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Abstract—Optimal design of sequential real-time communi-
cation of a Markov source over a noisy channel is investigated.
In such a system, the delay between the source output and its
reconstruction at the receiver should equal a fixed prespecified
amount. An optimal communication strategy must minimize the
total expected symbol-by-symbol distortion between the source
output and its reconstruction. Design techniques or performance
bounds for such real-time communication systems are unknown.
In this paper a systematic methodology, based on the concepts
of information structures and information states, to search for
an optimal real-time communication strategy is presented. This
methodology trades off complexity in communication length
(linear in contrast to doubly exponential) with complexity in
alphabet sizes (doubly exponential in contrast to exponential). As
the communication length is usually order of magnitudes bigger
than the alphabet sizes, the proposed methodology simplifies
the search for an optimal communication strategy. In spite of
this simplification, the resultant optimality equations cannot be
solved efficiently using existing algorithmic techniques. The main
idea is to formulate a zero-delay communication problem as a
dynamic team with nonclassical information structure. Then, an
appropriate choice of information states converts the dynamic
team problem into a centralized stochastic control problem in
function space. Thereafter, Markov decision theory is used to
derive nested optimality equations for choosing an optimal design.
For infinite horizon problems, these optimality equations give rise
to a fixed point functional equation. Communication systems with
fixed finite delay constraint, a higher-order Markov source, and
channels with memory are treated in the same manner after an ap-
propriate expansion of the state space. Thus, this paper presents
a comprehensive methodology to study different variations of
real-time communication.

Index Terms—Dynamic teams, information states, joint source–
channel coding, nonclassical information structures, real-time
communication, zero-delay communication.
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I. INTRODUCTION

A. Motivation

I N many controlled informationally decentralized systems
information must be transmitted within bounded delay.

Examples of such systems include networks with quality of
service (QoS) requirements (e.g., bounded end-to-end delay),
distributed routing in wired and wireless networks, decen-
tralized detection in sensor networks, traffic flow control in
transportation networks, resource allocation and consensus in
partially synchronous systems, and decentralized resource al-
location problems in economic systems. To understand how to
design such systems it is necessary to understand how to com-
municate information with a hard deadline on communication
delay, i.e., understand real-time communication of information.

In this paper we consider the simplest instance of a real-time
communication system: a point-to-point real-time communica-
tion system shown in Fig. 1. The simplest model consists a dy-
namic first-order Markov source that is to be sequentially trans-
mitted over a discrete memoryless channel to a receiver. En-
coding and decoding must be done with zero-delay to mini-
mize either a total expected distortion over a finite horizon or
a total expected discounted distortion over an infinite horizon
or a total expected average distortion per unit time over an infi-
nite horizon. We later consider the models when communication
must take place with a fixed finite delay, the source dynamics are
higher order Markov, and the channel has finite state memory.

B. Literature Overview

The real-time constraint on information transmission makes
the real-time communication problem drastically different from
the classical information theoretic formulation [1] which has no
delay constraint. Information theory is an asymptotic theory; the
fundamental concepts of information theory like source entropy
and channel capacity are asymptotic concepts; the performance
bounds that it provides are only tight for asymptotically large
values of delay. Real-time communication is not asymptotic.
Hence, the basic concepts and results from information theory
are not appropriate for real-time communication. Nevertheless,
many variations of the real-time communication problem have
been studied in the literature.

Real-time source coding using finite memory encoders
and decoders was studied in [2] and [3]. Real-time source
coding of individual sequences was considered in [4]–[6]; these
techniques were extended to zero-delay communication of
individual sequences over noisy channels in [7]. Causal source
coding, a weaker constraint than real-time communication,
was investigated in [8]–[11]. Properties of optimal systems for
real-time communication over noisy channels were obtained in
[12]–[15]. Bounds on performance of communication systems
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Fig. 1. A point-to-point real-time communication system.

with a real-time or finite-delay constraint on the information
transmission were obtained in [16]–[23]. Error exponents of
zero-delay source coding were obtained in [24].

For Markovian sources structural properties of optimal en-
coders and decoders have also been identified. Properties of
real-time decoders for noisy observations of a Markov source
were considered in [25] and [26]. Properties of real-time en-
coders for transmitting Markov sources through noiseless chan-
nels were investigated in [27] and [28]. The structure of optimal
real-time encoding and decoding strategies for systems with
noisy channels and noiseless feedback from the decoder to en-
coder was investigated in [29] and [30]. Applications of results
developed in [30] appeared in [31] and [32]. Structural proper-
ties of optimal real-time encoding and decoding strategies for
systems with Markov source, noisy channels with no feedback
and finite memory at the receiver were presented in [33]. Such
structural properties are derived by assuming that either the en-
coder or the decoder is fixed, considering the communication
problem at the other end as a stochastic optimization problem,
and identifying an information state sufficient for performance
analysis.

For real-time source coding and real-time joint source
channel coding with noiseless feedback optimality equations
to determine optimal encoders and decoders were obtained
in [28] and [29], respectively. However, optimality equations
that determine optimal encoders and decoders for real-time
joint source–channel coding with no feedback are unknown. In
this paper, we use the structural results of [33] to obtain such
optimality equations.

The real-time communication over noisy channel without
feedback (which is considered in this paper) is fundamentally
different from the real-time source coding and the real-time
communication over noisy channel with noiseless feedback
(which were considered in [27]–[29]). The difference lies in
the information structures of the models. In the models of
[27]–[29] the encoder “knows” all the information available
at the decoder. In the model considered in this paper neither
the encoder nor the decoder “knows” what is “known” to the
other. The models considered in [27]–[29] can be solved by
considering the problem from the decoder’s point of view. The
model considered in this paper cannot be solved from the point
of view of either the encoder or the decoder.

In this paper, we formulate the joint design of real-time en-
coders and decoders as a decentralized multiagent sequential
stochastic optimization problem; the encoder and the decoder
can be thought of as the two agents of the system. As mentioned
above, the problem has a nonclassical information structure be-
cause of the noise in the communication channel. As such, it
cannot be solved directly by Markov decision theory [34], which
is only applicable to stochastic optimization problems with clas-
sical information structure, or equivalently, problems with cen-
tralized information.

In real-time communication both agents (the encoder and the
decoder) have a common objective (minimize a total expected
distortion). As such, it is a team problem. However, systematic
methods to solve general team problems are unknown. Never-
theless, in this paper we show that a systematic solution for
the real-time communication problem can be obtained by an
appropriate choice of information state. This systematic solu-
tion is sequential decomposition; it breaks the one-shot (brute-
force) optimization problem into a sequence of nested optimiza-
tion problems. This decomposition exponentially simplifies the
complexity of the search for optimal real-time encoding and de-
coding strategies. Moreover, these optimality equations can be
extended to infinite horizon problems. This is in contrast to the
only other methodology to sequentially decompose team prob-
lems—Witsenhausen’s standard form [35], which is only appli-
cable to finite horizon problems.

C. Contributions

The main contribution of this paper is a solution framework
for the optimal design of a real-time communication system.
So far, there are no existing communication schemes or tight
performance bounds for communicating stochastic sources over
noisy channels within a (small) finite delay. The framework pre-
sented in this paper has significantly lower complexity than a
brute force search; it is also amenable to approximations, though
currently no good approximation algorithms exist.

In a finite-horizon communication system, the complexity of
searching for an optimal communication scheme by brute force
is doubly exponential in the communication length and expo-
nential in the alphabet sizes. We present a search framework
whose complexity is linear in the communication length and
doubly exponential in the alphabet sizes. We extend this frame-
work to infinite horizon communication systems. For such sys-
tems, an optimal communication strategy is obtained from the
fixed point of a functional equation. In contrast, a brute force
search cannot be used to find an optimal communication scheme
for an infinite horizon problem.

