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Abstract In multirate multicast different users in the same multicast group can
receive services at different rates depending on their own requirements and the
congestion level of the network. In this two-part paper we present a general frame-
work for addressing the optimal rate control problem in multirate multicast where
the objective is the maximization of a social welfare function expressed by the
sum of the users’ utility functions. In Part II we present a market based mecha-
nism and an adjustment process that have the following features. They satisfy the
informational constraints imposed by the nature of multirate multicast; and when
they are combined with the results of Part I they result in an optimal solution of
the corresponding centralized multirate multicast problem.

Keywords Multirate Multicast · Rate Allocation · Pricing Mechanism · Price
Splitting

1 Introduction

Multicasting provides an efficient method of transmitting data in real time appli-
cations from one source to many users. The source sends one copy of a message to
its users and this copy is replicated only at the branching points of a multicast tree.
Real time examples of such multicast applications are audio/video broadcasting,
teleconferencing, distributed databases, financial information, electronic newspa-
pers, weather maps and experimental data.
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Conventional multicast studies the problem in which the rate received by all
the users of the same multicast group is constant. The inherent problem with such
a formulation is that a constant rate will overwhelm the slow receivers while starv-
ing the fast ones. Multi-rate transmissions can be used to address this problem by
allowing a receiver to obtain data at a rate that satisfies its requirements. One way
of achieving this is through hierarchical encoding of the transmission, in which
a signal is encoded into multiple layers that can be incrementally combined to
improve quality. These hierarchical encoding type of transmission schemes have
been investigated both for audio and video transmissions over the Internet (Bially
et al. 1980; Turletti and Bolot 1994) and over ATM networks (Kishino et al. 1989).
Internet protocols for adding and dropping layers for hierarchical encoding type of
transmissions are presented in Li et al. (1998) and McCanne et al. (1996).

In this two-part paper we present a market based mechanism (described by
a Tâtonnement process) for multirate multicast. We have already compared our
approach with other existing approaches to multicast service provisioning (e.g.,
Deb and Srikant 2004; Graves et al. 2001; Kar et al. 2001, 2002; Rubenstein et al.
1999; Sarkar and Tassiulas 1999, 2000a,b,c; Shapiro et al. 2000; Tzeng and Siu
1997) in Part I of this paper. In Part I we also pointed out that the Tâtonnement
process we present can be viewed as a hierarchical process consisting of two layers:
the lower layer and the upper layer (cf. Sect. 3.2.1). We addressed the problem of
the lower layer in Part I of the paper. In Part II we present a market based mech-
anism and describe an adjustment process that have the following features. They
satisfy the informational constraints imposed by the nature of multirate multicast;
and when they are combined with the results of Part I, they result in an optimal
solution to the corresponding centralized multirate multicast problem.

The remainder of this paper is organized as follows. In Sect. 2 we formally
present the centralized multi-rate multicast problem. In Sect. 3 we describe and
analyze a competitive market economy which leads to a decentralized rate allo-
cation that achieves a solution of the centralized multi-rate multicast problem.
Numerical results on the convergence of the algorithms are given in Sect. 4. We
discuss and critique our results in Sect. 5, and we conclude the paper in Sect. 6.

2 The multicast problem

In this section we present the mathematical formulation of a network multicast
problem.

2.1 The model, terminology and notation

Consider a network consisting of a set of L unidirectional links, each link l ∈ L
having finite capacity cl . The network is used by a set M of multicast groups.
Each multicast group m ∈ M is specified by {sm, Rm, Lm}, where sm is the unique
source node, Rm is the set of receiver nodes, and Lm is the set of links used by the
group. Since each multicast group is a tree, we are going to use the terms multicast
group and multicast tree interchangeably (Fig. 1).

We now present some terminology used for the multicast groups that is sim-
ilar to terminology developed in Kar et al. (2001, 2002). We start by looking at
the nodes that are part of an arbitrary multicast group m. There are four types of
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Fig. 1 A multicast tree

nodes in this group: the source node sm , receiver nodes r ∈ Rm , junction nodes
and non-junction nodes. The junction nodes are the nodes that are connected to
more than two links of Lm , i.e. they are connected to a link which will lead to the
source and to two or more other links which will lead to some subset of Rm . We
denote the set of all the junction nodes of multicast group m by R̂m , and we let
R̃m � R̂m ∪ Rm . The non-junction nodes are all the nodes, excluding the source
node, that are connected to exactly two links of Lm .

From this moment on we are going to assume that for every receiver node in
m there is a unique link l ∈ Lm connected to it, i.e. the receiver nodes are termi-
nal nodes with an unique incoming link. For our formulation there is no loss in
generality by making this assumption, since if r ∈ Rm is a receiver node but not a
terminal node, we can replace the receiver node by a new terminal node r ′, which
is connected to r by an infinite capacity link.

We denote by R � ∪m∈M Rm the set of all receiver nodes over all the multicast
groups, and by Rl,m the set of all the receivers of multicast group m ∈ M using
link l ∈ L .

We define a branch to be the set of links that are between a source/junction
node and its immediate downstream junction/receiver node. Note that the set of
branches of m ∈ M forms a partition of Lm . Also note that each branch j can be
associated with its “downstream” junction/receiver node, which will be denoted
by r( j). Denote the set of branches associated with receiver nodes by Jm , and the
set of branches associated with all junction nodes by Ĵm . Let J̃m � Jm ∪ Ĵm be the
set of all branches over multicast group m ∈ M .

The parent of a receiver/junction node r ∈ R̃m refers to the closest junction/
source node in the “upstream” path toward the source. Similarly the parent of a
branch j ∈ J̃m , if it exists, is the closest branch in the “upstream” path toward the
source. We denote the parent of node r ∈ R̃m by �m(r) and the parent of branch
j ∈ J̃m by πm( j). The children of a junction/source node r ∈ R̂m ∪ {sm} are the set
of receiver/junction nodes which have r as their parent and it will be denoted by
Chm(r).
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2.2 The optimization problem

We assume that we have a unique user connected to each receiver node r ∈ R.
For each user we have a utility function Ur (xr ), where xr is the rate at which
r receives data. This utility function can be interpreted both from the point of
perceived quality of service received and the amount paid in order to receive the
service. Since there is a unique user connected to each receiver node, we will use
the same notation when we talk about the receiver nodes or the users connected to
these nodes.

We make the following assumptions:

Assumption 1 [The utility functions Ur (xr ) are strictly concave, differentiable
and increasing.]

Assumption 2 [Rate xr is assumed to be a continuous variable.]

Assumption 3 [Rate allocations are done along fixed multicast trees with fixed
number of users.]

