̂ct+1(hct+1)(xk1:t+1) 6= 0.

(66)

Then (30) at t+1 follows directly from the above construc-
tion. We proceed to prove (31) at t+ 1.

First consider the case when the denominator of (65) is zero.
Then, for any k ∈ N , we obtain, because of (66),

µct+1(hct+1)(xkt+1)

=
∑

xk1:t∈Xk1:t

µct+1(hct+1)(xk1:t+1)

=
∑

xk1:t∈Xk1:t:
µ̂ct+1(h

c
t+1)(x

k
1:t+1) 6=0

γψ,t+1(hct+1)(xkt+1)

|{x′k1:t ∈ X k1:t : µ̂ct+1(hct+1)(x′k1:t, x
k
t+1) 6= 0}|

=γψ,t+1(hct+1)(xkt+1). (67)
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When the denominator of (65) is non-zero, from (65) we get

µct+1(hct+1)(xkt+1)

=
∑

xk1:t∈Xk1:t

µct+1(hct+1)(xk1:t+1)

=
∑

xk1:t∈Xk1:t

pkt (xkt+1;xkt , at)η
k
t (xkt , y

k
t , at, h

c
t)µ

c
t(h

c
t)(x

k
1:t)∑

x′kt ∈Xkt η
k
t (x′kt , y

k
t , at, h

c
t)µ

c
t(h

c
t)(x

′k
t )

=
∑

xkt∈Xkt

pkt (xkt+1;xkt , at)η
k
t (xkt , y

k
t , at, h

c
t)µ

c
t(h

c
t)(x

k
t )∑

x′kt ∈Xkt η
k
t (x′kt , y

k
t , at, h

c
t)µ

c
t(h

c
t)(x

′k
t )

(a)
=

∑
xkt∈Xkt

pkt (xkt+1;xkt , at)η
k
t (xkt , y

k
t , at, h

c
t)γψ,t(h

c
t)(x

k
t )∑

x′kt ∈Xkt η
k
t (x′kt , y

k
t , at, h

c
t)γψ,t(h

c
t)(x

′k
t )

=γψ,t+1(hct+1)(xkt+1), (68)

where (a) in (68) follows from the induction hypothesis for
(30) at time t, and the last equality in (68) is true because of
(27) (ψ is consistent with λ).

Therefore, (31) is true at time t+ 1 from (67) and (68).
To show consistency at time t + 1, we need to show that

Bayes’ rule, given by (15), is satisfied when the denominator
of (15) is non-zero, and (16) holds for any histories hnt+1.

We first note that, the construction (65), (66) and the
definition of signaling-free belief µ̂ct+1 ensure that

µct+1(hct+1)(xk1:t+1) = 0 if µ̂ct+1(hct+1)(xk1:t+1) = 0. (69)

Therefore, (16) follows from (69) since the signaling-free
belief satisfies

µ̂nt+1(hnt+1)(x1:t+1)

=1{xn1:t+1}(h
n
t+1)

∏
k 6=n

µ̂ct(h
c
t+1)(xk1:t+1) (70)

which follows by an argument similar to that of Lemma 1.
Now consider (15) at t + 1 when the denominator is non-

zero. From (64)-(65) the left hand side of (15) equals to

µnt+1(hnt+1)(x1:t+1) = 1{xn1:t+1}(h
n
t+1)∏

k 6=n

pkt (xkt+1;xkt , at)η
k
t (xkt , y

k
t , at, h

c
t)µ

c
t(h

c
t)(x

k
1:t)∑

x′kt ∈Xkt η
k
t (x′kt , y

k
t , at, h

c
t)µ

c
t(h

c
t)(x

′k
t )

. (71)

On the other hand, the numerator of the right hand side of
(15) is equal to

Pgtµ (x1:t+1, yt, at|hnt , ant )

=µnt (hnt )(x1:t)
∏
k∈N

pkt (xkt+1;xkt , at)q
k
t (ykt ;xkt , at)∏

k 6=n
λkt (xkt , ct, γψ,t(h

c
t), γ̂t(h

c
t))(a

k
t )

