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Abstract—We consider a remote estimation problem with an en-
ergy harvesting sensor and a remote estimator. The sensor ob-
serves the state of a discrete-time source which may be a finite
state Markov chain or a multidimensional linear Gaussian system.
It harvests energy from its environment (say, for example, through
a solar cell) and uses this energy for the purpose of communicating
with the estimator. Due to randomness of the energy available for
communication, the sensor may not be able to communicate all
of the time. The sensor may also want to save its energy for fu-
ture communications. The estimator relies on messages communi-
cated by the sensor to produce real-time estimates of the source
state. We consider the problem of finding a communication sched-
uling strategy for the sensor and an estimation strategy for the es-
timator that jointly minimizes the expected sum of communication
and distortion costs over a finite time horizon. Our goal of joint
optimization leads to a decentralized decision-making problem. By
viewing the problem from the estimator’s perspective, we obtain a
dynamic programming characterization for the decentralized de-
cision-making problem that involves optimization over functions.
Under some symmetry assumptions on the source statistics and the
distortionmetric, we show that an optimal communication strategy
is described by easily computable thresholds and that the optimal
estimate is a simple function of the most recently received sensor
observation.

Index Terms—Decentralized decision-making, energy har-
vesting, Markov decision processes, remote estimation.

I. INTRODUCTION

M ANY SYSTEMS for information collection, such as
sensor networks and environment monitoring net-

works, consist of several network nodes that can observe their
environment and communicate with other nodes in the network.
Such nodes are typically capable of making decisions, that is,
they can use the information they have collected from the envi-
ronment or from other nodes to decide when to make the next
observation or when to communicate or how to estimate some
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state variable of the environment. These decisions are usually
made in a decentralized way, that is, different nodes make
decisions based on different information. Further, such deci-
sions must be made under resource constraints. For example,
a wireless node in the network must decide when to commu-
nicate under the constraint that it has a limited battery life. In
this paper, we study one such decentralized decision-making
problem under energy constraints.
We consider a setup where one sensor is observing an envi-

ronmental process of interest which must be communicated to a
remote estimator. The estimator needs to produce estimates of
the state of the environmental process in real time. We assume
that communication from the sensor to the estimator is energy
consuming. The sensor is assumed to be harvesting energy from
the environment (for example, by using a solar cell). Thus, the
amount of energy available at the sensor is a random process.
Given the limited and random availability of energy, the sensor
has to decide when to communicate with the estimator. Since
the sensor may not communicate at all times, the estimator has
to decide how to estimate the state of the environmental process.
Our goal is to study the effects of randomness of energy supply
on the nature of optimal communication scheduling and estima-
tion strategies.
Communication problems with energy harvesting transmit-

ters have been studied recently (see [1], [2] and references
therein). In these problems, the goal is to vary the transmission
rate/power according to the availability of energy in order to
maximize throughput and/or to minimize transmission time. In
our problem, on the other hand, the goal is to jointly optimize
the communication scheduling and the estimation strategies
in order to minimize an accumulated communication and
estimation cost. Problems of communication scheduling and
estimation with a fixed bound on the number of transmissions,
independent identically distributed (i.i.d.) sources, and without
energy harvesting have been studied in [3] and [4], where
scheduling strategies are restricted to be threshold based. A
continuous time version of the problem with the Markov state
process and a fixed number of transmissions is studied in [5].
In [6], the authors find an optimal communication schedule as-
suming a Kalman-like estimator. Remote estimation of a scalar
linear Gaussian source with communication costs has been
studied in [7], where the authors proved that a threshold-based
communication schedule and a Kalman-like estimator are
jointly optimal. Our analytical approach borrows extensively
from the arguments in [7] and [8]. The latter considered a
problem of paging and registration in a cellular network which
can be viewed as a remote estimation problem.
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Problems where the estimator decides when to query a sensor
or which sensor to query have been studied in [9]–[15]. In these
problems, the decision making is centralized. Our problem dif-
fers from these setups because the decision to communicate is
made by the sensor that has more information than the estimator,
and this leads to a decentralized decision-making problem.
In order to appreciate the difficulty of joint optimization of

communication and estimation strategies, it is important to
recognize the role of signaling in estimation. When the sensor
makes a decision on whether to communicate or not based on
its observations of the source, then a decision of not to com-
municate conveys information to the estimator. For example,
if the estimator knows that the sensor always communicates if
the source state is outside an interval , then not receiving
any communication from the sensor reveals to the estimator
that the state must have been inside the interval . Thus,
even if the source is Markov, the estimator’s estimate may not
simply be a function of the most recently received source state
since each successive “no communication” has conveyed some
information. It is this aspect of the problem that makes the
derivation of jointly optimal communication and estimation
strategies a difficult problem.

A. Contributions of this Paper

The main contributions of the paper are as follows.
1) We formulate the optimal communication and remote
estimation of a discrete Markov source with an energy
harvesting sensor as a decentralized decision-making
problem, with the sensor and the estimator as the decision
makers.

2) We show, under some symmetry conditions, that the glob-
ally optimal estimation strategy is to use the most recently
received source state as the current estimate. Also, the
optimal communication strategy for the sensor is an en-
ergy-dependent threshold-based strategy. These thresholds
can be obtained by solving a simple finite-state dynamic
program with two actions. Our results considerably sim-
plify the offline computation of optimal strategies as well
as their online implementation.

3) In Section V, we consider the communication and esti-
mation problem with a multidimensional Gaussian source.
Under a suitable symmetry condition, we characterize op-
timal strategies for this case as well. In particular, we show
that for any time instant at which no message is received
by the estimator, the optimal estimate is a simple linear
update of the previous estimate. Moreover, the optimal
strategy for the sensor is an energy-dependent threshold-
based strategy. While the result in [7] is only for a scalar
Gaussian source without energy harvesting, our approach
addresses a multidimensional source and an energy har-
vesting sensor.