Assumption 1 reflects the fact that users have diminishing returns on the goods
consumed. Assumption 2 is an approximation to the actual problem. This approx-
imation is made in most multirate multicast problems in the literature, e.g. Deb
and Srikant (2004); Kar et al. (2001, 2002), with notable exceptions Sarkar and
Tassiulas (2000c,b). Based on these assumptions we formulate the following static
network multicast problem for the model of Sect. 2.1

max
xr ,r∈R

∑

r∈R

Ur (xr ) Max 1

such that: ∑

m∈M

max
r∈Rl,m

xr ≤ cl , ∀ l ∈ L (2.1)

xr ≥ 0, ∀ r ∈ R (2.2)

Constraint (2.1) is also known as the capacity constraint. For this constraint
to be satisfied, on each link, the totality of the rates used by each multicast tree
can not exceed the link capacity. The capacity constraint insures that for all the
multicast trees, the rate on each branch of a tree is less than or equal to the rate on
its parent branch.

Noting that the constraints (2.1) and (2.2) make the set of feasible solutions
(x’s) compact, and since U ′

r s are assumed to be continuous, Weierstrass’s The-
orem (Simon and Blume, 1994, p. 823) guarantees the existence of a solution
of Max 1.

3 A market based realization of the solution of problem Max 1

In this section we present a market based mechanism which achieves a solution to
Problem Max 1, and satisfies the informational constraints imposed by the nature
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of the network multicast problem (these informational constraints are described at
the beginning of Sect. 3.1).

We proceed as follows: We first describe a competitive market economy con-
sisting of two types of agents: network and users. Then, within the context of this
market we specify a procedure used by the network which leads to an allocation
that achieves a solution to Problem Max 1.

3.1 Description of the market

The market economy adopted in this section is composed of two types of agents:
network (or network manager) and users. The network communicates directly
with each user, and the users do not communicate with one another. The messages
exchanged by the market agents are service prices and service demands. The net-
work manager is assumed to know the topology of the network and the resources
available to the network, but has no a priori information about the number of users
that will request services and the preferences (utility function) of each user. The
users are assumed to know their own preferences (utility function) but have no
information about the number and preferences of other users requesting services,
or the topology and the resources available to the network. Further, as mentioned
in Sect. 1, the users are unaware of the method of delivery of services (i.e. they do
not know whether service provisioning is unicast or multicast).

The assumption that the network manager has complete knowledge of the net-
work topology and resources is not an unrealistic one. For example, a corporate
intranet or VPN (virtual private network) may have a single provider of resources
and services, who is likely to have such knowledge about the network, and who will
assume the roll of network management in collecting aggregate excess demand on
links and adjusting link prices. In particular, some resource/service providers use
very sophisticated network management tools to monitor in real time the proper
functions of a network (e.g., events such as congestion, fault, server up and downs),
and to issue appropriate response/commands. Such monitoring requires complete
knowledge of the network (e.g., topology, resources, router/link capacities), as
well as separate network management protocols to pass information to and form
the management site. These tools can easily be used to acquire information on
aggregate excess demands and to adjust link prices.

For conceptual clarity we decompose the network manager into two distinct
entities: service provider and auctioneer. The market features and the relation be-
tween the market agents are as follows: The resource traded at each link is the
available communication rate (i.e. bandwidth or capacity). The rate at each link is
available to the service provider as raw material. The rate price at link l ∈ L will be
denoted by λl . The service provider sets up services and the corresponding prices
for each unit of these services and then sells these services to the users. Based on the
service prices announced by the service provider the users demand a certain amount
of service from the network in order to maximize their utility functions. Based on
the user demands the auctioneer updates the price per unit of rate on each link.

We make the assumption that the service provider and users are price takers.
They act as if their behavior has no effect on the equilibrium prices reached by the
market allocation process. This assumption is justified by the fact that the users
are unaware of the type of service received and they do not know the number of
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users requesting service from the network. The price taking assumption and the
fact that we try to maximize the users utilities imply that: (1) the service provider
will not attempt to make a profit; and (2) the service prices are directly derived
from resource prices. A further discussion of the price taking assumption appears
in (Thomas et al., 2002, Sect. 5).

3.1.1 Service provider

The service provider receives from the auctioneer a rate price λl for each link l of
the network. Based on these link prices the task of the service provider is to com-
pute for each user r ∈ R the price per unit of service p(r, λ). A major challenge
in solving multirate multicast problems through pricing is the determination of the
set of users’ price {p(r, λ)} per unit of service from the set of link prices λ. This
issue was addressed in Part I of this two-part paper.

In Part I we presented a distributed algorithm which, for a fixed set of link
prices λ, computes price shares γm = {γr,l,m |r ∈ Rm, l ∈ Lm} and service prices
p(r, γ (λ)) that satisfy the following.

Property 1

1.

λl =
∑

r∈Rm

γr,l,m, ∀ l ∈ Lm; (3.1)

2.

p(r, λ) � p(r, γm(λ)) =
∑

l∈L

γr,l,m, ∀ r ∈ Rm; (3.2)

3. Let xr (p(r, λ)) � argmaxx>0{Ur (x) − p(r, λ) × x} be the demand requested
by user r given the price per unit of service p(r, λ). Then,

∑

r∈Rm

xr (p(r, λ)) × p(r, λ) =
∑

l∈Lm

λl × max
r∈Rl,m

xr (p(r, λ)) (3.3)

and

∑

r∈Rm

Ur (xr (p(r, λ))) ≥
∑

r∈Rm

Ur (xr (pr∗)) (3.4)

for all pr∗ satisfying

∑

r∈Rm

xr (pr∗) × pr∗ ≥
∑

l∈Lm

λl × max
r∈Rl,m

xr (pr∗). (3.5)
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3.1.2 Users

Users are price takers and request service from the service providers. For each user
r ∈ Rm of the multicast tree m ∈ M the service provider announces a service price
p(r, λ). Based on its service price, each user determines its desired service rate by
solving:

xr (p(r, λ)) � argmax
x

{Ur (x) − p(r, λ) × x} (3.6)

3.1.3 Auctioneer

The role of the auctioneer is to regulate the prices of the resources, based on the
aggregate excess demand vector z(λ),

zl(λ) �
∑

m∈M

max
r∈Rl,m

xr (p(r, λ)) − cl (3.7)

at every link l ∈ L .

3.2 The market mechanism

3.2.1 The mechanism for general concave utility functions

We present a market mechanism, described by an algorithm, called Algorithm (�),
that describes how the market works. The algorithm proceeds iteratively as follows:

Step 1: The multicast trees are fixed.
Step 2: The auctioneer announces prices λ per unit of rate at each link of the

network.
Step 3: The service provider receives the link prices λ announced by the auction-

eer. Given the link prices, the service provider communicates with the users via
an iterative process in order to determine the optimal service price. During the
iterative process the service provider and the users exchange prices per unit of
service p and service demands x(p), with x(p) satisfying (3.6). The iterative
process used in this paper is described by the algorithm presented in Part I of
the paper.
Step 3.1: During the iterative process between the service provider and users,

the auctioneer checks if the sign of the excess demand z(λ) on any link is
positive. If this is the case then the auctioneer interrupts the iterative process
and proceeds to Step 4. If z(λ) ≤ 0 at all links, the process terminates.

Step 4: The auctioneer updates the link prices λ and announces them to the service
provider. The process loops back to Step 3.