We are unaware of any existing algorithm to solve the op-
timality equations presented in this paper. As a consequence,
although the results presented in this paper drastically simplify
the search for an optimal communication scheme, yet they do
not completely solve the real-time communication problem.
Nevertheless, we believe that these optimality equations are
useful because they are amenable to approximations. The
optimality equations of this paper are similar in structure to
the dynamic programming equations for POMDPs (partially
observable Markov decision process) with continuous state and
action spaces. Approximation algorithms for such POMDPs is
an active area of research (see [36]–[39]). Advances in such
approximation algorithms along with the framework presented
in this paper will provide a complete methodology to obtain
real-time communication schemes that perform well for small
delays.

Another contribution of this paper is presenting real-time
communication as an example in which both finite and infinite
horizon variations of dynamic teams with nonclassical infor-
mation structure can be sequentially decomposed. A general
method to sequentially decompose finite and infinite horizon
team problems with nonclassical information structures does
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not exist; even examples where such decomposition can be
obtained are few and far between. We believe that the insights
and guidelines on choosing an information state presented in
this paper will also be useful for general dynamic teams with
nonclassical information structure.

D. Organization

The rest of this paper is organized as follows. The finite
horizon problem with zero-delay constraint is described in
Section II. Information state and its properties are explained
in Section III. Then, variables that satisfy these properties are
identified, and used to sequentially decompose the optimal
design problem. The solution approach for the finite horizon
problem is extended to infinite horizon problems in Section IV.
Extensions to fixed-finite delay, higher order Markov sources,
and channels with memory are considered in Sections V–VII.
These extensions are treated in the same manner as the original
problem after an appropriate expansion of the state space.
Computational aspects are discussed in Section VIII. We con-
trast the philosophy of our approach with that of information
theory and coding theory in Section IX. Concluding remarks
and future directions are presented in Section X.

E. Notation

Throughout this paper, we use the following notion. Upper-
case letters represent random variables, lowercase let-
ters represent their realizations, and calligraphic let-
ters represent their alphabets. Script letters
represent family of functions and Gothic letters rep-
resent -algebras. For random variables and functions, is a
short hand for the sequence , and is a short hand
for . denotes the expectation of a random vari-
able, denotes the probability of an event, denotes the
indicator function of a statement, and denotes the space
of all PMF (probability mass functions) on . We use
and to denote that the expectation of a random vari-
able or the probability of an event depends on a function . This
slightly unusual notation is chosen since we want to keep track
of all functional dependencies and the conventional notation of

and is too cumbersome to use.

II. THE FINITE HORIZON PROBLEM

A. Problem Formulation

We first study the finite horizon version of the problem. Con-
sider a discrete time communication system shown in Fig. 1.
A first-order Markov source produces a random sequence

. For simplicity of exposition we assume
that takes values in a finite alphabet . Let denote the
PMF (probability mass function) of the first output , and

denote the transition probability at time .
At each stage , the encoder transmits a symbol taking

values in a finite alphabet . This encoded symbol is causally
generated in real-time using all the source outputs until that time
according to an encoding rule , i.e.

(1)

and transmitted through a -input -output DMC (discrete
memoryless channel) producing a channel output which be-
longs to a finite alphabet . The channel is given by

(2)

where denotes the channel function at time , and ,
which belongs to a finite alphabet , denotes the channel noise
at time . is a sequence of independent
random variables that are also independent of the source output

. Let denote the PMF of .
We assume that the receiver has a memory of bits.

So, after some time, the receiver cannot store all the past obser-
vations and must selectively shed information. This is modeled
by assuming that the contents of the memory belong to a finite
alphabet . The memory is arbitrarily initialized with
and then updated at each stage according to the memory update
rule , i.e.

(3)

The decoder generates an estimate of the source output
in real-time. This estimate takes values in a finite set and is
generated from the present channel output and the memory
contents according to the decoding rule , i.e.,

(4)

The performance of the system is determined by a sequence
of distortion functions, , where

. The function measures the distortion at stage .
The collection of encoding rules for

the entire horizon is called an encoding strategy. Similarly, the
collection of decoding rules is called a
decoding strategy and the collection of
memory update rules is called a memory update strategy. Fur-
thermore, the choice of communication rules for the
entire horizon is called a communication strategy or a design.
The performance of a communication strategy is quantified by
the expected total distortion under that strategy and is given by

(5)

We are interested in the following optimization problem.

Problem 2.1: Assume that the encoder and the receiver know
the statistics of the source (i.e., PMF of and the transition
probabilities ), the channel function , the statistics

of the noise, the distortion function , and the time
horizon . Choose a communication strategy that
is optimal with respect to the performance criterion of (5), i.e.,

(6)

where , is the family of functions from
to , ( -times), is the family of functions
from to , ( -times), and is the
family of functions from to .
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In Problem 2.1 we want to identify a globally optimal com-
munication strategy to communicate the outputs of a first-order
Markov source over a DMC when both the encoding and the
decoding have to done in real-time. Due to this real-time con-
straint on communication, separate source and channel coding is
not optimal. So, we are looking for joint source–channel coding
strategies. A globally optimal communication strategy always
exists because there are only a finite number of communication
strategies and we can always choose one with the best perfor-
mance. The number of possibly time-varying communication
strategies are doubly exponential in the communication length
and exponential in the alphabet sizes. Thus, a brute force search
for an optimal solution is intractable. As a result, a systematic
approach to search for an optimal communication strategy is re-
quired. In this paper we present one such systematic approach
called sequential decomposition, which determines an optimal
communication strategy sequentially by proceeding backward
in time. The resultant simplified nested optimization problems
have linear complexity in the communication length and doubly
exponential complexity in the alphabet sizes. In the next section
we present an example for a real-time communication system.

B. An Example

Consider a real-time communication system that runs for
three time steps ( ) with
and . Suppose the source statistics are

and the channel is a -channel with crossover probability 0.1,
which can be written as

The distortion metric is probability of correct reconstruction, i.e.

We are going to consider the complexity and performance of
two classes of communication strategies for this system: memo-
ryless and real-time. Memoryless communication strategies are
a subclass of real-time communication strategies which encode
and decode based on only the current symbol, i.e., encoding and
decoding is of the form

(7a)

(7b)

Since the memory is large enough for the decoder to store all
its past observations, real-time communication strategies can be
written as

(8a)

(8b)

Observe that there are memoryless
communication strategies of the form (7), while there are

real-time communication strategies of

the form (8). An optimal memoryless communication strategy
is1

and

The total expected distortion of this memoryless communica-
tion strategy is 0.1346. An optimal real-time communication
strategy is

and

The total expected distortion of this real-time communication
strategy is 0.0564. Thus, for this example, real-time commu-
nication strategies provide 2.39 times smaller distortion than
memoryless communication strategies.

It was shown in [14], [15] that for memoryless sources, i.e.,
when is i.i.d. (independent and identi-
cally distributed), memoryless strategies are optimal for real-
time communication. The above example shows that this need
not be the case when the source is Markovian.

The main difficulty with finding optimal real-time communi-
cation strategies is that the number of communication strategies
increase doubly exponentially with the communication length.
The above example, which is one of the simplest real-time com-
munication systems, has around real-time communication
strategies (with the dominant term being the real-time en-
coding and decoding strategies at stage 3). This doubly expo-
nential dependence of the number of real-time communication
strategies on the communication length makes a brute force
search impractical for systems that operate for large horizons. In
the rest of this paper, we present a systematic method to search
for an optimal real-time communication strategy, which reduces
the search complexity to be linear in the communication length
(at the cost of searching over a Borel space instead of a discrete
space). We now present some concepts and notation needed for
the rest of the paper.

C. Primitive Random Variables

In this paper we work with conditional probabilities, prob-
ability measures of probability measures, and -fields. To be
precise in our analysis we need to define the probability space
clearly. For that matter, we first define the primitive random
variables of the system.