4) Finally, in Section VI, we show that our results apply to
several special cases which include the important remote
estimation problems where the sensor can afford only a
fixed number of transmissions or where the sensor only has
a communication cost and no constraint on the number of
transmissions. To the best of our knowledge, ours is the
first result that identifies globally optimal communication

and estimation strategies for a multidimensional Gaussian
source in the aforementioned special cases.

Notation

Random variables are denoted by uppercase letters
and their realizations by the corresponding

lowercase letters . The notation denotes the
vector . Bold capital letters represent
random vectors, while bold small letters represent their
realizations. is the probability of an event, and is
the expectation of a random variable. is the indicator
function of a set . denotes the set of integers, denotes
the set of positive integers, is the set of real numbers, and
is the - dimensional Euclidean space. denotes the identity
matrix. For two random variables (or random vectors) and
taking values in and , denotes the condi-

tional probability of the event given , and
denotes the conditional probability mass function (PMF) or
conditional probability density of given . These condi-
tional probabilities are random variables whose realizations
depend on realizations of .

B. Organization

In Section II, we formulate our problem for a discrete source.
We present a dynamic program for our problem in Section III.
This dynamic program involves optimization over a func-
tion space. In Section IV, we find optimal strategies under
some symmetry assumptions on the source and the distortion
function. We consider the multidimensional Gaussian source
in Section V. We present some important special cases in
Section VI. We conclude in Section VII. We provide some
auxiliary results and proofs of key lemmas in Appendices A–E.
This work is an extended version of [16].

II. PROBLEM FORMULATION

A. System Model

Consider a remote estimation problem with a sensor and a
remote estimator, as shown in Fig. 1. The sensor observes a dis-
crete-time Markov process , . The state space of
this source process is a finite interval of the set of integers .
The estimator relies on messages communicated by the sensor
to produce its estimates of the process . The sensor harvests
energy from its environment (say, for example, through a solar
cell) and uses this energy for communicating with the estimator.
Let be the energy level at the sensor at the beginning of time
. We assume that the energy level is discrete and takes values in
the set , where . In the time period ,
the sensor harvests a random amount of energy from its en-
vironment, where is a random variable taking values in the
set . The sequence , is an i.i.d. process
which is independent of the source process , .
We assume that a successful transmission from the sensor to

the estimator consumes 1 unit of energy. Also, we assume that
the sensor consumes no energy if it just observes the source but
does not transmit anything to the estimator. At the beginning
of the time period , the sensor makes a decision about whether
to transmit its current observation and its current energy level
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Fig. 1. System model and the time ordering of relevant variables.

to the estimator or not. We denote by the sensor’s
decision at time , where means no transmission and

means a decision to transmit. Since the sensor needs at
least 1 unit of energy for transmission, we have the constraint
that . Thus, if , then is necessarily 0. The
energy level of the sensor at the beginning of the next time step
can be written as

(1)

where is the maximum number of units of energy that the
sensor can store. The estimator receives a message from the
sensor where

if
if

(2)

where denotes that no message was transmitted. The estimator
produces an estimate at time depending on the sequence of
messages it received so far. The system operates for a finite time
horizon .

B. Decision Strategies

The sensor’s decision at time is chosen as a function of
its observation history, the history of energy levels, and the se-
quence of past messages. We allow randomized strategies for
the sensor (see Remark 1). Thus, at time , the sensor makes the
decision with probability where

(3)

The constraint implies that we have the constraint
that if . The function is called the decision
rule of the sensor at time and the collection of functions

is called the decision strategy of the sensor.
The estimator produces its estimate as a function of the

messages

(4)

The function is called the decision rule of the estimator at
time and the collection of functions is
called the decision strategy of the estimator.

C. Optimization Problem

We have the following optimization problem.
1) Problem 1: For the model described before, given the sta-

tistics of the Markov source and the initial energy level ,
the statistics of amounts of energy harvested at each time, the

sensor’s energy storage limit and the time horizon find de-
cision strategies for the sensor and the estimator, respec-
tively, that minimize the following expected cost:

(5)

where is a communication cost and is a
distortion function.
Remark 1: It can be argued that in the problem just shown,

sensor strategies can be assumed to be deterministic (instead of
randomized) without compromising optimality. However, our
argument for characterizing optimal strategies makes use of the
possibility of randomizations by the sensor and, therefore, we
allow for randomized strategies for the sensor.
2) Discussion on Our Approach: Our approach for Problem

1 makes extensive use of majorization theory-based arguments
used in [7] and [8]. As in [8], we first construct a dynamic pro-
gram for Problem 1 by reformulating the problem from the esti-
mator’s perspective. This dynamic program involves minimiza-
tion over a function space. Unlike the approach in [8], how-
ever, we use majorization theory to argue that the value func-
tions of this dynamic program, under some symmetry condi-
tions, have a special property that is similar to (but not the same
as) Schur-concavity [17]. We then use this property to charac-
terize the solution of the dynamic program. This characteriza-
tion then enables us to find optimal strategies. In Section V, we
consider the problem with a multidimensional Gaussian source.
We extend our approach for the discrete case to this problem
and, under a suitable symmetry condition, we provide optimal
strategies for this case as well.While the result in [7] is only for a
scalar Gaussian source without energy harvesting, our approach
addresses a multidimensional source and an energy harvesting
sensor.