The above steps are pictorially shown in Fig. 2. The figure illustrates the fact
that the algorithm contains two loops: an outer loop and an inner loop. Thus the
above market based mechanism can be viewed as a two-level hierarchical process.
The inner loop is the lower level of the hierarchy, and the outer loop is the upper
level of the hierarchy. The inner loop describes the iterative process used by the
service provider to determine user service prices (hence user demands) for fixed
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Fig. 2 Market mechanism

link prices set by the auctioneer. The outer loop determines the iterative process
used by the auctioneer to determine link prices based on excess demand. The iter-
ative process of the inner loop is guided by the results developed in Part I of the
paper. The iterative process of the outer loop is described by Scarf’s Algorithm
Scarf (1973). A detailed description of this algorithm is presented in (Stoenescu
and Teneketzis, 2002, Appendices A, B). It may be possible to use algorithms other
then Scarf’s at the outer loop, however, to prove convergence of such algorithms
we may need to impose additional constraints on the users’ utility functions (e.g.
second order differentiability of the utility functions). In Sect. 3.3 we show this
mechanism eventually leads to a resource allocation that achieves a solution to
Problem Max 1. Consequently, the algorithm described in this section “approx-
imates” in a finite number of steps an optimal solution to the original resource
allocation problem (Problem Max 1) and satisfies the informational constraints
imposed by the decentralization of information at the network.

Remark 1 As noted before, the inner loop of the pricing mechanism described
above uses the algorithm presented in Part I of this paper. If the set of prices {λ}
per unit of rate on the links is not optimal then there exist links for which the sign
of the excess demand function is determined in finite time (i.e., the execution of
the inner loop will terminate in finite time). This in turn ensures that each stage of
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the outer loop for which the prices per unit of rate are not optimal is finite. When
the price per unit of rate on each link is optimal then Algorithm (�) will result in
optimal prices per unit of service for each user, and this, in turn, will result in an
optimal resource allocation (i.e., an optimal solution to Problem Max 1).

3.2.2 The mechanism for parameterized concave utility functions

The case where the users’ utility functions come from a class which is parameter-
ized by a finite number of parameters deserves special attention. In this case the
service provider can determine in the first iteration of the outer loop the users’ util-
ity functions. This can be accomplished in a finite number of iterations of the inner
loop. After the first iteration of the outer loop the rate allocation problem becomes
a centralized decision problem (a nonlinear mathematical programming problem)
which can be solved by standard techniques (Bazaraa et al. 1993; Mangasarian
1994; Nesterov and Nemirovsky 1994; Renengar 2001). In Appendix A we pres-
ent examples of parameterized families of utility functions. For each family we
determine the number of iterations required in the execution of the inner loop in
order to completely specify the users’ utility functions.

3.3 The main result

The main result of this paper is summarized by the following theorem:

Theorem 1 The market mechanism described in Sect. 3.2 along with the algo-
rithm developed in Part I of this paper converges to an optimal solution of Problem
Max 1.

We prove the main result in the rest of the paper.

3.4 Analysis of the market and proof of the main result

The proof of Theorem 1 proceeds in several steps. First we present preliminary
technical results that are related with the behavior of the iterative process describ-
ing the outer loop of the algorithm. Then, we use these results to conclude the proof
of Theorem 1

We proceed with the details of the analysis. Scarf’s Algorithm (that describes
the outer loop) works in the price simplex. Therefore, we start by defining the
following |L| + 1 dimensional simplex.

S �

⎧
⎨

⎩q ∈ R
|L|+1
+ :

|L|∑

m=0

qm = 1

⎫
⎬

⎭ , (3.8)

where |L| is the cardinality of L . For each q ∈ S with q0 > 0 we define the price
vector λ(q):

λ(q) = {λl(q)}l∈L �
{

q1

q0
,

q2

q0
, . . . ,

q|L|
q0

}
. (3.9)
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The goal is to find an optimal price for each of the resources in the network,
that is, a price vector λ which leads to a solution for Max 1. Note that the mapping
defined in Eq. (3.9) is a continuous bijection, so it is enough to find an appropriate
q ∈ S such that λ(q) is a solution of Max 1.

To achieve this goal we need to introduce the following concepts:

1. The subsets P D � {q ∈ S : q = ( n0
D , n1

D , . . . ,
n|L|
D ), ni ∈ N}, where D ∈ N

represents “how close” our solution is to the solution of Max 1. (In Sect. 5
we discuss what we exactly mean by “how close”, and its implication to the
problem.)

2. The notions of a side of the simplex and of a primitive set that are defined as
follows:

Definition 1 A side of S, denoted by sm, is defined by sm � {q ∈ S : qm = 0},
for m ∈ {0, 1, . . . , |L|}.
Definition 2 Let S � {s0, . . . , s|L|}be the set of sides of S. Define SD � P D∪ S.

Definition 3 Q D = (si1, . . . , sin , q j0 , . . . , q j|L|−n), in SD is called a primitive
set if q j0 , . . . , q j|L|−n ∈ P D, si1, . . . , sin ∈ S, and no q ∈ P D is interior to the
simplex generated by the vectors of Q D, i.e.

{
x ∈ S : xi1, . . . , xin ≥ 0, xm ≥

min{q j0
m , . . . , q

j|L|−n
m }, ∀m �= {i1, . . . , in}

}
.

3. The following subsets of S:

C0 �
{

q ∈ S : q0 = 0 or zl(λ(q)) ≤ 0, ∀ l ∈ L
}
, (3.10)

Cl �
{

q ∈ S : q0 > 0 and {ql = 0 or zl(λ(q)) ≥ 0}, l ∈ L
}
, (3.11)

where,
zl(λ) =

∑

m∈M

max
r∈Rl,m

xr (p(r, λ)) − cl , (3.12)

with l ∈ L , and xr (p(r, λ)) being determined as in Sect. 3.1.
4. The concept of a labeling function that is defined as follows:

Definition 4 A labeling function is a function with domain S and range
{0, 1, . . . , |L|}.
We define the labeling function ϑ as follows:

ϑ(q) =

⎧
⎪⎨

⎪⎩

i if q ∈ si

0 if q ∈ C0

j where j = min{l : q ∈ Cl}
(3.13)

A key result in our analysis is the following:

Lemma 1 Starting with SD, if we give si ∈ S label i for every i ∈{0, . . . , |L|} and
every q ∈ P D a label from {0, . . . , |L|}, then exists a primitive set in SD such that
its vectors have distinct labels.

Proof For a proof of this lemma see (Stoenescu and Teneketzis, 2002, Appendix C).
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Lemma 1 can be used to prove the following result that is crucial in the proof
of the Theorem 1.

Lemma 2 Let {Di }i∈N be a sequence such that ∀i , Di ∈ N and Di → ∞ as
i → ∞. Let for every i , W Di denote the primitive set with distinct labels of
SD described by Lemma 1. Then there exists a subsequence {D′

j , j ∈ N} such

that for any qD′
j

∈ W D′
j , qD′

j
converges to q, where {xr (p(r, λ(q)))}r∈R solves

Problem Max 1.

Proof First we note that given any D ∈ N, the function ϑ satisfies the conditions
for the labeling of the vectors SD described by Lemma 1. This implies that given
any D ∈ N, there is a primitive set W D with all the vectors that generate it having
a distinct labels.