Any Markov chain can be defined using
a sequence of independent uniform random variables

such that

(9)

1The optimal strategy was obtained numerically, it is simply presented in an-
alytic form here.
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Fig. 2. The sequential ordering of the variables of the real time communication system. �� �� and � are refinements of stage �.

where for ,

and is the CDF (cumulative distribution func-
tion) of . This method is called the inverse
transform method or Smirnov transform (see [40, Sec. 4.11]).
Assume that is generated from indepen-
dent variables using (9). Since, the noise
in the communication channel is independent of the source
output, the random variables are
independent. These random variables are called the primitive
random variables. We assume that all primitive random vari-
ables are defined on a common probability space . If
the communication strategy is fixed, all system variables are
defined in terms of the primitive random variables, and are

measurable. In the sequel, all (random) variables are
assumed to be defined on .

D. Problem Classification

Problem 2.1 is a sequential stochastic optimization problem
in the sense of [35]. The sequential nature of the problem can be
understood by refining the notion of time. We call each step of
the system a stage. For each stage consider three time instances2:

, and . Assume that the system has three “agents”: the en-
coder (agent 1), the decoder (agent 2), and the memory update
(agent 3). There is no loss of generality in assuming that these
agents act sequentially at , , and , respectively. The choice
of decision rules and the realization of primitive random vari-
ables do not affect the order in which the agents act. Hence,
Problem 2.1 is a sequential problem. The sequential ordering of
the system variables is shown in Fig. 2 (some of these variables
will be defined later).

In Problem 2.1, all agents have the same objective given by
(5). Multiagent problems in which all agents have the same ob-
jective are called teams [41], and are further classified as static

2The actual values of these time instances are irrelevant; we need three values
in increasing order.

or dynamic teams on the basis of their information structure.
In static teams, an agent’s information is a function of prim-
itive random variables only. In contrast, in dynamic teams an
agent’s information depends on the functional form of the deci-
sion rules of other agents. In Problem 2.1 the receiver’s informa-
tion depends on the functional form of the encoding rule. Thus,
Problem 2.1 is a dynamic team. Dynamic teams are, in general,
functional optimization problems having a complex interdepen-
dence among the decision rules [42]. This interdependence leads
to nonconvex (in policy space) optimization problems that are
hard to solve.

E. Information Fields

For the ease of notation let and denote the current
and all the past decision rules at time , , i.e.,

Recall that is the probability space on which all
primitive random variables are defined. Suppose is the ob-
servation of agent at time . For any choice of the last
decision rules, is measurable with respect to . All the in-
formation (about the randomness in ) that agent can collect
from his observations is called the information field of agent

at time . It is equal to the smallest subfield of with respect
to is measurable and is denoted by . The infor-
mation fields at the encoder’s and the receiver’s site are given
below.

Definition 2.1 (Encoder’s Information): Let denote the
observation and denote the information field at the encoder’s
site at time , . Then

(10a)

and

(10b)

Let denote the space of realizations of , .
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Definition 2.2 (Decoder’s Information): Let denote
the observation and denote the information field at the
receiver’s site at time , . Then

(11a)

and

(11b)

Let denote the space of realizations of , .
The above defined information fields highlight the following

features of the problem.

F1) Nonclassical information structure.
In general, the noise in the channel makes the informa-
tion fields at the encoder’s and the receiver’s sites non-
compatible, i.e., and . Thus, at
no time during the evolution of the system does the en-
coder “know” what is known to the receiver and vice
versa. Hence, the information in the system is decen-
tralized and Problem 2.1 has a nonclassical information
structure.

F2) Shedding of information at the receiver due to finite
memory.
The encoder has perfect memory, i.e., it remembers all
the past observations. As a result the information fields
at the encoder are nested, i.e.,

and so on. On the other hand, the receiver has
finite memory. As a result, the information fields at the
receiver are not-nested: although ,
at time when the receiver updates its memory

, i.e., at time the receiver sheds information.

F. Agents’ Belief and Their Evolution

As explained in F1) above, the encoder does not “know” what
is “known” to the receiver and vice versa. So, we need to char-
acterize what the encoder “thinks” that the receiver has “seen”
and what the receiver “thinks” that the encoder has “seen.” This
is captured by the encoder’s belief about the observations at the
receiver and the receiver’s belief about the observations at the
encoder. These beliefs are given below.

Definition 2.3 (Encoder’s Beliefs): Let denote the en-
coder’s belief about the receiver’s observation at time ,

. Then for

(12)

Let denote the space of realizations of

Definition 2.4 (Receiver’s Beliefs): Let denote the re-
ceiver’s belief about the encoder’s observation at time ,

. Then for

(13)

Let denote the space of realizations of .
Furthermore, let denote the receiver’s belief about the source
output at time instant , i.e., for

(14)

The sequential ordering of the beliefs is shown in Fig. 2. For
any particular realization of , and any arbitrary (but fixed)

choice of , the realization of is a PMF on . If
is a random vector, then is a random vector belonging to

, the space of PMFs on . Similar interpretations hold
for , , and .

The belief of the encoder evolve as follows.

Lemma 2.1 (Evolution of the Encoder’s Beliefs): For each
stage , there exist deterministic functions and such that

This is proved in Appendix A.

G. Structural Properties

The structural properties of optimal real-time encoders and
decoders were derived in [33]. We summarize these properties
below and will later use them to develop a methodology for
determining globally optimal communication strategies.

Theorem 2.1 (Structure of Optimal Real-Time Encoders):
Consider Problem 2.1 for any arbitrary (but fixed) decoding
and memory update strategies, and

, respectively. Then there is no loss of
optimality in restricting attention to encoding rules of the form

(15)

Theorem 2.2 (Structure of Optimal Real-Time Decoders):
Consider Problem 2.1 for any arbitrary (but fixed) encoding
and memory update strategies, and

, respectively. Then there is no loss of
optimality in restricting attention to decoding rules of the form

(16)

H. Implication of the Structural Results

Let denote the space of functions from to . The
result of Theorem 2.1 states that instead of choosing an encoding
rule from the space at time , an encoding rule from the space

can be chosen. Therefore, we have the following corollary.

Corollary 2.1: The optimal performance given by (6) can
be determined by

(17)

where ( -times), and and are defined
as before.

Hence, in Problem 2.1 rather than choosing a communication
strategy belonging to to minimize
(6), a communication strategy belonging to

to minimize (17) can be chosen. The domain of an
encoding rule belonging to increases with . In contrast, the
domain of an encoding rule belonging to does not depend on .
Hence, using the structural results of Theorem 2.1, Problem 2.1
can be reformulated such that the encoding rules at each time are
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chosen from a time-invariant space. The reformulated problem
is as follows.

Problem 2.2: Under the assumptions of Problem 2.1, choose
a communication strategy belonging to

that is optimal with respect to the performance crite-
rion of (17).

In the sequel, we will concentrate on Problem 2.2.

III. GLOBAL OPTIMIZATION

In this section we provide a methodology for sequential de-
composition of Problem 2.2. The class of problems consisting
of Problem 2.2 and its infinite horizon extensions belong to a
category for which no sequential decomposition methodology
is known in general. In order to obtain a sequential decompo-
sition, we need to find “information states sufficient for perfor-
mance evaluation.” We explain the properties that such infor-
mation states should satisfy, and then guess information states
with these properties and show how they lead to a sequential
decomposition.

A. Information Structures and Information State

In a multiagent system, the collection of sets of data avail-
able to each agent as arguments of its decision rule is called
the information structure (or information pattern) of the system.
Multiagent systems can be classified according to their informa-
tion structures. In [43] three classes of information structures are
defined: classical, quasi-classical, and nonclassical information
structures. A system is said to have a classical information struc-
ture if all agents observe the same data and have perfect recall
(or equivalently, if the information fields of all agents at a given
time stage are equal and the information fields across time are
nested). The system is said to have a quasi-classical information
structure if each agent knows the information available to any
other agent whose actions affect its observations. A system that
has neither classical nor quasi-classical information structure is
said to have a (strictly) nonclassical information structure.