=1{xn1:t}(h
n
t )
∏
k∈N

pkt (xkt+1;xkt , at)q
k
t (ykt ;xkt , at)∏

k 6=n
µct(h

c
t)(x

k
1:t)

∏
k 6=n

λkt (xkt , ct, γψ,t(h
c
t), γ̂t(h

c
t))(a

k
t )

=1{xn1:t}(h
n
t )pnt (xnt+1;xnt , at)q

n
t (ynt ;xnt , at)∏

k 6=n
pkt (xkt+1;xkt , at)η

k
t (xkt , y

k
t , at, h

c
t)µ

c
t(h

c
t)(x

k
1:t).

(72)

The first equality in (72) follows from (12) and (26). The
second equality in (72) follows from the induction hypothesis
for (30). The last equality in (72) follows from (62).

Substituting (72) back into both the numerator and the
denominator in the right hand side of (15), we obtain (71).
Therefore, (15) is satisfied for any history hnt+1 ∈ Hnt+1 for
any n ∈ N when the denominator of (15) is non-zero, hence,
(g, µ) is consistence before time t + 1. This completes the
induction step and the proof of the lemma. �

Proof of Lemma 3. If agent n uses an arbitrary strategy g′n,
following the same construction (64)-(65) in Lemma 2, we can
obtain a belief system µ′ from g′ := (g′n, g−n) and ψ such
that

µ′nt (hnt )(x1:t) = 1{xn1:t}(h
n
t )
∏
k 6=n

µ′ct (hct)(x
k
1:t). (73)

Since µ′ct (hct)(x
k
1:t) defined by (65) and (66) depends only on

the strategies g′−n = g−n of all agents other than n, we have
for all hct ∈ Hct

µ′ct (hct)(x
k
1:t) = µct(h

c
t)(x

k
1:t). (74)

Therefore, for any history Hn
t ∈ Hnt

µ′nt (hnt )(x1:t) = 1{xn1:t}(h
n
t )
∏
k 6=n

µct(h
c
t)(x

k
1:t). (75)

The same argument for the proof of consistency in Lemma 2
shows that µ′ is consistent with g′ = (g′n, g−n). Therefore,
when Pg′n,g−n(hnt ) > 0, from Bayes’ rule we have

Pg
′n,g−n(x1:t|hnt ) =Pg

′n,g−n

µ′ (x1:t|hnt ) = µ′nt (hnt )(x1:t)

=1{xn1:t}(h
n
t )
∏
k 6=n

µct(h
c
t)(x

k
1:t). (76)

�

Proof of Lemma 4. To simply the notation, we use Πt to
denote Π

γψ
t and Bt = (Ct,Πt, Π̂t).

Let (g, µ) = f(λ, ψ) as in Lemma 2. Suppose every agent
k 6= n uses the strategy gk along with the belief system µ.

Below, we show that agent n’s best response problem
(14) is a Markov Decision Process (MDP) with state process
{(Xn

t , Bt), t ∈ T } and action process {Ant , t ∈ T }.
Since the strategies g−n of all other agents are fixed, when

agent n selects an action ant ∈ Ant at time t ∈ T , agent n’s
expected instantaneous utility at hnt ∈ Hnt under µ is given by

Eg
−n

µ [φnt (Ct, Xt, At)|hnt , ant ] . (77)