Define

C � C0

⋂ ( ⋂

l∈L

Cl

)
.

Proposition 1 The allocation xr (p(r, λ)) and the aggregate excess demand z(λ)
are continuous functions of λ.

Proof See Appendix B 	

Proposition 2 For every q ∈ C, {xr (p(r, λ(q)))}r∈R solves Max 1.

Proof See Appendix C. 	

Proposition 3 C �= ∅.

Proof Denote the element with label i of the primitive set W D , by qD,i . Since
S is compact, for every i ∈ {0, 1, . . . , |L|}, the sequence {qD,i }D has a clus-
ter point. As D → ∞ the distance between the vertices of W D goes to 0, so
‖qD,i − qD, j‖ −−−−→

D→∞ 0 for any i, j ∈ {0, 1, . . . , |L|}. This means that for any

i ∈ {0, 1, . . . , |L|} the sequences {qD,i }D have identical cluster points. Pick any
such cluster point and denote it by q . Since zl(λ) is continuous in λ (Proposition 1),
and λ(q) is continuous in q , this implies that λ(q) ∈ C. 	


Proposition 2 together with the proof of Proposition 3 conclude the proof of
Lemma 2.

Proof Theorem 1 The assertion of the theorem is a direct consequence of Lemma 2.
	


4 Numerical results

In this section we present numerical results from using the algorithms of the inner
and outer loops. In particular, in Sect. 4.1 we present results for the price splitting
algorithm described in Part I of this paper, for fixed sets of link prices. In Sect. 4.2
we provide an example combining both the inner and outer loops using Scarf’s
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Fig. 3 A multicast tree

and Eaves’ (K1) algorithms. Eaves’ (K1) algorithm is a variation of Scarf’s algo-
rithm. The convergence of the inner loop using the price splitting algorithm and
the outer loop using Scarf’s algorithm were established in Part I and Sect. 3.4,
respectively. We do not have any analytical results on the rate of the convergence
of these algorithms. With the results presented in this section we illustrate features
of the proposed algorithms within the context of a small set of examples.

We consider a network formed by one multicast tree as shown in Fig. 3 where the
link capacities are c = {c1, c2, . . . , c11} = {100, 100, 110, 110, 20, 80, 100, 100,
100, 100, 110} and where the users’ utility functions are of the form

ui (xi ) = ai log(xi + 1) (4.1)

with a = {a1, a2, a3, a4, a5, a6} = {10, 20, 31, 25, 15, 45}.

4.1 Inner loop using the price splitting algorithm

For the inner loop we considered two arbitrarily chosen sets of link prices λ �
(λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8, λ9, λ10, λ11), given in Table 1.

In Figs. 4 and 5 we present the numerical results for the above two cases, by
plotting the service prices for each user at each iteration of the algorithm. We note
that in both cases the price splitting algorithm converges quickly (in number of
iterations) to the optimal service prices corresponding to the (fixed) link prices.

The numerical results for the inner loop algorithm have been conducted on a
Pentium III machine. For most of the examples considered for the tree in Fig. 3, the

Table 1 Data table for the inner loop

Link Prices

Case 1 (1 0.1 0.3 0.7 0.2 1 2 1 0.6 1 0.3)
Case 2 (1 1 1 1 1 1 1 1 1 1 1)
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Fig. 5 Price splitting algorithm for Case 2

optimal service prices were determined in less than one second. Using the same
tree as in Fig. 3 for examples where the prices on most of the links were shared
among downstream users, the algorithm took up to four seconds to generate service
prices equal (up to five significant digits) to the optimal service prices.

4.2 Outer loop algorithms

In this subsection we show numerical results resulting from the combination of
the inner and outer loops. As in Sect. 4.1, the algorithm described in Part I of



402 T. M. Stoenescu et al.

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Iteration

Li
nk

 p
ric

e

Price on link 5 

Price on link 1 

Price on link 6 

Fig. 6 Scarf’s algorithm for D = 50
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Fig. 7 Scarf’s algorithm for D = 200

this two-part paper is used for the inner loop, while for the outer loop we use both
Scarf’s algorithm and Eaves’ (K1) algorithm.

Figures 6 and 7 show the results from Scarf’s algorithm with D = 50 and 200,
respectively. In both figures we present the prices on the links at each iteration of
the algorithm. In particular, only the prices on links 1, 5 and 6 have been displayed
since the other prices remained zero. As expected, for D = 200 Scarf’s algorithm
takes more iterations to converge than for D = 50, but gives a better resolution.

Table 2 compares the optimal service prices to those resulting from the mar-
ket mechanism used in this paper (Figs. 6,7). We note that as the value of D
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Table 2 The service prices and user demands generated from the results of Figs. 6 and 7

User 1 User 2 User 3 User 4 User 5 User 6

Scarf’s D = 50
Price 0.1122 1.0714 0.3954 0.3189 0.1684 0.5051
Demand 88.093 17.667 77.398 77.398 88.093 88.093

Scarf’s D = 200
Price 0.0172 0.9831 0.3847 0.3102 0.1526 0.4577
Demand 97.3283 19.3438 79.5871 79.5871 97.3283 97.3283

Optimal
Price 0.0990 0.9523 0.3827 0.3086 0.1485 0.4455
Demand 100 20 80 80 100 100

increases the link prices determined by Scarf’s algorithm generate service prices
which approach the optimum. We know from the theoretical analysis that the opti-
mal service prices resulting from the market mechanism are arbitrarily close to the
optimal service prices as D → ∞.

From the computational point of view, Scarf’s algorithm has two major charac-
teristics: (1) It requires that the algorithm be initiated at a vertex of the unit simplex;
and (2) If an answer is obtained with a fixed grid whose accuracy is inadequate
for the problem at hand, the algorithm must be restarted with a finer grid, and
the results of the previous calculations are discarded completely. The algorithms
introduced by Merrill (1972), van der Laan and Talman (1979, 1983), and Eaves
(1972) permit the computation to be initiated at an arbitrary point in the simplex
and allow a continual refinement of the grid. They yield a vast improvement in
computational speed over the earlier algorithms of Scarf that require a fixed sim-
plex decomposition, and are used in virtually all practical applications of fixed
point methods.

For comparison purposes, in Fig. 8 we present the simulation result for the
same problem as above with the outer loop being implemented by Eaves’ (K1)
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Fig. 8 The simulation result using Eaves (K1) algorithm
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algorithm Eaves (1972) rather than Scarf’s algorithm. We note that after 80 itera-
tions the algorithm achieves link prices which are close to those achieved by Scarf’s
algorithm.

The numerical results of the outer loop have been conducted on a Pentium III
machine. For the examples presented, Scarf’s algorithm (D=50), Scarf’s Algorithm
(D = 200), and Eaves K1 algorithm (first 82 iterations) took approximately 1, 3
and 1.5 min, respectively.

5 Critique, discussion and reflection

We have presented an approach for optimal admission and resource allocation
control in multi-rate multicast. This approach has the following features.