Markov decision theory explains how to obtain a sequen-
tial decomposition of problems with a classical information
structure. Witsenhausen’s standard form [35] explains how to
obtain a sequential decomposition of a subclass of problems
with a nonclassical information structure. Methodologies to
sequentially decompose a general problem with a nonclassical
information structure are unknown. Problem 2.1 and its infinite
horizon extensions have a nonclassical information structure so
they cannot be solved by Markov decision theory; the infinite
horizon extensions of Problem 2.1 belong to a subclass that
cannot be solved using the standard form. So, we need to
develop a new methodology for sequential decomposition of
these problems.

Identifying information states sufficient for performance
evaluation is a critical step in sequentially decomposing prob-
lems with nonclassical information structures. An information
state is a sufficient statistic that satisfies certain properties. Un-
fortunately, all definitions of information states in the literature

are in terms of their properties for systems with a classical in-
formation structure; there is no explanation of the properties of
information states for systems with a nonclassical information
structure. The idea behind an information state is best de-
scribed in [44]: “The [information] state should be a summary
(“compression”) of some data (the “past”) known to someone
(an observer or a controller) and sufficient for some purposes
(input–output map, optimization, dynamic programming).”

In this section we define the properties that the information
states sufficient for performance analysis should satisfy and ex-
plain what these properties mean in the context of real-time
communication. These properties are as follows.

P1) Sufficient summary of past information
The information state should be a representation of all
the past information that is sufficient for future perfor-
mance evaluation. This has the following interpretation.
The real-time communication problem is a controlled
stochastic input–output system. The stochastic inputs
are and ,
and the outputs are . The designer
has to choose a communication strategy .
Suppose the system is at time : nature has pro-
duced , the designer has chosen , and
the system has produced and incurred a dis-
tortion . The designer now wants to
choose to minimize the expected future distortion

.
Different choices of the past communication rules are
equivalent for the purpose of evaluating future perfor-
mance if any choice of future decision rules lead to the
same expected future performance. In other words, two
choices of past decision rules and are
equivalent, denoted by , if for any
choice of future decision rules

Assume that the designer has already chosen and
wants to choose to minimize the expected future
cost. If then the optimal future
communication rules are same for both of them. So, to
evaluate future performance and choose future commu-
nication rules, it is sufficient for the designer to keep
track of the equivalence class of the past communica-
tion rules.
Let denote the space of realization of all past
decision rules, and let be any arbitrary space.
Suppose is a function such that
for any if

, then . Any such
is a sufficient statistic for future performance

evaluation.
P2) Common knowledge and sequential update.
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All agents in the system should be able to solve the se-
quential decomposition of the problem. So, the informa-
tion state cannot depend on data that is observed locally
by one of the agents. In fact, the information state should
be common knowledge in the sense of Aumann [45], and
the agents should be able to keep track of how the infor-
mation state evolves with time.
In centralized stochastic optimization (i.e., problems
with classical information structure), the conditional
expectation of the state conditioned on the agent’s data
is an information state appropriate for performance
evaluation. However, in decentralized stochastic opti-
mization (i.e., problems with nonclassical information
structures) such conditional expectations cannot be
information states as they are not common knowledge:
the data observed at each agent is not common knowl-
edge, hence conditional expectations based on this data
is not common knowledge. The sufficient statistics
of (P1) are derived from past decision rules, which are
common knowledge. So, they can be evaluated both at
the encoder and the receiver.
Furthermore, for the purpose of sequential decomposi-
tion, has to be a function of and

(recall that ), has
to be a function of and , and
has to be a function of and .

Any sequence , , that has prop-
erties P1) and P2) is a valid choice of information state, and
can be used to obtain a sequential decomposition for the finite
horizon problem. We want to develop a methodology that can
be extended to infinite horizon problem. For that matter, we re-
quire the following additional property.

3) Time invariant domain.
Identify functions such that ,

, satisfy (P1) and (P2) and the sets
and do not depend on the time horizon .

An information state should provide representation of past
knowledge that is efficient, both in calculating optimal decision
rules and in their implementation. The smaller the set of all real-
izations of the information state, the more efficient is it to com-
pute optimal communication rules. So, the following property
is desirable.

4) Minimality.
If more than one appropriate information state exist, we
want to use the “smallest” information state. However, we
have not been able to establish a good way of comparing
information states, especially, information states satis-
fying P3). So, in the rest of the paper, we do not consider
minimality.

For a given communication rule , is the
information state at time and denoted by . In summary,
these information states satisfy the following properties.

S1) The information state is a summary of past information.
Thus, is a function of , is a function of

, and is a function of .
S2) Both the encoder and the receiver should be able to keep

track of the information states.

This means that can be determined from and
(i.e., and ), can be determined from and

(i.e., and ), and can be determined from
and (i.e., and ).

S3) The information state should be sufficient for perfor-
mance evaluation, that is, it should absorb the affect of
past decisions on future performance.
This means that

(18)

In general, it is difficult to check (18). Nevertheless, the
state update relation of S2) suggests the following suffi-
cient condition of (18):

(19)

S4) The information states should belong to time-invariant
spaces.
This means that there exist spaces and such
that for all , , .

Properties S1) and S2) are equivalent to property P1), proper-
ties S1) and S3) are equivalent to P2), and property S4) is equiv-
alent to P3).

In order to obtain a sequential decomposition, we need to
identify information states and that satisfy prop-
erties S1)–S4). As mentioned earlier, there is no general method
of identifying appropriate information states for problems with
a nonclassical information structure. Next, we first guess infor-
mation states that satisfy the above properties, and then show
how to obtain a sequential decomposition using these informa-
tion states.

Definition 3.1: Define and as follows:

Let , , denote the space of probability measures on
. Then takes values in .

The above definitions are to be interpreted as follows. Let
denote the probability space on which all primitive

random variables are defined. For any choice of past de-
cision rules for agent , , the beliefs are -measur-
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able. Thus, for any choice of , is -measurable.
is the corresponding induced measure on .

The above defined probability measures are related as
follows.

Lemma 3.1: For encoding rules of the form (15),
and are information states for the encoder,

the decoder, and the memory update respectively, i.e.
1) there exist linear transformations and such that

(20)

2) The expected instantaneous cost can be expressed as

(21)

This is proved in Appendix B. Observe that by definition
satisfies S1). Part 1 of Lemma 3.1 shows that they satisfy S2);
part 2 shows that they satisfy S3). S4) is satisfied by definition.
Next we show how these information states lead to a sequential
decomposition.

B. An Equivalent Optimization Problem

Consider a centralized deterministic optimization problem
with state space alternating between and and action
space alternating between , , and . The system dynamics
are given by (20) and at each stage the decision rules , ,
and are determined according to meta-functions or meta-rules

and , where is a function from to ,
is a function from to , and is a function from to .
Thus, the system (20) can be written as

(22a)

(22b)

(22c)

The initial state is given. At stage , an
instantaneous cost is incurred. The choice

is called a meta-strategy
or a meta-design and denoted by . The performance of
a meta-strategy is given by the total cost incurred by that
meta-strategy, i.e.,

(23)

Now consider the following optimization problem.

Problem 3.1: Consider the dynamic system (22) with known
transformations and . The initial state is given. De-
termine a meta-strategy to minimize the total cost given by
(23).

Given any meta-strategy , the time evolution of is de-
terministic; and the corresponding can be determined
from (22). Thus, for a given initial states , there is a commu-
nication strategy corresponding to any choice of meta-strategy.

Furthermore, the performance criterion of (5) can be rewritten
as

where follows from the sequential ordering of system
variables and follows from Lemma 3.1. Thus, if is
an optimal meta-strategy for Problem 3.1, and
is the communication strategy corresponding to , then

is an optimal communication strategy for Problem
2.2 and thereby also for Problem 2.1. Hence, Problem 3.1 is
equivalent to Problems 2.1 and 2.2. Now we provide an algo-
rithm to determine an optimal meta-strategy for Problem 3.1.