Since Akt , k 6= n satisfies (26), the distribution of Akt only
depends on Xk

t and Bt. Therefore, the distribution of A−nt
only depends on X−nt and Bt. Then, for any realization x−nt ∈
X−nt , hnt = (xn1:t, h

c
t) ∈ Hnt and ant ∈ Ant ,

Eg
−n

µ

[
φnt (Ct, Xt, At)|x−nt , ant , h

n
t

]
=Eg

−n

µ

[
φnt (ct, xt, (a

n
t , A

−n
t ))|x−nt , xn1:t, a

n
t , h

c
t , bt

]
=Eg

−n
t
[
φnt (ct, xt, (a

n
t , A

−n
t ))|x−nt , bt

]
=:φ̄nt (xt, a

n
t , bt, g

−n
t ); (78)
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the first equality in (78) holds because given ψ, Bt =
(Ct, γψ,t(H

c
t ), γ̂t(H

c
t )) is a function of Hc

t ; the second equal-
ity in (78) is true because the distribution of A−nt depends
only on X−nt , Bt and the strategy g−nt . From (78), agent n’s
instantaneous utility (77) can be written as

Eg
−n

µ [φnt (Ct, Xt, At)|hnt , ant ]

=Eg
−n

µ

[
Eg
−n

µ

[
φnt (Ct, Xt, At)|X−nt , ant , h

n
t

]
|hnt , ant

]
=Eg

−n

µ

[
φ̄nt ((xnt , X

−n
t ), ant , bt, g

−n
t )|hct , xn1:t, ant

]
(a)
=Eµ

[
φ̄nt ((X−nt , xnt ), ant , bt, g

−n
t )|hct

]
(b)
=Eπt

[
φ̄nt ((X−nt , xnt ), ant , bt, g

−n
t )

]
=:φ̃nt (xnt , bt, a

n
t , g
−n
t ). (79)

Equation (a) is true because, from Lemma 3, X−nt and Xn
t are

independent conditional on hct . Equation (b) follows from the
fact that πt is the distribution of Xt conditional on hct under
µ, which is established by (31) in Lemma 2.

Next, we show that the process {(Xn
t , Bt), t ∈ T } is a

controlled Markov chain with respect to the action process
{Ant , t ∈ T } for agent n.

From the system dynamics and the belief evolution
(21), we know that (Xn

t+1, Bt+1) is a function of
{Xn

t , Y
−n
t , Ant , A

−n
t , Bt,Wt} where Wt denotes all the noises

at time t. Furthermore, the distribution of (Y kt , A
k
t ) depends

only on {Xk
t , Bt,Wt, g

k
t } for any k 6= n. Therefore,

(Xn
t+1, Bt+1) = f̃t(X

n
t , X

−n
t , Ant , Bt,Wt, g

−n
t ). (80)

Suppose agent n uses an arbitrary strategy g̃n. Then, for any
realizations xnt+1 ∈ Xnt+1, bt+1 = (ct+1, πt+1, π̂t+1) ∈ Bt+1,
hnt = (xn1:t, h

c
t) ∈ Hnt and ant ∈ Ant , we obtain

Pg̃
n,g−n

µ (xnt+1, bt+1|hnt , ant )

=
∑

x−nt ∈X−nt

Pg̃
n,g−n

µ (xnt+1, bt+1|x−nt , hnt , a
n
t )Pg̃

n,g−n

µ (x−nt |hnt , ant )

=
∑

x−nt ∈X−nt

Pg̃
n,g−n

µ (xnt+1, bt+1|x−nt , hnt , a
n
t )πt(x

−n
t )

=
∑

x−nt ∈X−nt

Pg
−n
t (xnt+1, bt+1|xnt , x−nt , bt, a

n
t )πt(x

−n
t )

=Pg
−n

µ (xnt+1, bt+1|xnt , bt, ant ). (81)

The second equality in (81) follows from Lemma 3 and (31)
in Lemma 2. The third equality in (81) follows from (80).
The last equality follows from the same arguments as the first
through third equalities.

Equation (81) shows that the process {(Xn
t , Bt), t ∈ T }

is a controlled Markov Chain with respect to the action
process {Ant , t ∈ T } for agent n. This process along with
the instantaneous utility (79) define a MDP. From the theory
of MDP (see [30, Chap. 6]), there is an optimal strategy of
agent n such that for all hnt = (xn1:t, h

c
t) ∈ Hnt for all t ∈ T

λ′nt (xnt , bt) = λ′nt (xnt , (ct, γψ,t(h
c
t), γ̂t(h

c
t))). (82)

This completes the proof of Lemma 4. �

Proof of Theorem 1. Suppose (λ∗, ψ∗) solves the dynamic
program defined by (39)-(42). Let V nt , n ∈ N , t ∈ T , denote
the value functions computed by (39) and (42) from (λ∗, ψ∗).
Then ψ∗ is consistent with λ∗ from (41).