III. PRELIMINARY RESULTS

Lemma 1: There is no loss of performance if the sensor is
restricted to decision strategies of the form

(6)

Proof: Fix the estimator’s strategy to any arbitrary
choice. We will argue that for the fixed choice of , there is
an optimal sensor strategy of the form in the lemma. To do
so, we can show that with a fixed , the sensor’s optimization
problem is a Markov decision problem with
as the state of the Markov process. It is straightforward to
establish that conditioned on and , the next
state is independent of past source states
and energy levels and past choices of transmission proba-
bilities. Further, the expected cost at time is a function of
the state and . Thus, the sensor’s optimization problem is a
Markov decision problem with as the state of
the Markov process. Therefore, using standard results from
Markov decision theory [18, Ch. 6], it follows that an optimal
sensor strategy is of the form in the lemma. Since the structure
of the sensor’s optimal strategy is true for an arbitrary choice
of , it is also true for the globally optimal choice of . This
establishes the lemma.
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In the following analysis, we will consider only the sensor’s
strategies of the form in Lemma 1. Thus, at the beginning of
a time instant (before the transmission at time occurs), the
sensor only needs to know , , and , whereas the
estimator knows . Problem 1—even with the sensor’s
strategy restricted to the form in Lemma 1—is a decision
problem with nonclassical information structure [19]. One ap-
proach for addressing such problems is to view them from the
perspective of a decision maker who only knows the common
information among the decision makers [20]. In Problem 1,
at the beginning of time , the information at the sensor is

, while the information at the estimator is
. Thus, the estimator knows the common information
between the sensor and the estimator. We will now

formulate a decision problem from the estimator’s point of
view and show that it is equivalent to Problem 1.

A. Equivalent Problem

We formulate a new problem in this section. Consider the
model of Section II. At the end of time , using the informa-
tion , the estimator decides an estimate

In addition, at the beginning of time , the estimator decides a
function , using the information .
That is

(7)

Then, at time , the sensor evaluates its transmission probability
as . We refer to as the prescription to the
sensor. The sensor simply uses the prescription to evaluate its
transmission probability. The estimator can select a prescription
from the set , which is the set of all functions from to

such that . It is clear that any prescrip-
tion in the set satisfies the energy constraint of the sensor; that
is, it will result in if . We call
the prescription strategy of the estimator. Thus, in this formu-
lation, the estimator is the only decision maker. This idea of
viewing the communication and estimation problem only from
the estimator’s perspective has been used in [8] and [21]. Amore
general treatment of this approach of viewing problems with
multiple decision makers from the viewpoint of an agent who
knows only the common information can be found in [20]. We
can now formulate the following optimization problem for the
estimator.
1) Problem 2: For the model described before, given the sta-

tistics of the Markov source and the initial energy level ,
the statistics of amounts of energy harvested at each time, the
sensor’s energy storage limit , and the time horizon , find an
estimation strategy , and a prescription strategy for the esti-
mator that minimizes the following expected cost:

(8)

Problems 1 and 2 are equivalent in the following sense: Con-
sider any choice of strategies in Problem 1, and define a
prescription strategy in Problem 2 as

Then, the strategies achieve the same value of the total ex-
pected cost in Problem 2 as the strategies in Problem 1.
Conversely, for any choice of strategies in Problem 2, de-
fine a sensor’s strategy in Problem 1 as

Then, the strategies achieve the same value of the total ex-
pected cost in Problem 1 as the strategies in Problem 2.
Because of the above equivalence, we will now focus on the

estimator’s problem of selecting its optimal estimate and the
optimal prescriptions (Problem 2). We will then use the solution
of Problem 2 to find optimal strategies in Problem 1.
Recall that is the sensor’s energy level at the beginning

of time . For ease of exposition, we define a post-transmission
energy level at time as . The estimator’s opti-
mization problem can now be described as a partially observable
Markov decision problem (POMDP) as follows.
1) State processes: is the pre-transmission state and

is the post-transmission state.
2) Action processes: is the pre-transmission action and
is the post-transmission action.

3) Controlled Markovian evolution of states: The state
evolves from to depending on the
realizations of and the choice of pre-transmission
action . The post-transmission state is
with probability and with probability

. The state then evolves in a Markovian
manner from to according to
known statistics that depend on the transition probabilities
of the Markov source and the statistics of the energy
harvested at each time.

4) Observation process: . The observation is a function of
the pre-transmission state and the pre-transmission action.
The observation is with probability
and with probability .

5) Instantaneous costs: The communication cost at each time
is a function of the pre-transmission state and the pre-trans-
mission action. The communication cost is with prob-
ability and 0 with probability .
The distortion cost at each time step is a func-
tion of the post-transmission state and the post-transmis-
sion action.

The aforementioned equivalence with POMDPs suggests that
the estimator’s posterior beliefs on the states are its information
states [18]. We, therefore, define the following probability mass
functions (PMFs):
Definition 1:
1) We define the pre-transmission belief at time as

. Thus, for , we have
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2) We define the post-transmission belief at time as
. Thus, for , we have

The following lemma describes the evolution of the beliefs
and in time.
Lemma 2: The estimator’s beliefs evolve according to the

following fixed transformations:
1)

(9)

We denote this transformation by .
2)

if

if

(10)
where is a degenerate distribution at .

We denote this transformation by . We
can now describe the optimal strategies for the estimator.
Theorem 1: Let be any PMF defined on . Define

recursively the following functions:

(11)

where (see Lemma 2), and

(12)

where (see Lemma 2).
For each realization of the post-transmission belief at time ,

the minimizer in (11) exists and gives the optimal estimate at
time ; for each realization of the pre-transmission belief, the
minimizer in (12) exists and gives the optimal prescription at
time .