C. The Global Optimization Algorithm

Problem 3.1 can be formulated as a classical centralized sto-
chastic control problem by considering the information state
as the “controlled state” at time , the communication rule
( , , or depending on ) as the “control action” (or decision)
at time , and the meta-function as the “control law” at time

. Hence, an optimal meta-strategy for Problem 3.1 is given by
the optimal “control strategy” of the centralized stochastic con-
trol problem and can be determined as follows:

Theorem 3.1 (Global Optimization Algorithm): An optimal
meta-strategy for Problem 3.1 (and consequently an op-
timal communication strategy for Problem 2.1) can be deter-
mined by the solution of the following nested optimality equa-
tions. For all , , define

(24a)

and for

(24b)

(24c)

(24d)

The functions are called value functions; they represent the
minimum expected future cost that the system in state will
incur from time onwards. These value functions can be de-
termined iteratively by moving backwards in time. The optimal
performance of Problem 3.1 (and Problem 2.1) is given by

(25)

For any and , the (or ) in the RHS of
equals to the optimal value of the meta-function . Thus,
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solving for the value functions for all values of the informa-
tion state also determines an optimal meta-strategy for
Problem 3.1. Relations (22) can be used to determine optimal
communication strategy for Problem 2.1.

Proof: As explained in the previous paragraph, Prob-
lem 3.1 can be formulated as a centralized stochastic control
problem. Therefore, the optimality of the sequential decom-
position of (24) follows from standard results in controlled
Markov processes, see [34, Ch. 2]. The communication policy
corresponding to is optimal for Problem 2.1 because of
the equivalence between Problems 2.1 and 3.1.

Observe that the three step -stage sequential decomposition
of (24) can be combined into a one-step -stage sequential de-
composition

(26)

which is a deterministic dynamic program in function space.
The decomposition of Theorem 3.1 is based on the refinement
of time presented in Section II-D; consequently, it has a smaller
search space than the decomposition of (26).

D. The Time Homogeneous Case

In many scenarios the system is time-homogeneous, i.e., the
source statistics , the channel function , the noise
statistics and the distortion function , do not depend on
time . If the system of Problem 2.1 is time-homogeneous, some
of the results derived in the previous section can be simplified.
The function in Lemma 2.1 does not depend on ; the trans-
formations , and the function of Lemma 3.1 also do
not depend on ; thus, we drop the subscripts and simply de-
note them by , , and , respectively. Hence, Problem
3.1 reduces to a time-homogeneous problem—the state space,
the action space, the system update equations, and the instanta-
neous distortion do not depend on . Furthermore, Theorem 3.1
simplifies as follows.

Corollary 3.1: If the system of Problem 2.1 is time-homoge-
neous, the nested optimality equations (24) can be written as

(27a)

and for

(27b)

(27c)

(27d)

Notice that in the above equations , , and do not de-
pend on .

IV. THE INFINITE HORIZON TIME-HOMOGENEOUS PROBLEM

In this section we extend the time-homogeneous model of
Section III-D to an infinite horizon ( ) using two criteria:

the expected discounted distortion and the average distortion per
unit time. Let , , ,

denote an infinite horizon communication
strategy or an infinite horizon design. The two performance cri-
teria that we consider are as follows.

1) The expected discounted cost criteria.
Under this criteria the performance of a communication
strategy is given by

(28)
where is called the discount factor.

2) The average cost per unit time criteria.
Under this criteria the performance of a communication
strategy is given by

(29)

Time-invariant communication strategies are desirable while
implementing a communication scheme for infinite horizon.
This motivates the following definitions.

Definition 4.1 (Stationary Communication Strategy): A
communication strategy , ,

, is called stationary (or
time-invariant) if , , and

. Such a stationary communication strategy is
equivalently denoted by .

Definition 4.2 (Stationary Meta-Strategy): A meta-strategy
, where , is called

stationary (or time-invariant) if .
In time-homogeneous infinite-horizon stochastic optimiza-

tion problems with classical information structures, under some
technical conditions there is no loss of optimality in restricting
attention to stationary strategies (see [34]). This result dras-
tically simplifies the search for an optimal solution. It is not
known whether, in general, restricting attention to stationary
strategies is optimal for problems with nonclassical informa-
tion structures. (Recall that Problem 2.1 has a nonclassical in-
formation structure.) In this section we show that for the time-
homogeneous infinite-horizon extensions of Problem 2.1, sta-
tionary communication strategies may not be optimal. However,
there is no loss of optimality in restricting attention to stationary
meta-strategies: for the expected discounted distortion criterion
there exist stationary meta-strategies that are optimal; for the
average cost per unit time criterion, under a technical condition,
there exist stationary meta-strategies that are arbitrarily close to
optimal.

However, the optimal communication strategy corresponding
to the stationary meta-strategy is, in general, time-varying.

A. The Expected Discounted Distortion Problem

Consider a time-homogeneous infinite-horizon problem with
the expected discounted distortion criterion of (28). With a
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slight modification to the proof of [33] one can show that the
structural results of Section II-G are valid for this case, hence
we can restrict attention to encoders belonging to . Consider

and as in Definition 3.1: they satisfy the properties
of Lemma 3.1; furthermore, since the system is time-invariant,
the transformations and and the expected instantaneous
distortion do not depend on . Let denote
the communication rules at time and denote the space

. We can combine (22) as

(30)

where

and

The instantaneous distortion at time can be written as

Hence, the time-homogeneous infinite horizon problem with the
expected discounted cost criterion of (28) is equivalent to the
following deterministic optimization problem.

Problem 4.1: Consider a deterministic system with state
space and action space . The system dynamics are given by

(31)

where is a known transformation and is a
meta-function. At each time an instantaneous cost
is incurred. The initial state is known. The objective is to
choose meta-strategy so as to minimize
the discounted infinite horizon total distortion given by

(32)

Problem 4.1 is a standard deterministic time-invariant infinite
horizon problem with total discounted distortion (cost) criterion.
As we have assumed to be uniformly bounded, and are
also uniformly bounded. Therefore, an optimal meta-strategy is
guaranteed to exist and can be obtained as follows.

Theorem 4.1: For Problem 4.1 and consequently for the
infinite horizon expected discounted cost problem with the
performance criterion given by (28) one can restrict atten-
tion to stationary meta-strategies without any loss of opti-
mality. Specifically there exists a stationary meta-strategy

, and a corresponding infinite horizon
communication strategy , ,

, such that

(33)

where is the unique uniformly bounded fixed point of

(34)

and satisfies

(35)

Optimal communication rules at time are given by

(36)

Proof: Since Problem 4.1 is a centralized stochastic control
problem with uniformly bounded cost, the result follows from
standard results for infinite horizon discounted cost problems in
centralized stochastic control, see [46, Ch. 6]. The fixed point
equation (34) can be decomposed into its “natural” sequential
form as

(37a)

(37b)

(37c)

These equations are the infinite horizon analogue of (24).

B. The Average Distortion Per Unit Time Problem

Consider the time-homogeneous infinite horizon problem
with the average distortion per unit time criterion of (29). Using
the arguments similar to the first paragraph of Section IV-B, this
problem is equivalent to the following deterministic problem:

Problem 4.2: Consider a deterministic system with state
space and action space . The system dynamics are given by

(38)

where is a known transformation and is a
meta-function. At each time an instantaneous cost
is incurred. The initial state is known. The objective is to
choose meta-strategy so as to minimize
the average distortion per unit time over an infinite horizon given
by

(39)

Problem 4.2 cannot be solved by taking the limit
in the result of Theorem 4.1. Such a result is valid only if
the problem has finite state and action space (see [47, The-
orem 31.5.2]) which is not the case here. See [48] for a survey
of various results connecting the expected discounted cost
problem with the average cost per unit time problem.

