
418 IEEE TRANSACTIONS ON  AUTOMATIC CONTROL, VOL. AC-30, NO. 5, MAY 1985 

Distributed  Estimation  Algorithms  for 
Nonlinear Systems 

DAVID  A.  CASTANON AND DEMOSTHENIS  TENEKETZIS 

Abstract-In this paper, we consider the problem of combining the 
local conditional distributions of a random variable  which  have  been 
generated  by local observers having access to their  private information. 
Sufficient statistics for the local distributions are communicated to a 
coordinator,  who attempts to reconstruct the global centralized distribu- 
tion using only the communicated statistics. We obtain a distributed 
processing algorithm which recovers exactly the centralized conditional 
distribution. The results can be applied in designing distributed hypothe- 
sis-testing algorithms for event-driven systems. 

C 
I. INTRODUC~ON 

ONSIDER the following  estimation  problem. The state 
trajectory of  a  random  process is observed by K distinct 

observers,  using noisecormpted observations.  Each  observer 
processes his own observation  history to obtain the local condi- 
tional distribution of  the state as a  function of time.  Assume that 
sufficient statistics representing  each local conditional distribution 
are communicated to a coordinator at a  central  location at  each 
point  in  time. The coordinator’s  estimation  problem  consists  of 
constructing  the  overall  conditional distribution of the state, 
conditioned  on  knowing all of the observations,  while  using  only 
the sufficient statistics communicated to  him.  The above  estima- 
tion structure is illustrated in Fig. 1. 

When  the state process is a  Gauss-Markov  process,  and  the 
local observations are linear measurements of the state corrupted 
by the noise, the  solution to the  coordinator’s  problem  has  been 
obtained  by  many  authors,  notably  Speyer [l], Chong 121, and 
Willsky et al. [3]. In this case, the sufficient statistic is provided 
by the local conditional  mean  and  covariance. The results of [l] 
and [2] show that the  centralized  conditional  mean  and  covariance 
can  be  obtained  using linear operations  on  the local estimates  and 
covariances. The results of [3] extend  these results to consider 
problems in optimal  smoothing, as well as problems  where  the 
local models  used in producing local estimates differ from  the true 
global  model  available to  the coordinator. 

In this paper,  we  extend  the results of [1]-[3] to include  general 
Markov stochastic processes. A major  assumption in our results is 
that all agents  have  common  knowledge of the apriori statistics of 
the  uncertainties in the  system. We deal  both  with  discrete-time 
and  continuous-time  Markov  processes. As an introduction,  we 
derive the solution of the  coordinator’s  problem for discrete-time 
finite-state Markov  processes  using  Bayes’ rule. The structure of 
the  coordinator’s  solution is a  generalization of the results of [2] to 
finite-state Markov  processes. We then  extend  these results for the 
problem of estimating  a  continuous-time  Markov  process  ob- 
served through additive  white noise. We use  recent results in 
nonlinear filtering [4], [5] to characterize  the  evolution of the 
local and  the  centralized  conditional  probability densities of  thp 
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state. Based  on  the  solution  structure for the  discrete-time case, 
we develop the equations for the optimal  coordination  algorithm. 

The results for the  continuous-time  coordination  problem are 
illustrated for the  problem  of  designing  optimal  hierarchical 
estimation  and  parameter  estimation  algorithms for a class of 
event-driven  systems.  These  algorithms  provide  the  basis for 
designing  distributed  hypothesis testing algorithms  which perform 
as well as centralized  algorithms. 

The rest of the  paper is organized as follows.  In  Section E, we 
introduce  and solve the  discrete-time  formulation of the coordina- 
tor’s problem; Theorem 1 in that section  presents the solution to 
the  coordinator’s  problem. In Section ID, we introduce  the 
continuous  time  version  of  the  coordinator’s  problem,  and  we 
solve  it in Theorem 2. Section N illustrates the  applications  of the 
results of  Section III to the  problem of parameter  estimation. 
Section V discusses  the possibility of  periodic or asynchronous 
implementation  of  the  coordinator’s  algorithms.  Section VI 
summarizes the results and indicates directions of future research. 
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II. A MOTIVATING EXAMPLE: FINITE-STATE  DISCRETE-TIME 
PROBLEMS 