Proof: The minimizer in (11) exists because is finite; the
minimizer in (12) exists because the conditional expectation on
the right-hand side of (12) is a continuous function of , and
is a compact set. The optimality of the minimizers follows from
standard dynamic programming arguments for POMDPs.
The result of Theorem 1 implies that we can solve the esti-

mator’s problem of finding optimal estimates and prescriptions
by finding the minimizers in (11) and (12) in a backward in-
ductive manner. Recall that the minimization in (12) is over the
space of functions in . This is a difficult minimization problem.
In Section IV, we consider a special class of sources and dis-
tortion functions that satisfy certain symmetry conditions. We
do not solve the dynamic program but instead use it to charac-
terize optimal strategies of the sensor and the estimator. Such a

characterization provides us with an alternative way of finding
optimal strategies of the sensor and the estimator.

IV. CHARACTERIZING OPTIMAL STRATEGIES

A. Definitions

Definition 2: A probability distribution on is said to be
almost symmetric and unimodal (a.s.u.) about a point , if
for any

(13)

If a distribution is a.s.u. about 0 and , then
is said to be a.s.u. and even. Similar definitions hold if is a
sequence, that is, .
Definition 3: We call a source neat if the following assump-

tions hold:
1) The apriori probability of the initial state of the source

is a.s.u. and even, and has finite support.
2) The time evolution of the source is given as

(14)

where are i.i.d random variables
with a finite support, a.s.u. and even distribution .

Remark 2: Note that the finite support of the distributions of
and and the finiteness of the time horizon imply that

the state of a neat source always lies within a finite interval in
. This finite interval is the state space .
We borrow the following notation and definition from the

theory of majorization.
Definition 4: Given , let

denote the nonincreasing rearrangement of with
. Given two vectors and from , we say that

majorizes , denoted by if the following conditions hold:

for

We now define a relation among possible information
states and a property of real-valued functions of information
states.
Definition 5 (Binary Relation ): Let and be two distri-

butions on . We say if, and only if (iff):
1) For each ,
2) For all , is a.s.u. about the same point

.
From the definition before, it is straightforward to

see that if , then and have the same marginal
distribution on (since implies that

). Thus, and imply the
same distribution on the energy of the sensor. Moreover, for
each , is more “symmetrically concentrated” about the same
point which means that the marginal of on is
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concentrated around . Thus, intuitively, should be a better
distribution for estimating the source state than .
Definition 6 (Property ): Let be a function that maps

distributions on to the set of real numbers . We say that
satisfies Property iff for any two distributions and

B. Analysis

In this section, we will consider Problem 1 under the assump-
tions that:
A1) the source is neat (See Definition 3);
A2) the distortion function is either

or , for some .
Our goal is to show that Assumptions A1 and A2, combined
with the result of Theorem 1, allow for a much simpler charac-
terization of optimal strategies for the sensor and the estimator
than the one provided by the dynamic program of Theorem 1.
We defer the discussion of practical justifications of these as-
sumptions to Section IV-E.
Lemma 3: Let be a distribution on such that for all
, is a.s.u. about the same point . Then, the

minimum in (11) is achieved at .
Proof: Using Lemma 2, the expression in (11) can be

written as

Thus, the minimum is achieved at the point that minimizes the
expected distortion function given that has the dis-
tribution . The a.s.u. assumption of all about , and the
nature of distortion functions given in Assumption A2 imply
that is the minimizer.
We now want to characterize the minimizing in (12). To-

ward that end, we start with the following claim.
1) Claim 1: The value functions , , and

, satisfy Property .
Proof: See Appendix C.

Recall that (12) in the dynamic program for the estimator de-
fines as

(15)

The following lemma is a consequence of Claim 1.
Lemma 4: Let be a distribution on such that

is a.s.u. about the same point for all . Then, the
minimum in the definition of is achieved by a prescrip-
tion of the form

if
if
if
if

(16)

where for each ,
and is a non-negative integer.

Proof: See Appendix D.

Lemmas 3 and 4 can be used to establish a threshold struc-
ture for optimal prescriptions and a simple recursive optimal
estimator for Problem 2. At time , by assumption A1,
is such that is a.s.u. about 0 for all . Hence,

by Lemma 4, an optimal prescription at time has the
threshold structure of (16). If a transmission occurs at time
, then the resulting post-transmission belief is a delta-func-
tion and consequently are a.s.u. about the same
point. If a transmission does not occur at time , then, using
Lemma 2 and the threshold nature of the prescription, it can
be shown that the resulting post-transmission belief is such that

are a.s.u. about 0. Thus, it follows that will
always be such that all are a.s.u. about the same
point and because of Lemma 3, this point will be the optimal
estimate. Using Lemma 2 and the a.s.u. property of , it
follows that the next pre-transmission belief will always be
such that are a.s.u. about the same point (by ar-
guments similar to those in Lemma 12 in Appendix C). Hence,
by Lemma 4, an optimal prescription at time has the
threshold structure of (16). Proceeding sequentially as before
establishes the following result.
Theorem 2: In Problem 2, under Assumptions A1 and A2,

there is an optimal prescription and estimation strategy such
that:
1) The optimal estimate is given as

if
if

(17)

where .
2) The pre-transmission belief at any time , , is a.s.u.
about , for all .

3) The prescription at any time has the threshold structure of
Lemma 4.

As argued in Section III-A, Problem 2 and Problem 1 are
equivalent. Hence, the result of Theorem 2 implies the following
result for Problem 1.
Theorem 3: In Problem 1 under assumptions A1 and A2,

there exist optimal decision strategies for the sensor and
the estimator given as

if
if

(18)

if
if
if
if

(19)

where for , for , and
.