Let (g∗, µ∗) = f(λ∗, ψ∗) defined by Lemma 2. Then
µ∗ is consistent with g∗ because of Lemma 2. Further-
more, for all n ∈ N , t ∈ T , V nt (xnt , bt) (where bt =
(ct, γψ∗,t(h

c
t), γ̂t(h

c
t))) is agent n’s expected continuation util-

ity from time t on under µ∗ at hnt = (xn1:t, h
c
t) when agent n

uses g∗n and all other agents use g∗−n.
If every agent k 6= n uses the strategy g∗k, from Lemma

4 we know that there is a best response g′n, under the belief
system µ∗, of agent n such that for all t ∈ T

g′nt (hnt ) = λ′nt (xnt , bt) (83)

for some CIB strategy λ′nt for all hnt = (hct , x
n
1:t). Define a

CIB strategy profile λ′ := (λ′n, λ∗−n).
Let V ′nt , n ∈ N , t ∈ T , be the functions generated

by (39) and (42) from (λ′, ψ∗). Then V ′nt (xnt , bt) (where
bt = (ct, γψ∗,t(h

c
t), γ̂t(h

c
t))) is agent n’s expected continuation

utility from time t on under µ∗ at hnt = (xn1:t, h
c
t) when agent

n uses g′n and all other agents use g∗−n. Since g′n is a best
response, for all n ∈ N , t ∈ T and hnt = (xn1:t, h

c
t) ∈ Hnt we

must have

V ′nt (xnt , bt) ≥ V nt (xnt , bt). (84)

On the other hand, V ′nt (xnt , bt) is player n’s expected
utility in stage game Gt(Vt+1, ψ

∗
t , bt) when player n uses

λ′n|bt , and other players use λ∗−n|bt . However, from (40),
V nt (xnt , bt) is player n’s maximum expected utility in stage
game Gt(Vt+1, ψ

∗
t , bt) when other players use λ∗−n|bt be-

cause the strategy λ∗nt |bt is a best response for player n in the
stage game. This means that for all n ∈ N , t ∈ T and bt ∈ Bt

V nt (xnt , bt) ≥ V ′nt (xnt , bt). (85)

Combining (84) and (85) we get V nt (xnt , bt) = V ′nt (xnt , bt),
and it implies that, at any time t, the strategy g∗nt:T gives agent
n the maximum expected continuation utility from time t on
under µ∗. This complete the proof that (g∗, µ∗) is a PBE. As
a result, the pair (λ∗, ψ∗) forms a CIB-PBE of the dynamic
game described in Section II. �

To prove Theorem 2, we first prove the following lemma.

Lemma 5. In Game M π̂nt+1 = ψ̂nt (ynt , π̂t).

Proof of Lemma 5. From Lemma 1

π̂nt+1 =ψ̂nt (ynt , at, π̂t)(x
n
t+1)

=

∑
xnt ∈Xnt p

n
t (xnt+1;xnt , at)q

n
t (ynt ;xnt , at)π̂

n
t (xnt )∑

x′nt ∈Xnt q
n
t (ynt ;x′nt , at)π̂

n
t (x′nt )

. (86)

Since pnt (xnt+1;xnt , at) = pnt (xnt+1;xnt ) and qnt (ynt ;xnt , at) =
qnt (ynt ;xnt ) in Game M, the assertion of the lemma holds. �

Lemma 5 shows that in Game M the signaling-free beliefs
do not depend on the actions. We now prove Theorem 2.