Consider  the  diagram  of  Fig. 1. Assume that the state process is 
the finite-state hybrid  process zf, evolving  in  discrete  time,  where 
zI is a  member  of  a finite space S = (1, * -, N ) .  Denote  the 
transition probability distribution of zI as 

Pkr+ I ;  zr) W r +  1 I Zr). (2-1) 

There  are K local agents  taking  observations  of  the state 
process. The observations of agent i at stage t are measurements v’; 
of z, through  memoryless  channels  with  values in a finite space Si, 
described  by  the transition probability 

In order  to properly  define  the  estimation  problem, we  must 
establish the  relationship  bptwen  the different observation  chan- 
nels. Let (Q, F, P)  be the underlying  probability  space for the 
random  sequences z,, v’t, i = 1, - - a ,  K ,  t = 0, * - - , T. We  make 
the  following  assumption. 

1) Under P ,  the  memoryless  channels  of (2-2) are mutually 
independent. 

Now,  consider  the  estimation  problem  of  each local agent. The 
purpose  of  each local agent  is to produce  the  conditional 
distribution of zIr given all of  the  past  observations y’o, * * , A. 
Define  the  notation as 

Yf={yb,  * . * ,y f }  

Y,={Yf,  i = l ,  - - a ,  K } .  

Assumption 1) implies that the  random  variables y: , , fl are 
conditionally  independent  given z,. That is, 

i= 1 

Furthermore, the  memoryless  nature of the  channels  implies 
that 

P( ~f 1 zr, ~ f -  1’ * 9 Y$  =p( ~f I zr). (2-4) 

Then, agent i’s problem is solved  recursively  using  Bayes’  rule  as 
171 

2, ES 

where P(z,J x) denotes  the distribution P(z, = zI K) throughout 
this paper. The derivation of these  equations  is  standard,  and  can 
be found in [7] or [SI. 

The coordinator’s  problem  can be described as follows.  At  each 
t ,  each agent i communicates the distribution P(ztl z) for all z to 
the  coordinator. The coordinator  must  use  the  information  in  these 
communications to estimate  the state zr. 

Let u;(z,) be  the  communications  from  agent i at time t ,  and 

U’ I -  r: {ub, . - - ,  uf}; u, P {u;, e . . ,  Uf}. 

The coordinator’s  problem is to  develop  an  algorithm for 
obtaining P(z,l UI). Rather  than  deriving P(zll U,), we will 
establish that P(ZrJ Y,), the conditional  probability distribution 
assuming that all measurements  were  available to the  coordinator, 
can be obtained as a  function of Ut. Since U, is a  function of Y, by 
definition, this establishes that P(zrl Yr) = P(zrl Ur). We call the 
map from U, to P(Zrl Y,) the coordinator’s  algorithm. This 
algorithm is described in the  following  theorem. 

Theorem 1: Under  assumption l), the  coordinator  can  recon- 

struct the  centralized  conditional  probability distribution using  the 
recursive  algorithm 

K 

where 
K 

Proof: 

Z,ES 

/ K  \ 

where kf(YI) is a  normalization  constant,  using  assumption 1). 
From  the expression for the  optimal local estimates in (2-5), we 
obtain 

(2-10) 

Combining (2-9) and (2-10) establishes the  theorem,  where  the 
normalization  constants  have  been explicity evaluated. Note that 
(2-7) is a  function  of VI- I ;  thus, (2-6) expresses P(zIl Yr) as a 
function  of Ut. 

The structure  of  the  coordinator’s  solution in Theorem 1 is 
interesting. Basically, the coordinator  accounts for the  presence of 
correlations  between  the local estimators,  due to the fact that they 
all observe  the  same state process,  by  compensating  the  product of 
the local conditional densities with  the ratio of  the  centralized 
conditional  predicted  density  and  the  product  of  the local 
conditional  predicted densities. Formally, 

i= I i =  I 

where Kr is a proportionality constant to account for the 
normalization  of the probability densities. 