1. It provides a framework for solving decentralized constrained resource alloca-
tion problems that are more general than the problem invested in this paper.

2. Resource allocations are based on the solution of a constraint static optimiza-
tion problem, namely Max 1. The solution of Max 1 is realized by a market
mechanism that is hierarchical and satisfies the informational constraints of the
network resource allocation problem.

3. There is no cost associated with the supply of network resources.

We now discuss and critique each one of the above features:
(1) We believe that this work provides a framework for developing market methods
for solving decentralized constrained resource allocation problems that are more
general than the problem investigated here. As an example consider the follow-
ing situation. Services are again provided along fixed multicast trees, but there
are additional Quality of Service (QoS) requirements expressed by the end-to-end
delay, and end-to-end percentage of packet loss etc. The objective function and the
informational constraints remain the same as in Problem Max 1 and Sect. 3.1. The
Market mechanism proposed in this paper is ideally suited to handle end-to-end
QoS requirements. This was already demonstrated in the unicast problem (Thomas
et al. 2002) as well as in the unicast routing problem (Stoenescu and Teneketzis
2002). The service provider that determines the optimal price sharing along each
link of a multicast tree (for fixed link prices) can also ensure that the services
provided satisfy their QoS requirements.
(2) Problem Max 1 is a static constrained optimization problem. Its solution can be
interpreted as the set of “equilibrium allocations”. Thus, even though the market
mechanism described in this paper is an iterative process, its outcome is a static
equilibrium solution and it can not handle dynamic user arrivals and departures.
The iterative nature of the market mechanism is necessitated by the fact that the
overall network system (network management and users) is an informationally
decentralized system. To achieve an optimal solution of the corresponding static
centralized problem the network management and the users must exchange infor-
mation/messages with one another. Such a message exchange process must possess
the “privacy preserving” property; that is, the network manager’s and each user’s
messages at each stage of the iterative process must be based only on their private
information and the information they have received from previous communications
(Hurwicz 1973, 1986; Mount and Reiter 1971). Furthermore, the message gener-
ating functions must satisfy certain “regularity conditions” (Hurwicz 1973, 1986;
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Mount and Reiter 1971) that guarantee that the outcome of the resource allocation
process is “robust” with respect to errors (due for example to approximations) that
may occur in the message exchange process. This information exchange allows
the network management to “learn” about the users’ preferences (utilities) and
eventually maximize the network’s utility to its users. “Learning” requires an iter-
ative process of information exchange and such an iterative process is described by
our market mechanism. In the case where the users’ utility functions are general
concave functions the network manage does not “learn” perfectly the users’ utility
functions, yet the market mechanism converges to an optimal solution of the cen-
tralized problem Max 1. When the users’ utility functions came from a class which
is parameterized by a finite number of parameters the network manager “learns”
perfectly (in the first iteration of the outer loop) the users’ utility functions.
(3) We have assumed that there is no cost in supplying network resources (such
as bandwidth and buffers) to the market. We can incorporate the cost of supplying
network resources into our model by subtracting if from the objective function of
the optimization problem Max 1. We believe that the problem arising in this situa-
tion will have the same qualitative properties as Max 1, and the resource allocation
methodology proposed in this paper can be used for its solution.

Next we comment on issues associated with our approach to the solution of the
multi rate multicast rate allocation problem formulated in this paper. Specifically,
we address the following:

(a) The relation between a solution of Max 1 and the choice of a particular D,
defined in Sect. 3.4.

(b) Improvement in performance of the computation of the link price share.
(c) The assumption that the user utility functions are differentiable.
(d) The uniqueness of the optimal link price shares for a fixed set of link prices.
(e) The fact that the determination of service prices along each multicast tree is

independent of the demand on other multicast trees (see Part I, Sect. 3, Property
3.6).

We discuss each issue separately.
(a) We proved the existence of a solution to the optimization problem Max 1 and
presented in Sect. 3.2.1 an algorithm (Algorithm �) that converges to such a
solution.

Algorithm � works by taking a sequence of sets, denoted by {P D}D∈N, of
evenly distributed points in the simplex S. For each one of these sets the algorithm
generates a primitive set W D , satisfying the properties of Lemma 1. The theory
tells us that as D goes to infinity, a subsequence W D of primitive sets will contain a
solution of Max 1. Since the size (diameter) of W D goes to 0 as D goes to infinity,
we are able to approximate a solution of Max 1 by Algorithm �.

The question that remains is: “For a given D, do we know if a solution of Max 1
is contained in W D , and if not, how far away is W D from a solution of Max 1?” We
can not answer this question in general. The answer depends on the behavior of the
excess demand function zl(λ), for all l ∈ L . Hence, without any further assump-
tions on the behavior of zl(λ), l ∈ L , all we can guarantee is that in the limit, as
D → ∞, Algorithm � will lead to a solution of Max 1. That is, as D → ∞ the
size of W D decreases, and under certain regularity conditions (that relate the local
maxima and local minima of zl(λ), l ∈ L) W D will contain a solution of Max 1. On
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the other hand, based on the observations made while conducting the simulation of
the algorithms we have concluded that in the case in which the utility functions are
“smooth” (e.g. log(x),

√
x) Scarf’s algorithm “closely” approximates an optimal

set of link prices for relatively small values of D.
(b) We assumed that the computation performed by the price sharing algorithm in
Part I of this two-part paper at each iteration of the auctioneer price adjustment
scheme is done independently of prior iterations of the price sharing algorithm. It
may be possible for the service provider to use the data from previous iterations of
the price sharing algorithm to expedite the computational process. For that matter,
learning theory may be useful to the service provider in determining the users’
utility functions.
(c) We assumed that the user utility functions are differentiable. This assumption
is essential in the proof of convergence of the price splitting algorithm used in
the inner loop (Part I Lemma B.3) and the proof of the continuity of the excess
demand function with respect to λ (Lemma 6). Both of these results are crucial
in proving that the market based mechanism converges to an optimal solution of
Problem Max 1. There is a possibility that using different proof technique methods
the differentiability assumption may be removed.

We would also like to note that the differentiability assumption is not required
in the development of the properties presented in Part I Sect. 3.
(d) We proved in Part I of this paper that for any link price λ we can determine
an optimal service price p(r, λ). In Appendix B we prove that for any r ∈ R the
allocation xr (p(r, λ)) and the excess demand z(λ) are continuous functions of λ.
Due to the differentiability of the utility functions this implies that for any λ there
is a unique xr (pr (r, λ)) and a unique pr (r, λ).

This is a surprising result to us since it shows that although the dimensionality
of the shadow prices γ is much larger than the dimensionality of the link prices λ,
for any set of link prices λ any set of optimal shadow prices γ generated from λ
will generate the same service price p(r, λ).