Theorem 3 can be interpreted as follows: it says that the op-
timal estimate is the most recently received value of the source
(the optimal estimate is 0 if no source value has been received).
Further, there is a threshold rule at the sensor. The sensor trans-
mits with probability 1 if the difference between the current
source value and the most recently transmitted value exceeds
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a threshold that depends on the sensor’s current energy level
and the estimator’s pre-transmission belief; it does not transmit
if the difference between the current source value and the most
recently transmitted value is strictly below the threshold.

C. Optimal Thresholds

Theorem 3 gives a complete characterization of the optimal
estimation strategy, but it only provides a structural form of the
optimal strategy for the sensor. Our goal now is to find the exact
characterization of the thresholds and the randomization proba-
bilities in the structure of the optimal strategy of the sensor. We
denote the optimal estimation strategy of Theorem 3 by and
the class of sensor strategies that satisfy the threshold structure
of Theorem 3 as . We know that the global minimum of the
expected cost is , for some . Any sensor strategy
that achieves a cost , for all must

be a globally optimum sensor strategy.
Given that the strategy for the estimator is fixed to , we will

address the question of finding the best sensor strategy among
all possible strategies (including those not in ). The answer to
this question can be found by a standard dynamic program (see
Theorem 4 below). We denote by the strategy specified by
the dynamic program. We have that , for
all (including those not in ). Thus, is a globally optimal
sensor strategy. Further, is in the set . Thus, the dynamic
program of Theorem 4 provides a way of computing the optimal
thresholds of Theorem 3.
Theorem 4: Given that the strategy for the estimator is fixed

to as defined in Theorem 3, the best sensor strategy (from the
class of all possible strategies) is of the form ,
where . Further, this strategy is de-
scribed by the following dynamic program:

and for positive energy levels

(20)

where is if the distortionmetric is
and is if the distortion metric is . For

, the optimal action for a realization of is
iff is equal to the first term on the right-hand side

of (20). If 0, is the second term on the right-hand
side of (20) evaluated at 0 and the optimal action is 0.

Proof: Once the estimator’s strategy is fixed to , the
sensor’s optimization problem is a standard Markov decision
problem (MDP) with and as the
two-dimensional state. The result of the lemma is the standard
dynamic program for MDPs.
Consider the definition of in (20). For a fixed ,

the first term on the right-hand side of (20) does not depend on
, while it can be easily shown that the second term is nonde-
creasing in . These observations imply that for each ,
there is a threshold value of below which and above
which in the optimal strategy. Thus, the of Theorem
4 satisfies the threshold structure of Theorem 3. Comparing the

strategy specified by Theorem 4 and the form of sensor strate-
gies in Theorem 3, we see that:
1) the thresholds in depend only on the current energy level
of the sensor and not on the pre-transmission belief ,
whereas the thresholds in Theorem 3 could depend on the
energy level and .

2) the strategy is purely deterministic, whereas Theorem 3
allowed for possible randomizations at two points.

D. Discussion of the Results

The problem of finding globally optimal strategies for the
sensor and the estimator (Problem 1) is a difficult optimization
problem. It is clear that the number of possible strategy choices
is prohibitively large. For example, the number of deterministic
strategies for the sensor is , where is the set
of all possible values of ; the number of randomized strategies
for the sensor is clearly infinite. The result of Theorem 1 pro-
vides a backward-inductive solution of the problem. However,
this solution still involves optimization over an infinite space
of functions at each time step. By making use of the structure
provided by Assumptions A1 and A2, the results of Theorems
3 and 4 lead to considerable simplification of the problem. Re-
call that Theorem 3 completely specifies the globally optimal
strategy for the estimator. Moreover, the dynamic program of
Theorem 4 is a simple finite-state dynamic program with a state
space no larger than and an action space of size 2
(since there are only two terms in the minimization in (20)).
Numerically solving this dynamic program requires solving, at
most, optimization problems, each over a set of size
2. The threshold structure further simplifies the dynamic pro-
gram because if is optimal for some value of , then

is optimal for all with . Thus, our results
significantly reduce the computational cost of solving Problem
1. Moreover, the threshold nature of the optimal sensor strategy
and the simple form of the optimal estimation strategy make
them easily implementable.
It is interesting to observe that a reasonable (but potentially

suboptimal) approach for Problem 1 would have been to assume
that the estimator simply uses the most recently received mes-
sage as its current estimate. Our result shows that this reason-
able strategy is indeed globally optimal. Assuming this strategy
for the estimator, the problem of finding best strategy for the
sensor is a centralized decision-making problem. The result of
Theorem 4 is essentially a solution for this centralized problem.

E. Role of Assumptions A1 and A2

Assumptions A1 and A2were critical for obtaining the results
of Theorems 3 and 4. These assumptions provided the necessary
structure to the dynamic program of Theorem 1 that allowed us
to prove the optimality of the strategies of Theorem 3. Since
most commonly used distortion functions, such as absolute error
and squared error, are of the form in Assumption A2, the main
limitation of the aforementioned analysis is due to Assumption
A1. This assumption can be justified if the source statistics are
such that small changes in the source are more likely than larger
changes. Sources that can be modeled as symmetric random
walks where the probability of a jump decreases with jump size
would fit this description. Sources where the state is perturbed
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by a zero-mean Gaussian noise (considered in Section V) would
also satisfy Assumption A1.
Without Assumptions A1 and A2, it is unclear if a solution

of the dynamic program of Theorem 1 can be easily obtained.
In the absence of these assumptions, one can still use the esti-
mator’s strategy of Theorem 3 as a simple, intuitive heuristic
choice for the estimator’s strategy and optimize for the sensor
strategy using a dynamic program similar to that in Theorem 4.