The results of Theorem  1  can be generalized to arbitrary 
discrete-time  Markov  processes as long as an  independence 
assumption  equivalent to assumption 1) is  included, and enough 
regularity  assumptions are made to guarantee  the  existence of the 
conditional distributions. Rather  than  developing  these  extensions 
here, we will focus  the rest of this paper  on distributed estimation 
algorithms for continuous-time  Markov  processes. 

III. THE CONTINUOUS-TIME  COORDINATOR’S PROBLEM 

Assume that the state process  can be described  by  the stochastic 
differential equation 

& =fU, x,, P3dt + 4 ,  xr, p3dw (3-1) 

where wr is a  standard  Brownian  motion  with  values in R”,  and 
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where pr is an element of a finite set S = { 1, - e ,  N )  whose 
transitions are described in  terms of the infinitesimal rates 

P { ~ , + ~ = i l p , = j ,  x,=x}=X,i(x)A+O(A). (3-2) 

Under appropriate assumptions, (3-1) and (3-2) define the 
evolution of a  strong Markov process (x,, p,) = z,  with values in 
R" x S. For our purposes, we assume the  following. 

2) a(t, x, p), f ( t ,  x, p). and hj,{x) are sufficiently regular to 
guarantee the existence of a  strong Markov process Z, = (x,, P,) 
which  is Feller continuous for any XO, po [9]. 

3) The initial  distribution of zo is known and  independent of w. 
4) &(x) 2 E > 0 for all i, j .  
Suppose that each local  station i = 1,  * - , K has measurements 

or the state process zt described by the  stochastic  differential 
equation 

dyf=h'(t, x,, p,)dt+duf. (3-3) 

We assume  additionally  the following. 
5) The processes u i  are mutually independent standard Brow- 

nian motions which are  also independent of w and zo. 
6) The functions f, u, and h' are smooth  enough so that 

conditional  probability  densities of zt given  the  local information 
A, 0 < s < t exist for each station i .  

Conditions which guarentee  the existence and smoothness of 
the conditional  probability density function can be found  in [4] and 
[5]. Typically,  the functions hi will  be  assumed to be  uniformly 
bounded  with  'sounded Y derivatives. 

Under these assumptions, the  solution to each agent's problem 
can be qbtained using the equations for optimal nonlinear filtering 
[4], [5] .  As before,  denote the information available at time f as 

r;= {yf, Ossst} 

Y, = { Yj, * -, Y f ) .  

Define A,  as  the  differential operator on functions  on R" x S 
into R as 

of qf(z) or a sufficient statistic which enables him to reconstruct 
4x2) exactly. As in the previous section,  our objective is to 
develop an algorithm whereby  the coordinator can reconstruct 
P(z, E A I Y,) from the  histories d(z), i = 1, - e ,  K, S < t. 
Denote  the coordinator's received message as 

af(z) = kfqj(z) 

where k', is  the  scale constant at time t. 
The solution  of  the coordinator's problem is summarized in 

Theorem 2. 
Theorem 2: Under assumptions 2)-6), the coordinator can 

reconstruct  the centralized conditional  probability  distribution 
recursively as 

where 

and C, satisfies 

X 

i =  1 

n a 
&J(x, P )  = x f;:(t, x, P )  &. u(x, P )  

CO(Z) = Po(z) - 
i =  I where P&) is  the initial density of 20. 

1 "  * 
Pro03 Since the  Brownian  motions ui are mutually indepen- 

dent, by assumption 5) ,  the Zakai equation for the unnormalized a 2  
+- x a& x, P )  - 2 i = l  , = I  axiaxj conditional density qdz) is given by 4x9 P )  

X 

+ ippi(x)(u(x, o ~(x, PI) (34) 
i= I 

where a(t, x, p) = a(t, x, p)oT(t, x, p).  
The solution to each  local agent's problem  is described by 

Zakai's equation [ 101 for  the unnormalized conditional density of 
the state z, given the observations E.  Let qf(z) denote this density 
for  the local station i. Then 

dqf(z)=A:(z)qf(z)dt+hj(~)~gf(z))dyf (3-5) 

where Afis the  formal adjoint of the operator A, defined in (34). 
The differentials used  in (3-5) are the  Ito differentials; in 
Stratonovich form [ 111, using symmetric differentials, (3-5) 
becomes 

dqqf(2) = (A t(z)  - '/2h qfT(z)h f(z))qqf(z)dt 

+ h;=(z)q~(z)dyi, ( 3 4 )  

where we have adopted the notation d of [ll] to indicate  the 
Stratonovich symmetric differential. 