Proof of Theorem 2. Consider a CIB update rule ψ∗

ψn∗t (ynt , at, bt) = ψ̂nt (ynt , π̂t). (87)



15

Based on ψ∗ defined by (87), we solve the dynamic program
defined by (39)-(42) to get a CIB strategy profile λ∗ and show
that (λ∗, ψ∗) forms a CIB-PBE for Game M. Note that under
the update rule ψ∗ given by (87), we have Πn

t = Π̂n
t for any

n and t. Therefore, in the following we will replace Πn
t by

Π̂n
t and drop Πn

t if both Πn
t and Π̂n

t are present.
The dynamic program for Game M can be solved by

induction. We prove the following claim:
At any time t, there exists a CIB strategy λ∗t that satisfies

(40), and the value functions V nt , n ∈ N , generated by (39)
and (42) from (λ∗t:T , ψ

∗
t:T ) satisfy

V nt (xnt , bt) = Ũnt (ct, π̂t) + Ṽ nt (xnt , ctk+1, π̂t) (88)

for some functions Ũnt (ct, π̂t) and Ṽ nt (xnt , ctk+1, π̂t) when
tk + 1 ≤ t ≤ tk+1 for some tk ∈ T .

The above claim holds at t = T+1 since V nT+1 = 0, n ∈ N .
Suppose the claim is true at t+ 1.
At time tk + 1 ≤ t < tk+1 for some tk ∈ T , Xn

t+1 = Xn
t ,

Yt = empty, and Ct+1 = (Ct, At) = (Ctk+1, Atk+1:t). Then
because of (53), (87) and the induction hypothesis for (88),
player n’s utility in stage game Gt(Vt+1, ψ

∗
t , bt) is equal to

UnGt(Vt+1,ψ∗t ,bt)

=φnt (ct, X
−n
t , At) + V nt+1(Xn

t+1, Ct+1, ψ̂t(π̂t, Yt))

=φnt (ct, X
−n
t , At) + Ũnt+1((ct, At), ψ̂t(π̂t))

+ Ṽ nt+1(Xn
t , ctk+1, ψ̂t(π̂t)) (89)

for any bt ∈ Bt and n ∈ N . Define

φ̃nt (X−nt , At, bt)

:=φnt (ct, X
−n
t , At) + Ũnt+1((ct, At), ψ̂t(π̂t)), (90)

Ṽ nt (Xn
t , ctk+1, π̂t) := Ṽ nt+1(Xn

t , ctk+1, ψ̂t(π̂t)). (91)

At t = tk for some tk ∈ T , Xn
tk+1 = fntk(Xn

tk
,Wn,X

tk
),

Y ntk = `ntk(Xn
tk
,Wn,Y

tk
) and Ctk+1 = f ctk(Ctk−1+1,W

C
tk

).
Then because of (53), (87) and the induction hypothesis for
(88), player n’s utility in stage game is equal to

UnGtk (Vtk+1,ψ∗tk
,btk )

=φntk(ctk , X
−n
tk
, Atk) + V ntk+1(Xn

tk+1, Ctk+1, ψ̂t(π̂tk , Ytk))

=φntk(ctk , X
−n
tk
, Atk)

+Ũnt+1(f ctk(ctk−1+1,W
C
tk

), ψ̂t(π̂tk , `tk(Xtk ,W
Y
tk

)))

+Ṽ nt+1(fntk(Xn
tk
,Wn,X

tk
), f ctk(ctk−1+1,W

C
tk

), ψ̂tk(π̂tk)) (92)

for any btk ∈ Btk and n ∈ N . Define

φ̃ntk(ctk , X
−n
tk
, Atk , π̂tk) := φntk(ctk , X

−n
tk
, Atk), (93)

Ṽ ntk(Xn
tk
, ctk−1+1, π̂tk) :=

Eπ̂tk
[
UnGtk (Vtk+1,ψ∗tk

,btk )
−φntk(ctk , X

−n
tk
, Atk)|Xn

tk

]
. (94)