For Problem 4.2 an optimal meta-strategy may not exist.
However, under suitable conditions, meta-strategies that are
arbitrarily close to optimal exist. Specifically, we have the
following result.
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Theorem 4.2: For Problem 4.2 and correspondingly for the
infinite horizon average cost per unit time problem with the per-
formance criterion given by (29), assume the following.

A1) For any there exist bounded measurable func-
tions and and meta-function
such that for all

(40)

and

(41)

Then for any horizon and any meta-strategy
, the stationary meta-strategy

( -times) satisfies

(42)

Furthermore, the stationary meta-strategy
is -optimal (i.e., close to optimal). That

is, for any infinite horizon meta-strategy
we have

(43)

where

(44)

with and

(45)

with . -optimal communication rules
at time are given by

(46)

Proof: Since Problem 4.1 is a centralized stochastic control
problem with uniformly bounded cost, the result follows from
standard results for infinite horizon average cost per unit time
problems in centralized stochastic control, see [46, Ch. 7].

Conditions that guarantee that assumption A1) of The-
orem 4.2 is satisfied are fairly technical and do not provide
much insight into the properties of the source, the channel, and
the distortion functions that will guarantee the existence of such
policies. The interested reader may look at [46, Ch. 7, Sec.10]
and [49, Ch. 3, Sec. 3.3].

C. Discussion of the Results

The discussion of Section III-B shows that one can view the
real-time communication problem as an equivalent determin-
istic optimization problem by considering the information state

as the “controlled state,” the communication rule as the “con-
trol action” and the meta-function as the “control law” at each
time. In classical infinite-horizon deterministic optimization
problems, there is no loss of optimality in restricting attention
to stationary control laws; by analogy, in the infinite-horizon
real-time communication problem, there is no loss of opti-
mality in restricting attention to stationary meta-strategies. In
classical infinite-horizon deterministic optimization problems,
stationary actions are not optimal in general; by analogy, in
infinite-horizon real-time communication problem, stationary
communication strategies are not optimal in general. In the
absence of a systematic framework, the task of finding and
implementing an optimal infinite-horizon communication
strategy is infeasible. The methodology of this section provides
one systematic framework: obtain and implement time-varying
optimal infinite-horizon communication strategies by obtaining
and implementing stationary infinite-horizon meta-strategies.
The off-line search simplifies to finding the fixed point of a
functional equation. Once an optimal stationary meta-strategy
is obtained, both the encoder and the decoder can store it, and
use it to obtain the current optimal communication rules by
keeping track of the current information state. This greatly
simplifies the on-line implementation of a time-varying optimal
communication strategy.

V. FIXED-FINITE DELAY

For many applications where communication delay is impor-
tant, the acceptable delay is finite and fixed but nonzero. In this
section we consider the case when the distortion metric toler-
ates a fixed-finite delay , i.e., at time , , the decoder
tries to estimate the source output at time and a distortion

is incurred. This case can be modeled by modi-
fying the model of Section II-A as follows.

M1) The variables are simply not generated;
the receiver spends the first periods just accumulating
the observations and updating its memory
accordingly.

M2) The performance of a communication scheme
, , ,

is given by

(47)

Assume that the system runs for more that steps, that is,
. We are interested in the following optimization problem.

Problem 5.1: Consider the model of Problem 2.1 with modi-
fications M1) and M2) defined above. Choose a communication
strategy that is optimal with respect to the perfor-
mance criterion of (47).

A. Transformation to a Zero-Delay Problem

In this section, we show how to convert the fixed-finite delay
problem into a zero-delay problem. This can be done using the
sliding window repackaging of the source as presented in [27]
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and [33]. For that matter, define a process
as follows:

.
(48)

Let denote the space of realizations of , i.e., for
and for . Observe that , so for

any we can find a such that

Let denote the collection of all corresponding to all .
Define as follows

.

Let for and . Furthermore, define a
modified distortion function as follows:

;
.

(49)

Using these transformations, the total distortion under a com-
munication strategy can be written as

(50)

Hence, Problem 5.1 is equivalent to the following problem.

Problem 5.2: Consider Problem 5.1 with the sliding window
repackaging of the source given by (48). Choose a communi-
cation strategy that is optimal with respect to the
performance criterion of (50), i.e.

(51)

where , , and , ,
and are as defined earlier.

B. Agents’ Beliefs and Structural Results

Problem 5.2 is a zero-delay real-time communication
problem. So, the analysis and results of Sections II–IV can
be applied to this problem. We can define the encoder’s and
receiver’s beliefs as in Definitions 2.3 and 2.4. We need to
modify in Definition 2.4 as follows:

(52)

The structural properties of optimal encoders and decoders
can be restated as follows.

Theorem 5.1: Consider Problem 5.2 for any arbi-
trary (but fixed) decoding and memory update strategies,

and , respectively. Then
there is no loss of optimality in restricting attention to encoding
rules of the form

which is equivalent to

(53a)

(53b)

Theorem 5.2: Consider Problem 5.2 for any arbi-
trary (but fixed) encoding and memory update strategies,

and , respectively. Then
there is no loss of optimality in restricting attention to decoding
rules of the form

(54)

where is defined in (52).

C. Global Optimization

Globally optimal communication strategies for Problem 5.2
can be obtained along the lines of Section III. For that matter,
define information states and as follows:

.
(55)

These information states are related in the same manner as
Lemma 3.1. So, we can formulate an equivalent optimization
problem as in Section III-B and solve it along the lines of the
nested optimality equations in Section III-C. Observe that in
Problem 5.2, for , so the global opti-
mization algorithm simplifies as follows.

Theorem 5.3: An optimal meta-strategy for Problem
5.2 can be determined by the solution of the following nested
optimality equations. Define value function , ,

as follows: for all and

(56a)

and for

(56b)

(56c)

(56d)

and for and

(57a)

(57b)

(57c)
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The value function can be determined iteratively by moving
backwards in time. The optimal performance and optimal
meta-strategy can be determined from the value functions
in the same way as in Theorem 3.1.

D. The Infinite Horizon Time-Homogeneous Problem

In this section we assume that the system is time-homoge-
neous and consider the infinite-horizon problem for the two
performance criteria described in Section IV. Observe that a
time-homogeneous model for Problem 5.1 does not imply that
the transformed zero delay problem is time-homogeneous. This
is because for the first steps takes values in a space that is
increasing with time. Thus, for the first time steps, the system
is not time-homogeneous; from onwards, it is time-homo-
geneous. Therefore, the infinite horizon problems can be broken
into two phases:

1) the initialization phase, and
2) the sliding window phase.

The initialization phase is for the first time steps, and the
sliding window phase is from onwards.

Now, an optimal communication strategy for the infi-
nite-horizon problem with the expected discounted distortion
criterion can be obtained by first obtaining the value function
and an optimal meta-strategy for the sliding window phase
and then obtaining an optimal meta-strategy for the sliding
window phase by treating it as a finite horizon problem. This is
explained in detail below.

Theorem 5.4: An optimal meta-strategy for the time-ho-
mogeneous infinite-horizon expected discounted distortion
problem can be determined as follows.

1) The sliding window phase.
The sliding window phase can be transformed into a
zero-delay time-homogeneous infinite-horizon expected
discounted distortion problem using the transformation of
Section V-B. Therefore, we can use Theorem 4.1 to find
the value function and a stationary meta-strategy
that is optimal for onwards. is given by the unique
fixed point of (34) and satisfies (35).

2) The initialization phase.
The initialization phase corresponds to a finite horizon
problem where there is no instantaneous distortion, and
only a final expected distortion corresponding to the value
function which was determined in the sliding window
phase, i.e., for , we have

(58a)

and for

(58b)

(58c)

(58d)

For the average distortion per unit time problem, it does not
matter what communication strategy is used in the initialization
phase. Since the sliding window phase is time-homogeneous,

we can use Theorem 4.2 to find an optimal infinite-horizon
meta-strategy for onwards, and use any policy for the
initialization phase.