We formulate the coordinator's problem as  follows. At each 
time t ,  the  coordinator  receives,  from each  location i ,  a multiple 

Then, using  the  calculus of Stratonovich differentials, 

(3-9) 

(3-10) 

(3-1 1) 
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Hence,  using (3-6) and (3-9), 

Equation (3-12) defines C,(z) as a  deterministic  equation,  driven 
by q&z) and qr(z). Substituting (3-10) with (3-12) and  multiplying 
the  numerator  and  denominator  of  the first sum in (3-12) by hj 
results in (3-7). 

A direct analogy between Theorems 1 and 2 can be dralvn as 
follows: 

A :4:(2) 

correspond to predictors in the  discrete-time case, as in  the 
heuristic formula 

Furthermore, 

-In K, (3-15) 

where KI is a  constant  factor  due to the  scaling in the definition of 
C,(z). Hence, 

which is the ratio of  the  product  of  the  decentralized  predictors to 
the  centralized  predictor. Thus, C, is the  same  compensator as 
was  used in Theorem 1. 

IV. APPJJCATION TO DISTRIBUTED PARAMETER EXMATION 

In this section, we  apply  the results of Section Ill to the  problem 
of  parameter  estimation  of  continuous-time  hybrid  systems. 

Assume that at time t = 0 an  event H occurs  where 

and P(H = i)(i = 1, 2, . . a ,  N )  is known a priori. The event H 
determines  the  parameters of evolution of a  Gauss-Markov 
continuous-time R-valued' process  described  by 

dx, =A(H)x,dr + b(H)dw,. (4-2) 

This process  is  being  observed  by K independent stations whose 
measurements are described by 

dyf= Cf(H)x,dr + dvf, i =  1 ,  2 ,  . * ,  K .  (4-3) 

systems. The results can be easily generalized to R"-valued Gauss-Markov 
For  cranty of the presentation of results,  we  restrict  attention to scalar 

processes. 

The assumptions  of  Section III are assumed to hold.  In addition, 

7) x. is a  Gaussian  random  variable  conditioned-on H ,  with 

8) The initial probability distribution of H is  given  by Po(H), 

The state of  the  hybrid  system at any  time t is 

we  assume  the  following. 

mean %(H) and  covariance u0(H)*. 

and is positive for all H. 

The local conditional  density  of z, given  the  past  measurements 
can be summarized  by the finite dimensional statistic 

I I 

where 

is the  conditional  probability that H = k(k = 1,2, . - - , N )  given 
E and 

The local conditional  density  of 2, given f l  is given by 

where 

U ~ ( H ) ~ = E { ( X , - ~ ~ ( H ) ) ~ ~  Yj, H )  (4-9) 

can be computed a priori from the  parameters of the  problem,  and 

P f ( H )  = & o P ~ ( H )  (4-10) x L ; (kPO(4 
k 

where LI(H) is the  likelihood of event H satisfying 

dLf(H)=Lj(H)Cf(H)2f(H)dy~. (4-1 1) 

A simple  derivation  of  these  equations is provided in [ 121. 
The conditional  density  of  the  hybrid state z, given Y, (i.e., the 

centralized  conditional  density)  has  a sufficient statistic defined  by 

SI = (4-  12) 
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where 

P,(f)=P(H=lI Y,) (4- 13) 

ft(l)=E{x,I Y,, h = l } .  (4-14) 

The  coordinator’s task is  to attempt to reconstruct Sf based on 
the past reports g((i = 1,2,  - * * , K ) ,  s 5 t ,  that he receives from 
the local observation stations. 