V. MULTIDIMENSIONAL GAUSSIAN SOURCE

In this section, we consider a variant of Problem 1, with
a multidimensional Gaussian source. The state of the source
evolves according to the equation

(21)

where , are
random vectors taking values in , is a real number
and is an orthogonal matrix (that is, the transpose of is the
inverse of and, more important for our purpose, preserves
norms). The initial state has a zero-mean Gaussian distribu-
tion with covariance matrix , and are i.i.d.
random vectors with a zero-mean Gaussian distribution and co-
variance matrix . The energy dynamics for the sensor are the
same as in Problem 1.
At the beginning of the time period , the sensor makes a de-

cision about whether to transmit its current observation vector
and its current energy level to the estimator or not. The estimator
receives a message from the sensor where , if

and otherwise. The estimator produces an esti-
mate at time depending on the sequence
of messages it received so far. The system operates for a finite
time horizon .
The sensor and estimator make their decisions ac-

cording to deterministic strategies and of the form
and . We assume

that for any time and any realization of past messages, the set
of source and energy states for which transmission occurs is
an open or a closed subset of . We have the following
optimization problem.
1) Problem 3: For the model described before, given the sta-

tistics of the Markov source and the initial energy level ,
the statistics of amounts of energy harvested at each time, the
sensor’s energy storage limit and the time horizon find de-
cision strategies for the sensor and the estimator that mini-
mize the following expected cost:

(22)

where is a communication cost and is the Euclidean
norm.
Remark 3: Note that we have assumed here that the sensor

is using a deterministic strategy that employs only the current
source and energy state and the past transmissions to make the
decision at time . Using arguments analogous to those used in
proving Lemma 1, it can be shown that this restriction leads
to no loss of optimality. While randomization was used in our

proofs for the problem with discrete source (Problem 1), it is not
needed when the source state space is continuous.
Following the arguments of Sections III and IV, we can view

the problem from the estimator’s perspective, who, at each time
, selects a prescription for the sensor before the transmission
and then an estimate on the source after the transmission.
Since we have deterministic policies, the prescriptions are
binary-valued functions. We can define at each time , the
estimator’s pre-transmission (post-transmission) beliefs as con-
ditional probability densities on given the transmissions

.
Lemma 5: The estimator’s beliefs evolve according to the

following fixed transformations:
1)

where is the probability
density function of ; we denote this transformation by

;
2)

if

if

(23)
where is a degenerate distribution at ;
we denote this transformation by .

Further, we can establish the following analogue of Theorem
1 by using dynamic programming arguments [22, Ch. 8 and 10].
Theorem 5: Let be any pair pre-transmission and post-

transmission beliefs. Define recursively the following functions:

(24)

where (see Lemma 5), and

(25)

where is the set of all functions from to such
that , where is
an open or closed subset of . Then, , where is the
density of , is a lower bound on the cost of any strategy. A
strategy that at each time and for each realization of pre-trans-
mission and post-transmission beliefs selects a prescription, and
an estimate that achieves the infima in (24) and (25) is optimal.
Further, even if the infimum is not always achieved, it is pos-
sible to find a strategy with performance arbitrarily close to the
lower bound.

As in Theorem 1, the dynamic program of Theorem 5 in-
volves optimization over functions. Intuitively, the source and
distortion in Problem 3 have the same structures as required
by Assumptions A1 and A2 in Section IV. However, because
the source is now continuous valued, the analysis of Section IV
needs to be modified in order to completely characterize the so-
lution of the dynamic program in Theorem 5. The following the-
orem is the analogue of Theorem 3 for Problem 3.
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Theorem 6: In Problem 3, it is without loss of optimality1 to
restrict to strategies that are given as

if
if

(26)

if
if

(27)

where for , for ,
, and .

Proof: See Appendix E.
Further, the optimal values of thresholds can be obtained by

the following dynamic program which is similar to the dynamic
program in Theorem 4.
Theorem 7: Given that the strategy for the estimator is fixed

to , the best sensor strategy (from the class of all possible
strategies) is of the form , where

. Further, this strategy is described by the
following dynamic program:

and for positive energy levels

(28)

For , the optimal action for a realization of
is iff is equal to the first term on the right-hand
side of (28). If 0, is the second term on the right-
hand side of (28) evaluated at 0 and the optimal action is

0.

VI. SPECIAL CASES

By making suitable assumptions on the source, the energy
storage limit of the sensor, and the statistics of initial energy
level, and the energy harvested at each time, we can derive the
following special cases of Problem 1 in Section II and Problem
3 in Section V.
1) Fixed Number of Transmissions: Assume that the initial

energy level is with probability 1 and that the
energy harvested at any time is 0 with probability 1. Under
these assumptions, Problem 1 can be interpreted as capturing the
scenario when the sensor can afford, at most, transmissions
during the time horizon with no possibility of energy harvesting.
This is similar to the model in [3].
2) No Energy Constraint: Assume that the storage limit is

1, and that the initial energy level and the energy har-
vested at each time are 1 with probability 1. Then, it follows
that at any time , 1 with probability 1. Thus, the sensor
is always guaranteed to have energy to communicate. Under
these assumptions, Problem 1 can be interpreted as capturing
the scenario when the sensor has no energy constraints (it still
has energy costs because of the term in the objective). This
is similar to the model in [7].
3) I.I.D. Source: The analyses of Sections IV and V can

be used if the source evolution is given as ,

1That is, there is a strategy of the form in the theorem whose performance is
arbitrarily close to the lower bound

where , , are the i.i.d. noise vari-
ables. For i.i.d. sources, the optimal estimate is the mean
value of the source in case of no transmission. Also, the dy-
namic program of Theorem 4 can be used for finite-valued
i.i.d. sources by replacing with and changing (20)
to

. A similar
dynamic program can be written for the Gaussian source.