VI. HIGHER-ORDER MARKOV SOURCES

In many applications the source statistics are higher-order
Markov rather than first-order Markov. Such applications can
be modeled by making the following modification to the model
of Section II-A:

M1') The source output is th order
Markov, i.e., for and , we have

This model was considered in [33, Sec. III-B] and it was
shown that

1) there is no loss of optimality in restricting attention to en-
coders of the form

2) the structure of the optimal receiver is the same as that of
the model of Section II-A.

In this section, we show how to obtain globally optimal com-
munication strategies for this model. The key idea is to trans-
form the problem into a first-order Markov source, in the same
manner as the finite-delay problem is transformed into a zero-
delay problem. For that matter, define the process

as follows:

.
(59)

Observe that is a first-order Markov
process. The structural results of [33] state that we can restrict
attention to encoders of the form

(60)

Let denote the class of all encoders at time of the form (60).
The channel and the receiver are the same as in the model

of Section II-A. Define a modified distortion function as
follows:

(61)

With these modifications we can formulate an optimization
problem similar to Problem 2.2. The finite horizon problem can
be solved in the same manner as Section III. For the infinite
horizon variation, we need to break the problem into two phases.

1) The initialization phase which lasts for the first steps.
2) The sliding window phase which starts from on-

wards.The infinite horizon problem for both the expected
discounted distortion and average distortion per unit time
criteria can be solved over these two phases along the lines
of the solution for the fixed-finite delay problem presented
in Section V-D.
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Fig. 3. The sequential ordering of the variables of the real time communication system for channels with memory. �� �� and � are refinements of stage �.

VII. CHANNELS WITH MEMORY

So far in this paper, we have assumed a memoryless channel.
In realistic scenarios, the channel may have memory because
of either changing physical environment (e.g., wireless fading
channel), or inter symbol interference, or a combination of both.
Such channels can be modeled as discrete channel with state
(see [50] and [51]). In this section we extend our methodology
for jointly optimal encoding, decoding and memory update for
channels with memory.

A. Problem Formulation

Consider the same problem as in Section II with one change.
Instead of assuming the channel to be memoryless, assume that
it has a finite state memory. The state of the belongs to a finite
set . The channel is described as

(62)

where denotes the channel function at time , which
belongs to denotes the channel noise at time , and
which belongs to denotes the channel state at time .
Assume that is a sequence of indepen-
dent random variables and the PMF of is . Also assume
that is independent of the source output

and the initial state of the channel. The
channel state is updated according to

(63)

where is the channel update function. Assume that the ini-
tial state of the channel has distribution .

The source, the encoder, the receiver, and the distortion
models are the same as in Section II-A. The sequential ordering
of the variables is shown in Fig. 3. We are interested in the
following optimization problem.

Problem 7.1: Consider the real-time communication system
of Section II-A with a channel with memory given by (62) and

(63). Choose a communication strategy that is op-
timal with respect to the performance criterion of (5), i.e.

(64)

where , , and are defined in Problem 2.1.

B. Agents’ Beliefs and Their Evolution

For this model, define information fields at the encoder and
the receiver as in Definitions 2.1 and 2.2. For ease of notation,
define as the state of the channel at time , i.e.

(65)

The beliefs of the encoder and the receiver are modified to
take the uncertainty of the channel state into account as follows.

Definition 7.1 (Encoder’s Beliefs): Let denote the en-
coder’s belief about the receiver’s observation and the state of
the channel at time , , . Then for

, and

(66)

Let denote the space of realizations of .

Definition 7.2 (Receiver’s Beliefs): Let denote the re-
ceiver’s belief about the encoder’s observations and the channel
state at time , , . Then for and

(67)

Let denote the space of realizations of .
Furthermore, let denote the receiver’s belief about the source
output at time instant , given by (14).

The beliefs of the encoder evolve in a manner similar to
Lemma 2.1.
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Lemma 7.1 (Evolution of the Encoder’s Beliefs): For each
stage , there exist deterministic functions and such that

This is proved in Appendix C.

C. Structural Results

In this section we derive qualitative properties of optimal en-
coders (respectively, decoders) that are true for any arbitrary but
fixed decoding and memory update strategies (respectively, en-
coding and memory update strategies).

Theorem 7.1: Consider Problem 7.1 with arbitrary but fixed
decoding and memory update strategies,
and , respectively. Then there is no loss of
optimality in restricting attention to encoding rules of the form

(68)

We follow the methodology of the alternative proof of the
structural results in [33].

Proof: Look at the problem from the encoder’s point of
view. The process is a Markov process in-
dependent of the noise in the forward channel. This fact together
with the result of Lemma 7.1 imply that the process ,

is a controlled Markov process with control ac-
tion , i.e., for any , , ,
and any choice of

where follows from the Markov property of the source
and Lemma 7.1. Thus, for a fixed memory update strategy

, , is a controlled Markov process
with control action . Furthermore, the conditional expected
instantaneous cost can be written as

where follows from Lemma 7.1. Thus, the total expected
cost can be written as

(69)

Hence, from the encoder’s point of view, ,
is a perfectly observed controlled Markov

process with control action and an instantaneous cost
(recall that is fixed). From Markov de-

cision theory [34, Chapter 6], we know that there is no loss of
optimality in restricting attention to encoding rules of the form
(68).

Theorem 7.2: Consider Problem 7.1 for any arbi-
trary but fixed encoding and memory update strategies,

and , respectively.
Then there is no loss of optimality in restricting attention to
decoding rules of the form

(70)

Proof: Look at the problem from the decoder’s point of
view. Since decoding is a filtering problem, minimizing the total
distortion is equivalent to minimizing the condi-

tional expected instantaneous distortion
for each time . This conditional expected instantaneous distor-
tion can be written as

and is minimized by the decoding rule given in (70).
We can use the structural results of Theorem 7.1 to choose

encoding rules from a space of functions that is not changing
with time. Let denote the space of functions from to

, and denote ( -times). Then, the result of
Theorem 7.1 implies the following.

Corollary 7.1: For Problem 7.1, the optimal performance
can be determined by

(71)
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Consequently, Problem 7.1 can be reformulated in a manner
similar to the reformulation presented in Section II-H.

Problem 7.2: Under the assumptions of Problem 7.1 choose
a communication strategy belonging to

that is optimal with respect to the performance crite-
rion of (71).

D. Global Optimization

We use the structural results of Section VII-C to identify
information states to obtain a sequential decomposition of
Problem 7.2. This decomposition determines a globally optimal
communication strategy for Problem 7.2 (and consequently
for Problem 7.1). We follow the philosophy and approach of
Sections III and IV. For that matter, we define the following.

Definition 7.3: Define and as follows:

(72)

Let denote the space of probability measures on .
Then takes values in .

These probability measures are related to one another in a
manner similar to Lemma 3.1. Consequently, Problem 7.2 can
be reformulated in the same manner as Problem 2.2; further-
more, a sequential decomposition similar to the nested opti-
mality equations of Theorem 3.1 can be obtained. This sequen-
tial decomposition can be extended to the infinite horizon along
the lines of the results of Section IV. All these results can be
derived along the lines of the analysis in Sections III and IV, so
we omit the details.