We also note that at the optimal solution of Problem Max 1, since the utility func-
tions are strictly concave and the set of feasible solutions is convex, xr (pr (r, λ)) is
unique. Since the utility functions are also assumed to be differentiable we also have
that the set of service prices pr (r, λ) is unique. However, the set of λ generating
the optimal set of service prices may not be unique.
(e) In Part I (Sect. 3 Property 3.6) we showed that the determination of service
prices along a given multicast tree is independent of the demand on other multicast
trees. This result has an interesting implication. Note that unicast is a special case
of multicast with only one user connected to the tree. Therefore the same solution
approach introduced in this paper may be applied equally to all flows (multicast
and unicast) simultaneously on the same network by treating unicast flows as mul-
ticast. Under this utility maximizing formulation, the capacity constraints will be
the total capacity on each link, therefore we do not need to dedicate link capacity
solely for multicast services.

6 Conclusion

In Part II of this two-part paper we presented a market based mechanism and an
adjustment process that satisfy the informational constraints imposed by the nature
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of multirate multicast. When they are combined with the results of Part I they result
in an optimal solution of the corresponding centralized multirate multicast problem.

The two parts combined present a systematic approach to the optimal rate allo-
cation in multirate multicast networks, that is described by a two-level convergent
iterative procedure that leads to an optimal solution of a general decentralized rate
allocation problem.

The main contributions of this two-part paper include (1) the development of
properties of the optimal price per unit of service given an optimal price per unit of
rate on each link (presented in Part I); (2) the construction of a distributed algorithm
that determines the optimal service prices given a fixed set of prices per unit of rate
on each link (presented in Part I); and (3) the development of a market-based mech-
anism which achieves an aggregate utility maximizing (i.e., welfare maximizing)
solution for the informationally decentralized network problem (presented in Part
II). The notion of “splitting tree” introduced in this paper was key to our overall
development. In addition we presented numerical results on the convergence of
both the price splitting algorithm (the inner loop) and the market-based iterative
procedure (the outer loop).

As we have pointed out, the multicast rate allocation formulation adopted in
this two-part paper is a reasonable one when the users are assumed to have no
knowledge about the type of services they are receiving and how resources are
shared under these services. If the users do possess such information, then a differ-
ent formulation of the problem (e.g., regarding the links shared by multiple users
as public goods) may be more appropriate. This remains an open problem, and is
part of our future work.

Appendices

A Parameterized utility functions

In this section we present two classes of parameterized utility functions which ap-
pear in economic literature Mas-Colell et al. (1995). We assume that the exchange
of information between the network and users is through prices, i.e. network adver-
tises a price per unit of service to each user, and each user, based on its price, has
a demand which maximizes its utility.

Bernoulli utility functions
Let U (x) be of the form:

U (x) = βx� + γ, β > 0, � ∈ [0, 1), γ ∈ R. (A.1)

Note that since the user is utility maximizing, for a price p advertised by the
network, the user will have a demand x(p) for which:

U ′(x(p)) ≤ p (A.2)

with equality being satisfied when x(p) is an interior point of the set of the possible
demands.

For this example Eq. (A.2) takes the following form:

p ≥ β�x(p)�−1. (A.3)
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Taking p1 �= p2, and p1, p2 positive, we obtain

p1

p2
=

(
x(p1)

x(p2)

)�−1

(A.4)

from which we can determine �. Substituting � back into Eq. (A.3) we can find
the value of β. Note that the value of γ is irrelevant for the purpose of maximizing
users’ total utility, and it can be taken to be any arbitrary constant. So if the util-
ity functions are of the form (A.1) the network can determine them in two iterations.

Exponential utility functions
Let U (x) be of the form:

U (x) = 1 − e−ax , a > 0. (A.5)

Substituting (A.5) in U ′(x(p)) ≤ p we obtain:

p ≥ ae−ax(p) (A.6)

Note that for values of p greater than a the demand x(p) is zero. Also note that
for any non-zero p which is smaller then a the demand will be strictly positive.
Given two non-zero pairs of (p, x(p)) satisfying Eq. (A.6) one can determine the
utility function U (x).

In this case the number of iterations needed by the network in order to deter-
mine the users’ utility functions is not fixed. This is due to the fact that the network
has to first guess a small enough value of p which is less than a. After such a
value of p is determined, only one more iteration is needed in order to determine
parameter a. Note that if we know that the value of a is bounded below by some
constant c, then by choosing p to equal c

2 and c
4 for example, we can determine

the utility function.
In this appendix we presented methods for determining utility functions that

belong to families parameterized by two parameters. A similar approach can be
applied to utility functions that belong to families that are parameterized by a
different number of parameters.

B Proof of Proposition 1

The proof of this proposition uses much of the terminology, notation, and many
results developed in Part I of this two-part paper. We refer the reader to Part I of
the paper for any notation or results not defined/stated in this section.

We will first show that xr (p(r, λ)) is continuous function of λ. Using Property
3.6 from Part I, it is enough to only look at one fixed multicast tree, say m ∈ M .
To prove continuity of the user demand xr (p(r, λ)) with respect to link prices λ
we have to show that given a fixed set of link prices {λl : l ∈ Lm}, and any link
l ∈ Lm , a continuous change in the price λl will result in a continuous change in
the demand of the users of multicast tree m. After establishing the continuity of
xr (p(r, λ)) with respect to λ, the continuity of excess demand z(λ) with respect to
λ follows immediately.

We proceed as follows: In Lemma 3 we describe a property of the rate demanded
by the users of a splitting tree. In Lemmas 4–5 we obtain relations between changes
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in link prices, service prices and splitting trees. The results of Lemmas 3–5 are used
to obtain Lemma 6 which establishes that the user service prices are monotonic
functions of λ. Finally Lemma 6 together with Property 3.2 from Part I are com-
bined to complete the proof of the theorem.

Lemma 3 For any r ∈ Rm and any λ ≥ 0̄, xr (p(r, λ)) ≥ xq(p(q, λ)), where
q ∈ Rr (γ (λ)).

This Lemma states that the rate demanded by the users of the splitting tree of
user r is less then or equal to the rate of r .

Proof This follows directly from the definition of a splitting tree (Definition 3.2
from Part I). 	

Lemma 4 Given λ and λ′, if there exists r ∈ Rm such that p(r, λ) > p(r, λ′), then
there exists r ′ ∈ Rm such that p(r ′, λ) > p(r ′, λ′) and Tr ′(γ (λ)) ⊆ Tr ′(γ (λ′)).

Lemma 4 states that if for two different sets of link prices the service price of
one user decreases, then there exist a user in the same multicast tree (possibly the
same user) for whom the service price decreases and its splitting tree increases.

Proof Let r ′ =argmaxq∈Rr (γ (λ)) xq(p(q, λ′)). By Lemma 3 we have that Tr ′(γ (λ))

⊆ Tr (γ (λ)). Since xr ′(p(r ′, λ′)) ≥ xq(p(q, λ′)), for any q ∈ Rr (γ (λ)), by the
definition (Definition 3.2 Part I) of a splitting tree Tr (γ (λ)) ⊆ Tr ′(γ (λ′)). From
Lemma 3, the fact that the utilities are strictly concave, and the fact that r ∈
Rr (γ (λ)), respectively, we get the following sequence of inequalities: xr ′(p(r ′, λ))
≤ xr (p(r, λ)) < xr (p(r, λ′)) ≤ xr ′(p(r ′, λ′)). But these inequalities imply that
p(r ′, λ) > p(r ′, λ′) which concludes the proof. 	