Therefore, for any t, because of (89)-(94) player n’s
expected utility conditional on (Xn

t , A
n
t ) in stage game

Gt(Vt+1, ψ
∗
t , bt), for bt = (ct, π̂t) ∈ Bt, is equal to

Eπ̂t
[
UnGt(Vt+1,ψ∗t ,bt)

|Xn
t , A

n
t

]
=Eπ̂t

[
φ̃nt (ct, X

−n
t , At, π̂t)|Ant

]
+ Ṽ nt (Xn

t , ctk+1, π̂t). (95)

when tk + 1 ≤ t ≤ tk+1 for tk ∈ T .
Since the second term in (95) does not depend on

the players’ strategies, an equilibrium of the stage game
Gt(Vt+1, ψ

∗
t , bt) is also an equilibrium of the game

G′t(Vt+1, ψ
∗
t , bt) where each player n ∈ N has utility

UnG′t(Vt+1,ψ∗t ,bt)
:=φ̃nt (ct, X

−n
t , At, π̂t). (96)

For any bt ∈ Bt, since Ant is a finite set for any n ∈ N in
Game M, the game G′t(Vt+1, ψ

∗
t , bt) has at least one Bayesian

Nash equilibrium λ̃∗t (bt) = {λ̃∗nt (bt) ∈ ∆(Ant ), n ∈ N} (see
[1, 2]). Define λ∗nt (xnt , bt) := λ̃∗nt (bt) for all xnt ∈ Xnt , n ∈
N . Then, we get a CIB strategy λ∗t ∈ BNEt(Vt+1, ψ

∗
t ) so

that (40) is satisfied at t. Moreover, from (42),

V nt (xnt , bt) = Dn
t (Vt+1, λ

∗
t , ψ
∗
t )(xnt , bt)

=Eλ
∗
t

π̂t

[
φ̃nt (ct, X

−n
t , At, π̂t) + Ṽ nt (Xn

t , ctk+1, π̂t)|xnt
]

(a)
=Eλ

∗
t

π̂t

[
φ̃nt (ct, X

−n
t , At, π̂t)

]
+ Ṽ nt (xnt , ctk+1, π̂t)

=:Ũnt (ct, π̂t) + Ṽ nt (xnt , ctk+1, π̂t) (97)

where (a) is true because Ant only depends on bt using λ∗nt ,
and X−nt and Xn

t are independent under π̂t. Then (88) is
satisfied at t, and the the proof of the claim is complete.

As a result of the claim, we obtain a CIB strategy profile
λ∗ and a CIB update rule ψ∗ such that (39), (40) and (42)
are satisfied. It remains to show the consistency (41). Using
the dynamics of Game M and the fact that λ∗nt (xnt , bt) :=
λ̃∗nt (bt), we obtain∑

xnt ∈Xnt p
n
t (xnt+1;xnt , at)η

n
t (xnt , y

n
t , at, bt)π

n
t (xnt )∑

x′nt ∈Xnt η
n
t (x′nt , y

n
t , at, bt)π

n
t (x′nt )

=

∑
xnt ∈Xnt p

n
t (xnt+1;xnt )qnt (ynt ;xnt )λ̃∗nt (bt)(a

n
t )π̂nt (xnt )∑

x′nt ∈Xnt q
n
t (ynt ;x′nt )λ̃∗nt (bt)(ant )π̂nt (x′nt )

=

∑
xnt ∈Xnt p

n
t (xnt+1;xnt )qnt (ynt ;xnt )π̂nt (xnt )∑

x′nt ∈Xnt q
n
t (ynt ;x′nt )π̂nt (x′nt )

=ψ̂nt (ynt , π̂t)(x
n
t ) = ψ∗nt (ynt , at, bt)(x

n
t ). (98)

Thus, ψ∗t satisfies (27), and ψ∗t is consistent with λ∗t . Therefore
(41) holds.

Since (λ∗, ψ∗) solves the dynamic program defined by (39)-
(42), it is a CIB-PBE according to Theorem 1. �
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