VII. CONCLUSION

We considered the problem of finding globally optimal com-
munication scheduling and estimation strategies in a remote es-
timation problem with an energy harvesting sensor and a finite-
valued or a multidimensional Gaussian source. We established
the global optimality of a simple energy-dependent threshold-
based communication strategy and a simple estimation strategy.
Our results considerably simplify the offline computation of op-
timal strategies as well as their online implementation.
Our approach started with providing a POMDP-based dy-

namic program for the decentralized decision-making problem.
Dynamic programming solutions often rely on finding a key
property of value functions (such as concavity or quadraticness)
and exploiting this property to characterize the solution. In dy-
namic programs that arise from decentralized problems, how-
ever, value functions involve minimization over functions [20]
and, hence, the usual properties of value functions are either not
applicable or not useful. In such problems, there is a need to find
the right property of value functions that can be used to charac-
terize optimal solutions. We believe that this work demonstrates
that in some problems where majorization-based properties re-
lated to Schur concavity may be the right value function prop-
erty to exploit.

APPENDIX A
LEMMAS FROM [8], SECTION VI

A) For the Discrete Source:
Lemma 6: If is a.s.u. and even and is a.s.u. about ,

then the convolution is a.s.u about .
Lemma 7: If is a.s.u. and even, is a.s.u. and , then

.
B) For the Multidimensional Gaussian Source:
Lemma 8: If and are two non-negative integrable

functions on and , then
for any symmetric unimodal function .

Lemma 9: If and are two non-negative integrable
functions on , then .
(This lemma is known as the Hardy Littlewood Inequality
[23].)

Lemma 10: If is symmetric unimodal about , is sym-
metric unimodal, and , then .

APPENDIX B
OTHER PRELIMINARY LEMMAS

Lemma 11: Let be a non-negative, integrable function
from to such that is symmetric unimodal about a point
. Let be a probability density function (pdf) on which
is symmetric unimodal about . Then, is symmetric
unimodal about .
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Proof: For ease of exposition, we will assume that and
are symmetric unimodal about . If is symmetric uni-

modal about a nonzero point, then to obtain , we can first
do a translation of so that it is symmetric unimodal about
to carry out the convolution and translate the result back.
Consider two points such that . Then, we

can always find an orthogonal matrix such that . Then

(29)

Carrying out a change of variables so that , the above
integral becomes

(30)

where we used the symmetric nature of and and the fact
that the orthogonal matrix preserves norm. Thus, any two points
with the same norm have the same value of . This estab-
lishes the symmetry of . Next, we look at unimodality.
We follow an argument similar to the one used in [24]. Because
of symmetry, it suffices to show that
is nonincreasing for . (Here, is the
dimensional vector with all but the first coordinates as 0.) Note
that

(31)

where is a random vector with pdf . Define a new random
variable . Then

(32)

We now prove that for any given , is nonin-
creasing in . This would imply that the integral in (32) and,
hence, is nonincreasing in .
The symmetric unimodal nature of implies that

if and only if (or
) for some constant whose value

varies with . Thus

(33)

where is the -dimensional (open) sphere centered at
with radius . It can be easily verified that the

symmetric unimodal nature of implies that as the center of the
sphere is shifted away from the origin (keeping the ra-
dius fixed), the integral in (33) cannot increase. This concludes
the proof.

APPENDIX C
PROOF OF CLAIM 1

Since for any choice of , it trivially satis-
fies Property . We will now proceed in a backward-inductive
manner.

Step 1: If satisfies Property , we will show that
satisfies Property too.
Using Lemma 2, the expression in (11) can be written as

(34)

We will look at the two terms in the above expression separately
and show that each term satisfies Property . To do so, we will
use the following lemmas.

Lemma 12: .
Proof: Let and . Then, from

Lemma 2

(35)

where . Similarly

(36)

where . In order to
show that , it suffices to show that

and that is a.s.u about the same point for all
. It is clear that

where is the distribution of , and denotes convolution.
We now use the result in Lemmas 6 and 7 from Appendix A to
conclude that and that is
a.s.u. about the same point as . Thus, we have established
that for all , . Similarly, we can argue that

, , are a.s.u. about the same point since ,
, are all a.s.u about the same point. Thus

The above relation, combined with the assumption that
satisfies Property , implies that the first term in (34) satisfies
Property . The following lemma addresses the second term in
(34).

Lemma 13: Define .
satisfies Property .
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Proof: For any , the conditional expectation in the
definition of can be written as

(37)

where is the marginal distribution of
. Recall that the distortion function is a nondecreasing
function of . Let be the value of the distortion when

. Let ,
where is the cardinality of . It is clear that the expression
in (37) is an inner product of some permutation of with .
For any choice of , such an inner product is lowerbounded as

(38)

which implies that

(39)

where represents the inner product, is the non-
decreasing rearrangement of , and is the nonin-
creasing rearrangement of . If , then it follows that

and is a.s.u. about some point . It
can be easily established that implies that

(40)

Further, since is a.s.u. about ,
. Thus

(41)

Combining (39)–(41) proves the lemma.
Thus, both terms in (34) satisfy Property and, hence,

satisfies Property .
Step 2: If satisfies Property , we will show that

satisfies Property too.
Consider two distributions and such that . Recall

that (12) defined as

(42)

where denotes the conditional expectation in (42). Sup-
pose that the minimum in the definition of is achieved
by some prescription , that is, . Using ,
we will construct another prescription such that

. This will imply that , thus estab-
lishing the statement of step 2. We start with

(43)

The second term in (43) can be further written as

(44)

where is the distribution resulting from and when
(see Lemma 2). Substituting (44) in (43) gives the minimum
value to be

(45)

We will now use the fact that satisfies Property to
conclude that does not depend on . That is,

where is
a number that depends only on . Consider
and . It is easy to see that and

. Since satisfies Property , it implies that
and .