The system of (4-2), (4-3) satisfies all the assumptions of 
Section III. Thus, according to Theorem 2, the coordinator can 
reconstruct  the centralized conditional  density of the  state zr based 
on  the reports Si that  he receives from the  local observation 
stations. The problem of parameter estimation consists of con- 
structing the conditional  distribution P,(H) over the  set of 
possible parameters H .  The coordinator’s optimal algorithm is 
given below. 

Theorem 3: The conditional  probabilities P,(H) of the events 
are given by 

where 

(4-  15) 

(4.16) 

(4-22) 

The conditional  means x,(H) are given by 

and 

- I  
(4-24) 

Proofi See the Appendix. 
Equations (4-15)-(4-24) accept as input  the  communications 

P;(H), $(H), using the a priori-determined parameters 
to obtain the compensator C,(H, x) defined in Theorem 2. A 
direct  derivation of Theorem 3 is  possible,  without  using  the 
results of Theorem 2. Essentially, one defines 

K 

(4-25) 
and f i ( t ,  H ) ,  f i ( t ,  H ) ,  &(t, H )  are determined by the following 
equations: A direct computation establishes 

d 1 1 l K 1  CAH, x) =cfdt,  H)e-1/2(xr-f2(tr H))’/Ji(t, H )  (4-26) - .  -= 
dt M Y  H )  -2A(H)  fW)- 2b2(H) f3(t,) 1 = l  a:(H)2 where 

K i -1  

(4- 17) 

(4-  18) 
K - I  

and fl(t, H )  defined appropriately.  Then, differentiation of (4-27) 
d 
-f2(f3 H ) =  A(H)-2b2(H)f3(t ,  H )  x - - dt i = l  j = l  u{(H)2aj(H)2 general result of Theorem 2 to obtain the  specialized results of 

Theorem 3. Notice also that Theorem 3 reduces to the  distributed 
estimation results  in [l] and [3] when  only  one hypothesis is 
considered. 

c K i -1  1  1 and (4-28) yields (4-17) and (4-19). However, we have  used  the 

i=  1 
V. COMMUMCAITON REQWREMENTS 

The algorithms described in Sections 11-lV provide a coordina- 
&(El) 

-b2(H) 2 - tion algorithm for obtaining the  centralized conditional dishibu- 
i= I q m 2  tion of the state, given the  past  histories of the  local  conditional 

distributions of  the state. In general, these algorithms require that 
sufficient statistics for the local conditional  distributions of the 

h(t, (4-19) state be transmitted at every possible time instant. These statistics may  be  infinite dimensional, thus requiring more communication 
than direct transmission of the  finite-dimensional unprocessed 
observations. 

f2(0, H )  =Xo(H) (4-20) There  are classes of systems for which  the  communication 
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requirements can be significantly reduced. For example, the 
results in [l] and [3] imply that, for linear Gaussian systems, the 
computation of the dynamic compensator required in  the coordi- 
nator’s algorithm can be divided into local dynamic compensa- 
tors. In essence, each local station can compute a sufficient 
statistic for its contribution to the coordinator’s dynamic compen- 
sator. Hence, the reconstruction of the centralized conditional 
distribution can be accomplished using  only the communications 
at the most recent time, thereby reducing the required communi- 
cations to the times when  a centralized conditional distribution is 
required. 

Unfortunately, the coordinator’s algorithms in  Sections II-IV 
cannot be separated into a memoryless combination of locally 
computed processes. This is illustrated clearly in Theorem 3 
where  the computation off,(t, H) requires the computation of 

This term involves cross couplings between the information 
available to each local station at each point  in time; hence, its 
computation cannot be divided into the product  of integrals 
computed at the local stations. Note  that the linearity of (4-19) 
would permit the computation 0ff2(t, H) as a linear combination 
of locally computedA(t, H) as 

where 

and that f3(t, H) would be computable at each local station, 
assuming that the global statistics of the processes were known at 
the stations. Hence, the only term which requires the continuous 
communication of information is fl(t, H ) .  

Theorem 3 provides the basis for developing a coordination 
algorithm when communications are limited to periodic intervals 
with period At.  Using (5-1)-(5-3), the values of&(t, H) andf3(tr 
H) can be computed exactly at each instant of communication. 
Then, the computation offl@, H) can be approximated, for t = 
MAt.  as 

I= I i = l  j = l  

-f$,(H))Cf2(fAt, H )  -fjAr(H))At.  (54) 

Although the algorithm does not reconstruct the centralized 

conditional distribution exactly, the error introduced by (6-4) will 
be of order O(AtL’Z), the modulus of  continuity of xj. 