Lemma 5 Given λ and λ′, if there exists r ∈ Rm such that p(r, λ) < p(r, λ′), then
there exists r ′ ∈ Rm such that p(r ′, λ) < p(r ′, λ′) and Tr ′(γ (λ′)) ⊆ Tr ′(γ (λ)).

Lemma 5 proves the converse of Lemma 4. In particular it states that if for two
different sets of link prices the service price of one user increases, then there exist
a user in the same multicast tree (possibly the same user) for which the service
price increases and its splitting tree decreases.

Proof Consider the set ofS � {q : q ∈ Rm, p(q, λ) < p(q, λ′)}. Note thatS �= ∅
since r ∈ S. Let s ∈ S such that �(Ts(γ (λ))) ≥ �(Tq(γ (λ))) for any q ∈ S. Note
that if s is such that Ts(γ (λ)) is the whole multicast tree, then Ts(γ (λ′)) ⊆ Ts(γ (λ))
and the lemma is true, otherwise we prove that Ts(γ (λ′)) ⊆ Ts(γ (λ)) by contra-
diction. Assume by contradiction that Ts(γ (λ)) ⊂ Ts(γ (λ′)). Let t be the parent
branch of the root of Ts(γ (λ)) (t exists since we have assumed that Ts(γ (λ)) is not
the whole multicast tree). Pick q to be a receiver such that t ∈ Tq(γ (λ)) (q exists
since there is at least one user downstream link t with a rate demand equal to the
rate on link t). Note that t ∈ Ts(γ (λ′)) which implies that q ∈ Ts(γ (λ′)) (as t is the
parent branch of the root of Ts(γ (λ)) and t ∈ Tq(γ (λ))), so q ∈ Rs(γ (λ′)). Also
note that �(Tq(γ (λ))) > �(Ts(γ (λ))), which implies that q /∈ S. We have the chain
of inequalities: xq(p(q, λ′)) ≤ xs(p(s, λ′)) < xs(p(s, λ)) < xq(p(q, λ)), where
the first inequality follows from Lemma 3, the second from the strict concavity
of the utility functions and the fact that s ∈ S, and the third from the fact that
t ∈ Tq(γ (λ)) but t /∈ Ts(γ (λ)). The inequalities give us that p(q, λ) < p(q, λ′),
so q ∈ S, which is a contradiction. Consequently Ts(γ (λ′)) ⊆ Ts(γ (λ)). 	
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The following lemma shows that if any of the link prices is increased
(respectively decreased) then the optimal service price for any receiver can not
decrease (respectively can not increase); that is for each receiver, the optimal ser-
vice price is a monotonically increasing function of λ.

Lemma 6 Let δ > 0 and λ′
l = λl + δ, and λ′′

l = max(λl − δ, 0), for some
l ∈ Lm and λ′

e = λ′′
e = λe for all e ∈ Lm, e �= l. Then for all r ∈ Rm,

p(r, λ′) ≥ p(r, λ) ≥ p(r, λ′′).

Proof In order to prove that p(r, λ′) ≥ p(r, λ) it is enough to prove that xr (p(r, λ′))
≤ xr (p(r, λ)). Assume by contradiction that there exists r ′ ∈ Rm such that
xr ′(p(r ′, λ′)) > xr ′(p(r ′, λ)). Using Lemma 4 we can find an r (possibly same as
r ′) such that xr (p(r, λ)) > xr (p(r, λ)) and Tr (γ (λ)) ⊆ Tr (γ (λ′)).

The sum of the service prices of the receivers of the splitting tree Tr (γ (λ)) at
link price λ′ is:

τ +
∑

e∈Lm∩Tr (γ (λ))

λe + ϕ =
∑

q∈Rr (γ (λ))

p(q, λ′), (B.1)

where τ is the price incurred by the receivers Rr (γ (λ)) from the links preceding
the root of Tr (γ (λ)), and ϕ is δ if l ∈ Lm ∩ Tr (γ (λ)) or 0 otherwise.

This sum can also be rewritten as:
∑

q∈Rr (γ (λ))

p(q, λ′) =
∑

q∈Rr (γ (λ))∩Rr (γ (λ′))

p(q, λ′) +
∑

q∈Rr (γ (λ))\Rr (γ (λ′))

p(q, λ′),

(B.2)
where the first summation of the right hand side is the sum of the service prices
of receivers of the splitting tree Tr (γ (λ)), which at λ′ have the same demand as
r , and the second sum corresponds to the sum of the optimal service prices of the
users which are not splitting with r .

For any q ∈Rr (γ (λ))∩Rr (γ (λ′)), xq(p(q, λ′))= xr (p(r, λ′))> xr (p(r, λ))≥
xq(p(r, λ)), implies p(q, λ′) < p(q, λ). This gives us that:

∑

q∈Rr (γ (λ))∩Rr (γ (λ′))

p(q, λ′) <
∑

q∈Rr (γ (λ))∩Rr (γ (λ′))

p(q, λ). (B.3)

Also note that
∑

q∈Rr (γ (λ))\Rr (γ (λ′))

p(q, λ′) =
∑

e∈Lr (γ (λ))\Lr (γ (λ′))

λe + ϕ (B.4)

≤
∑

q∈Rr (γ (λ))\Rr (γ (λ′))

p(q, λ) + ϕ. (B.5)

We derive (B.4) and (B.5) as follows: From Part I, Property 3.2, we have that
the sum of link prices in a splitting tree is equal to the sum of service prices over
all the users of that particular splitting tree. From Part I, Property 3.3, we have that
on a fixed splitting tree, the sum of the link prices over the links with maximal rate
is equal to the sum of the service prices over all the users demanding the maximal
rate on that particular splitting tree. Combining these two results we have that for a
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fixed splitting tree, the sum of the service prices over the users demanding strictly
less then the maximal rate on that splitting tree is equal to the sum of the link
prices over the links on which the rate demanded is not maximal, which implies
the equality in (B.4). Property 3.4 from Part I states that for any given subtree, the
sum of service prices of the users on that subtree is equal to the sum of link prices
of that subtree plus the price on the links incurred upstream of the subtree. This
result implies the inequality in (B.5).

Combining equations (B.3)–(B.5) we get:

∑

q∈Rr (γ (λ))∩Rr (γ (λ′))

p(q, λ′) +
∑

q∈Rr (γ (λ))\Rr (γ (λ′))

p(q, λ′)

<
∑

q∈Rr (γ (λ))∩Rr (γ (λ′))

p(q, λ) +
∑

q∈Rr (γ (λ))\Rr (γ (λ′))

p(q, λ) + ϕ (B.6)

while,
∑

q∈Rr (γ (λ))∩Rr (γ (λ′))

p(q, λ) +
∑

q∈Rr (γ (λ))\Rr (γ (λ′))

p(q, λ) + ϕ

=
∑

q∈Rr (γ (λ))

p(q, λ) + ϕ

=
∑

e∈L∩Tr (γ (λ))

λe + ϕ. (B.7)

Combining Eqs. (B.1),(B.2),(B.6), and (B.7) we get τ +∑
e∈Lm∩Tr (γ (λ)) λe +ϕ

<
∑

e∈Lm∩Tr (γ (λ)) λe+ϕ. This contradiction is due to the fact that we have assumed
that xr (p(r, λ′)) > xr (p(r, λ)). Consequently, p(r, λ′) ≥ p(r, λ).