VIII. COMPUTATIONAL ISSUES

As mentioned earlier, all the variations of real-time commu-
nication problems considered in this paper are decentralized sto-
chastic optimization problems. Consequently, they cannot be
solved by classical Markov decision theory. However, the re-
sults presented in this paper show that an appropriate choice
of information states can transform the decentralized stochastic
optimization problem into a centralized deterministic optimiza-
tion problem; albeit one where the objective is to choose an
optimal function for each realization of the information state.
Contrast this to the problems with classical information struc-
ture (which include Markov decision problems) where the ob-
jective is to choose an optimal action for each realization of
the information state. This difference is the key reason for the
difficulty in numerically solving these problems. Numerically
solving decentralized stochastic control problems is known to
be NEXP complete [52], i.e., it can be proved that, in general,
these problems cannot be solved in polynomial time. The re-
sult of this paper shows that we can write sufficient conditions
for finding optimal meta-strategies (the nested optimality con-
ditions of Theorem 3.1 and the fixed point equations of Theo-
rems 4.1 and 4.2) which are similar in structure to the sufficient
conditions for finding optimal strategies in POMDPs (partially
observable Markov decision processes). The information state
in our decomposition is a probability vector on a finite dimen-
sional real vector; thus it is the same as an information state for
POMDPs where the unobserved state is a finite dimensional real
vector. The action space in our decomposition is an uncountable

function space; thus it is similar to the action space of POMDPs
with uncountable (Borelian) action spaces. Hence, one of the
various approximation techniques for POMDPs [53]–[57] could
be used to obtain an approximate numerical solution of the se-
quential decomposition presented in this paper. It could also be
possible to break the curse of dimensionality by using random-
ization, or exploiting special structure, or taking advantage of
the “knowledge capital” as explained in [58], [59].

When we move to the more general models of fixed-finite
delay, higher-order Markov sources, or channels with memory,
the above remarks remain valid: in the corresponding sequential
decomposition the information state is still a probability mea-
sure on finite dimensional real vector and the action space is
still an uncountable function space. However, all of these more
general modeling assumptions increase the complexity of the
solution because of the following two reasons.

1) The structure of optimal encoders has higher complexity,
e.g., in problems with fixed-finite delay we can only restrict
to encoders of the form

as compared to problems with zero-delay where we can
restrict to

2) The information state is a probability measure on a higher
dimensional space, e.g., in problems with fixed-finite delay
, the information state belongs to as com-

pared to problems with zero-delay where the information
state belongs to .

Both these factors make it computationally more difficult to
solve the sufficient conditions for optimality derived in this
paper.

It is important to remember that the high computational com-
plexity is of the off-line computation of the optimal solution;
the on-line implementation of the optimal solution is relatively
straightforward.

IX. COMPARISON WITH THE PHILOSOPHY OF INFORMATION

THEORY AND CODING THEORY

This paper takes a drastically different approach to the de-
sign of a communication system than the traditional approach
taken in information theory and coding theory. In this section
we explain the reason for taking this different approach; we
also explain the step that needs to be added to our approach
in order to provide a complete solution methodology to deter-
mining good communication strategies for real-time communi-
cation systems.

When designing a communication system, we are interested
in communication strategies that perform nearly optimally and
are easy to implement. When there is no restriction on communi-
cation delay, information theory and coding theory break down
the design of a communication system into two steps:

1) first, information theory is used to determine the funda-
mental limits of performance of a communication system;

2) then, coding theory investigates codes that are easy to im-
plement and perform close to the fundamental performance
limits determined by information theory.
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However, when small communication delay is required, the
above approach fails because the information theoretic bounds
are, in general, not tight for small delays. Therefore, funda-
mental limits of performance for small delays are unknown.3

Consequently, benchmarks for performance evaluation of com-
munication strategies do not exist, and it is difficult to determine
if particular family of codes performs close to optimal.

Given the current state of knowledge, one can take two ap-
proaches to the design of real-time communication systems: ei-
ther determine tight bounds on optimal performance (and then
find codes that come close to those bounds), or use some other
technique to find good codes. In this paper we follow the second
approach. We formulate the real-time communication problem
as a decentralized stochastic optimization problem and develop
a methodology to systematically search for an optimal com-
munication strategy. This methodology exponentially simplifies
the search for an optimal solution. In spite of this simplifica-
tion, numerically solving the resultant optimality equations is
a formidable task. We are not aware, at this point, of good ap-
proximation techniques for solving the optimality equations of
Sections III and IV. (As pointed out in Section VIII, the ap-
proximation techniques for POMDP are an obvious candidate,
but we do not know if it can be proved that they provide good
approximations of the optimality equations of Sections III and
IV). If such approximation techniques are discovered, only then
would the results of this paper along with those techniques pro-
vide a complete methodology to determining communication
strategies that perform well for small delays.

X. CONCLUSION

Real-time communication is a notoriously hard problem: the
difficulties are both conceptual and computational. In this paper
we present a conceptual framework to study real-time commu-
nication. This framework is based on the notions of information
structure and information state, and provides a systematic way
of searching for an optimal real-time communication strategy.
The framework is fairly general: we show that it is applicable to
finite and infinite horizon zero-delay communication systems
and can be extended to fixed-finite delay communication sys-
tems, to systems where the source statistics are higher-order
Markov, and to systems where the channels have memory. Thus,
this framework provides a unified method of investigating dif-
ferent variations of real-time communication.

The conceptual results presented in this paper exponentially
simplify the computational complexity of the problem. In spite
of this simplification, numerically determining globally optimal
communication strategies is a formidable task. Furthermore,
finding computationally efficient algorithms to approximately
solve the optimality equations of this paper is a difficult un-
solved problem.

The approach taken in this paper is similar in spirit to Wit-
senhausen’s standard form [35]. In our solution, we exploit the
structural results of [33] to identify information states that be-
long to a space that does not increase with time. This is in

3Recently, nonasymptotic upper and lower bounds for channel coding
have been developed [60], [61]. However, corresponding bounds for joint
source–channel coding remain unknown.

contrast to the information states in [35] which belong to a
space that increases with time. This feature allows us to ex-
tend our methodology to infinite horizon problem; in contrast,
the standard form is applicable to only finite horizon problems.
It is worth noting that for infinite horizon problems, stationary
(time-invariant) communication strategies are not necessarily
optimal.

The methodology presented in this paper can be used, in prin-
ciple, for arbitrary values of acceptable communication delay.
However, the increase in computational complexity with the in-
crease in delay implies that the methodology presented in this
paper can only be used for applications where the acceptable
delay is small. Information theory, on the other hand, provides
tight performance bounds for applications where the accept-
able communication delay is large. Finding a methodology for
communication problems where the acceptable delay is medium
(i.e., the delay is large enough to make the framework presented
in this paper computationally intractable, but small enough so
that the asymptotic laws of probability are not applicable) re-
mains a challenging open problem.

APPENDIX A
RELATION BETWEEN THE BELIEFS

Proof of Lemma 2.1: We prove the three results separately.
1) Consider any ,

, . Then

(73)

where follows from the sequential order in which the
system variables are generated. Observe that the depen-
dence of on is through the dependence of
and the noise statistics on .

2) Consider any , , and
. Recall that and . Then

(74)

where follows from the sequential order in which the
system variables are generated.
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3) Consider any ,
, and . Then

(75)

where follows from the sequential order in which the
system variables are generated.

APPENDIX B
RELATION BETWEEN INFORMATION STATES

Proof of Lemma 3.1: We prove the three results separately.
1) Consider any , , and .

A component of is given by

(76)

where follows from the sequential order in which the
system variables are generated.

2) Consider , , and .
Then a component of is given by

(77)

where follows from the sequential order in which the
system variables are generated.

3) Consider , , and .
Then a component of is given by

(78)

where follows from the sequential order in which the
system variables are generated.

4) Consider . Then

(79)

Now consider

(80)
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Substituting the result of (80) in (79) we get

(81)

Observe that (76) and (78) imply that the transformations
and are linear in the sense that if ,
and , then

(82)

and similar relation holds for .

APPENDIX C
RELATION BETWEEN THE BELIEFS FOR

CHANNELS WITH MEMORY

Proof of Lemma 7.1: We prove the three results separately.
1) Consider any ,

, , and . Then

(83)

where follows from the sequential order in which the
system variables are generated.

2) Consider any , , , and
. Recall that , , and

. Then

(84)

where follows from the sequential order in which the
system variables are generated.

3) Consider any ,
, , and . Recall that

. Then

(85)

where follows from the sequential order in which the
system variables are generated.
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