One particular case where the centralized conditional probabil- 
ity can be computed exactly using  only  local communications at  a 
single time instant consists of the class of systems in Section W 
when  the driving noise intensity b(H) is zero for each event H. In 
this case, 

(5-5) 

Equation (5-5) does not require any dynamic integration of data; 
hence, the centralized conditional distribution can be computed 
using only  a single time communication, consisting of the 
sufficient statistics Sj, because the equation for fi(t, H) is now 

&(t, H) =X()eA(H)l. (5-6) 

Similar results can be obtained for the general jump-diffusion 
model of Section 111 when the driving noise  intensity u(t, x ,  p )  = 
0 and the jump rates X,(x) = 0 for all i # j .  In this case, the 
centralized conditional probability of zr can be obtained  using  only 
the communications from the local stations at  time t. 

VI. CONCLUSIONS 

The algorithms presented in  Sections II and 111 solve the 
problem of data fusion for nonlinear systems under the conditions 
that, at each measurement time, the local stations compute their 
local conditional distribution and communicate a sufficient statis- 
tic to the coordination station. Under the conditions of  Sections II 
and III, the coordination station can reconstruct exactly the 
centralized conditional distribution of the state process. The 
results in Section IV illustrate how, for a particular class of 
nonlinear Markov processes, finitedimensional sufficient statis- 
tics can be found for the local conditional distributions, and  how 
the results of Section III yield the centralized conditional 
distribution from these local sufficient statistics. These results 
represent a direct generalization of the results in [1]-[3] to  non- 
Gaussian-Markov processes. 

In most practical applications, the rate of communications 
between local stations and the coordinator is substantially lower 
than the measurement rate of the local stations. In Section V, we 
investigated the possibility of designing coordination algorithms 
which require less frequent communications. Under communica- 
tion restrictions, the exact centralized conditional distribution can 
be obtained only under severe restrictions in the evolution of the 
process under observation. Nevertheless, accurate approxima- 
tions to this conditional distribution can be obtained using periodic 
communications. These approximations can serve as the basis for 
implementable algorithms, provided that approximate fmite- 
dimensional sufficient statistics can be determined. 

APPENDIX 
PROOF OF THEOREM 3 

From Theorem 2, we  have 

where 

and C,(x, El) satisfies (3-7). For the  system of (4-2), (34) 
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becomes and 

with initial conditions 

(A-12) 
a 

d K ;i;; q)(x, H) Combining (4-19),  (4-20) and (A-IO)-(A-12) yields (4-23). 
+ b2(H) G ( X ,  H) . 

qjor, m The final result which must be established in Theorem 3 is (4- 
i= 1 15) and (4-16). From standard filtering results (e.g., [SI), 

(‘4-4) 
Substituting (A-2) into (A+ and differentiating gives PSH) = - J2.1r D u f ( m  . exp [ ( x - ~ f ( ~ ~ 2 , u f ( ~ 2 ]  

64-51 

Equation (A-5) admits a solution of the form 

cf(x, H) = f l ( t ,  H)e-(x-f2(ffi?/2f3(ffi. (Ad)  

Substituting (A-6) into (A-5) and grouping like powers of (x  - 
f2(t ,  H) )  yields (4-17), (4-19), and (4-21). Matching the initial 
condition for Co(x, H) yields (4-18), (4-20), and (4-22). 

Now, consider the equation for oj(W2: 

Similarly, straightforward filtering arguments yield 

with initial conditions 

u(H)2=u;(H)2=uo(H)2. (A-9) 

Combining (4-17) and (4-18) with (Ad)-(A-8) yields (4-24). 
Similarly, consider the equation for C$(H)-~%(H): 

(A- 10) 

Hence, cancelling the x-dependent term results in 

where D is chosen such that X:, P,(H;) = 1. Equations (4-15) 
and (4-16) are equivalent to (A.15). 
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