For the second inequality the problem is similar. Assume that there exists r ∈ R
such that xr (p(r, λ)) > xr (p(r, λ′′)). Pick the r such that Lemma 5 is satisfied.
Then:

∑

e∈Lm∩Tr (γ (λ′′))
λe − ϕ =

∑

q∈Rr (γ (λ′′))
p(q, λ′′) (B.8)

=
∑

q∈Rr (γ (λ′′))

p(q, λ′′) +
∑

q∈Rr (γ (λ′′))\Rr (γ (λ′′))

p(q, λ′′)

(B.9)

>
∑

q∈Rr (γ (λ′′))

p(q, λ) +
∑

q∈Rr (γ (λ′′))\Rr (γ (λ′′))

p(q, λ) − ϕ

(B.10)

=
∑

q∈Rr (γ (λ′′))
p(q, λ) − ϕ (B.11)

=
∑

e∈Lm∩Tr (γ (λ′′))
λe + τ − ϕ. (B.12)
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Equations (B.8), (B.9), and (B.11) we get by rearranging the terms. Equation (B.10)
is true by the same argument as in the proof of the first part, since

∑
q∈Rr (γ (λ′′))

p(q, λ′′) >
∑

q∈Rr (γ (λ′′)) p(q, λ), and
∑

q∈Rr (γ (λ′′))\Rr (γ (λ′′)) p(q, λ′′) >∑
q∈Rr (γ (λ′′))\Rr (γ (λ′′)) p(q, λ)−ϕ. Finally Eq. (B.8) follows by Property 3.4 from

Part I, where τ is the price incurred on the links upstream of Tr (γ (λ′′)).
The above chain of equations gives us the contradiction, which is due to the

assumption that xr (p(r, λ′′)) < xr (p(r, λ)). Consequently, p(r, λ) ≥ p(r, λ′′). 	

Based on Lemma 6 and Property 3.2 from Part I we complete the proof of

Proposition 1. Let ε > 0 and fix l ∈ Lm and λ ≥ 0. Using Assumption 1, for each
receiver r we can choose a δr > 0 such that for any y ∈ (

p(r, λ)−δr , p(r, λ)+δr
)
,

‖xr (y) − xr (p(r, λ))‖ < ε. Take δ = minr∈Rm δr .
We prove now that the function xr (p(r, λ)) is continuous from the right. Let

λ′
l ∈ (

λl , λl + δ
)
. Using Property 3.2 from Part I we have:

∑

r∈Rm

p(r, λ)=
∑

e∈Lr (γ (λ))

λe =
∑

e∈Lr (γ (λ′))
λe + (λl − λ′

l)=
∑

r∈Rm

p(r, λ′) + (λl − λ′
l).

(B.13)
From Lemma 6 we have that

p(r, λ) ≤ p(r, λ′) ∀r ∈ Rm . (B.14)

Combining equations (B.13) and (B.14) we get that for all r ∈ Rm we have
|p(r, λ)− p(r, λ′)| < δ, which implies that ‖xr (p(r, λ′))− xr (p(r, λ))‖ < ε. This
concludes the proof of the right continuity of xr (p(r, λ)) in λ.

For the proof of left continuity we proceed in a similar fashion. Let λ′′
l ∈(

λl − δ, λl
)
. Using Property 3.2 from Part I we have:

∑

r∈Rm

p(r, λ)=
∑

e∈Lr (γ (λ))

λe =
∑

e∈Lr (γ (λ′′))
λe +(λl −λ′′

l )=
∑

r∈Rm

p(r, λ′′)+(λl −λ′′
l ).

(B.15)
From Lemma 6 we have that

p(r, λ) ≥ p(r, λ′′) ∀r ∈ Rm . (B.16)

Combining Eqs. (B.15) and (B.16) we get that for all r ∈ Rm we have |p(r, λ)−
p(r, λ′′)| < δ, which implies that ‖xr (p(r, λ′′))−xr (p(r, λ))‖ < ε. This concludes
the proof of the left continuity of xr (p(r, λ)) in λ. Since x(p(r, λ)) is left and right
continuous in λ it is a continuous function in λ.

Since max and summation are continuous operators, the continuity of
xr (p(r, λ)) implies that z(λ) will be a continuous function of λ. 	


C Proof of Proposition 2

Let q ∈ C. Then q0 > 0 because q ∈ Cl . Furthermore, since q ∈ C0 and q0 > 0,
we have that: ∑

m∈M

max
r∈Rl,m

xr (p(r, λ(q))) ≤ cl for all l ∈ L . (C.1)
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which makes x(λ(q)) � {xr (p(r, λ(q)))}r∈R a feasible solution to problem Max 1.
We now define the Lagrangian function:

(x, λ) �
∑

r∈R

Ur (xr ) −
∑

l∈L

λl

( ∑

m∈M

max
r∈Rl,m

xr − cl

)
(C.2)

Let x be any other feasible solution to Max 1. Then from Part I, Sect 3, we have
that:


(

x(λ(q)), λ(q)
) ≥ (x, λ(q)) . (C.3)

From (C.3) we have,

∑

r∈R

Ur (xr (p(r, λ(q)))) −
∑

l∈L

λl(q)

( ∑

m∈M

max
r∈Rl,m

xr (p(r, λ(q))) − cl

)

≥
∑

r∈R

Ur (xr ) −
∑

l∈L

λl(q)

( ∑

m∈M

max
r∈Rl,m

xr − cl

)
(C.4)

Notice that q ∈ Cl implies that ql = 0 (i.e. λl(q) = 0 ), or that,
∑

m∈M

max
r∈Rl,m

xr (p(r, λ(q))) ≥ yl(λ(q)) = cl . (C.5)

If ql > 0 , then from (C.1) and (C.5) it follows that
∑

m∈M

max
r∈Rl,m

xr (p(r, λ(q))) = cl . (C.6)

Therefore,
∑

l∈L

λl(q)

( ∑

m∈M

max
r∈Rl,m

xr (p(r, λ(q))) − cl

)
= 0. (C.7)

Since x is a feasible solution to Max 1 we have that,
∑

m∈M

max
r∈Rl,m

xr ≤ cl , for all l ∈ L . (C.8)

Multiplying (C.8) by λl(q) ≥ 0 and summing over all l ∈ L , gives,

∑

l∈L

λl(q)

( ∑

m∈M

max
r∈Rl,m

xr − cl

)
≤ 0. (C.9)

Inequalities (C.4), (C.7) and (C.9), give,
∑

r∈R

Ur
(
xr (λ(q))

) ≥
∑

r∈R

Ur (xr ), (C.10)

which shows that x(λ(q)) solves Max 1. This concludes the proof of Proposition 2.
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