Thus, . The expres-
sion in (45) now becomes

(46)

We define .
We will now construct another prescription . To that end, we

first define the sequence
and let denote the element of this sequence. Recall
that is a.s.u. about the same point for all .
For each , define

Define as

if
if
if

(47)
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We can show that with the above choice of

(48)

and

(49)

Using the same analysis used to obtain (46), we can now eval-
uate the expression

to be

(50)

where is the distribution resulting from and when
(see Lemma 2). Using (49) in (50), we obtain the expression

(51)

Comparing (46) and (51), we observe that all terms in the two
expressions are identical except for the last term . Using
the expressions for and from Lemma 2, and the fact that

, it can be shown that . Thus, . This
implies that the expression in (51) is nomore than the expression
in (46). This establishes the statement of Step 2.

APPENDIX D
PROOF OF LEMMA 4

Suppose that the minimum in the definition of is
achieved by some prescription . Using , we will construct
another prescription of the form in (16) which also achieves
the minimum. The construction of is identical to the con-
struction of in Step 2 of the proof of Claim 1 (using instead
of to define ). The a.s.u. assumption of and the
nature of constructed imply that is of the form required in
the Lemma.

APPENDIX E
PROOF OF THEOREM 6

We need the following definitions for the proof.
Definition 7: A function is said to be sym-

metric and unimodal about a point , if
implies that . Further, we use the conven-

tion that a Dirac-delta function at is also symmetric unimodal
about .

For a Borel set in , we denote by the Lebesgue
measure of .

Definition 8: For a Borel set in , we denote by
the symmetric rearrangement of . That is, is an open ball
centered at , whose volume is . Given an integrable, non-
negative function , we denote by its symmetric
nondecreasing rearrangement. That is

Definition 9: Given two integrable, non-negative functions
and from to , we say that majorizes , denoted

by , if the following holds:

(52)

and

The condition in (52) is equivalent to saying that for every Borel
set , there exists another Borel set such that

and .
Definition 10 (Binary Relation ): Let and be two

post-transmission beliefs. We say iff:
1) for each , ;
2) for all , is symmetric and unimodal about
the same point .

A similar relation is defined for pre-transmission beliefs.
Definition 11 (Property ): Let be a function that maps

probability measures on to the set of real numbers . We
say that satisfies Property iff for any two distributions
and

We can now state the analogue of Claim 1.
Claim 2: The value functions in Theorem 5

and satisfy Property .
Proof: See Appendix F

Because of Claim 2, we can follow arguments similar to those
in Section IV to conclude the following: At time 1, because

is symmetric unimodal about for all , it is sufficient
to consider symmetric threshold-based prescriptions of the form

if
if

(53)

on the right-hand side of (25) for time 1. Using such pre-
scriptions implies that is always symmetric unimodal
about some point , which is the optimal estimate in (24) at
time 1. Further, will also be symmetric unimodal
about and, therefore, it is sufficient to restrict to sym-
metric threshold-based prescriptions in (25) at time 2. Pro-
ceeding sequentially until time allows us to conclude that at
each time, we only need to consider pre- and post-transmission
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beliefs that are symmetric unimodal, prescriptions that are sym-
metric threshold based, and estimates that are equal to the point
about which belief is symmetric. This allows us to conclude the
result of Theorem 6.

APPENDIX F
PROOF OF CLAIM 2

The proof follows a backward-inductive argument similar to
the proof of Claim 1.

Step 1: If satisfies Property , we will show that
satisfies Property too.
Using Lemma 5, the expression in (24) can be written as

(54)

We will look at the two terms on the right-hand side of (54)
separately and show that each term satisfies Property .

Lemma 14: .
Proof: Let and . Then, fol-

lowing steps similar to those in the proof of Claim 1

(55)

where .
Similarly

(56)

where .
In order to show that , it suffices to show that

and that are symmetric unimodal
about the same point for all . It is clear that

where and
. Recall that and that is

symmetric unimodal about a point. It can then be easily shown,
using the orthogonal nature of matrix , that
and that is symmetric unimodal about a point. We
now use the result in Lemmas 10 and 11 to conclude that

and that is symmetric
unimodal about the same point as . Thus, we have
established that for all , .
To prove that is symmetric and unimodal about the

same point for all , it suffices to show that are symmetric
and unimodal about the same point for all . Since is
a convolution of and , its symmetric unimodal nature
follows from Lemma 11.

Lemma 15: Define
. satisfies Property .

Proof: Let such that is symmetric unimodal
about for all . For any , the conditional expectation
in the definition of can be written as

(57)

Consider any with a positive probability under (that is,
). For a constant , consider the

function . Then

(58)

where we used Lemma 9 in (58). Using the fact that
and Lemma 8, we have

(59)

where is the point about which is symmetric unimodal.
Therefore, for any

(60)

As goes to infinity, the above inequality implies that

(61)
Summing up (61), for all establishes that

(62)

Taking infimum over in the left-hand side (LHS) of the above
inequality, proves the lemma.
Thus, both terms in (34) satisfy Property and, hence,

satisfies Property .
Step 2: If satisfies Property , we will show that

satisfies Property too.
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Consider two distributions and such that and is
symmetric unimodal about . Recall that (25) defined as

(63)

For any , we will construct another prescription such that
. This will imply that ,

thus establishing the statement of step 2. We start with

(64)

The second term in (64) can be further written as

(65)

where is the distribution resulting from and when
(see Lemma 5). Substituting (65) in (64) and using the fact that

gives

(66)

We define . We construct as
follows. Define to be the radius of an open ball centered
at such that . Then, define

if
otherwise

(67)

Using the expressions for and from Lemma 5 and the
fact that , it can be shown that . This establishes the
result of Step 2.
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