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Abstract In this two-part paper we present a general framework for addressing
the optimal rare control problem in multirate multicast where the objective is the
maximization of a social welfare function expressed by the sum of the users’ util-
ity functions. Specifically, we propose a market-based mechanism that satisfies
the informational constraints imposed by the decentralization of information in
multirate multicast service provisioning, and achieves an optimal solution to the
corresponding centralized optimization problem. In Part I we discover properties
of an optimal solution to the centralized problem. Based on these properties, we
develop a distributed algorithm that determines how link prices are split among
users whose connections along a multicast tree share the same link.

Keywords Multirate multicast · Rate allocation · Pricing mechanism ·
Price splitting

1 Introduction

Multicasting provides an efficient method of transmitting data in real time
applications from one source to many users. The source sends one copy of a
message to its users and this copy is replicated only at the branching points of
a multicast tree. Real time examples of such multicast applications are audio/video
broadcasting, teleconferencing, distributed databases, financial information, elec-
tronic newspapers, weather maps and experimental data.
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Conventional multicast studies the problem in which the rate received by all
the users of the same multicast group is constant. The inherent problem with such
a formulation is that a constant rate will overwhelm the slow receivers while starv-
ing the fast ones. Multi-rate transmissions can be used to address this problem by
allowing a receiver to obtain data at a rate that satisfies its requirements. One way
of achieving this is through hierarchical encoding of the transmission, in which
a signal is encoded into multiple layers that can be incrementally combined to
improve quality. These hierarchical encoding type of transmission schemes have
been investigated both for audio and video transmissions over the Internet (Bially
et al. 1980; Turletti and Bolot 1994) and over ATM networks (Kishino et al. 1989).
Internet protocols for adding and dropping layers for hierarchical encoding type of
transmissions are presented in (Li et al. 1998) and (McCanne et al. 1996).

Within the context of single rate and multi-rate multicast problems, studies
have addressed issues of bandwidth/rate allocation (Kar et al. 2001a; Sarkar and
Tassiulas 2000b, 1999, 2002, 2001, 2000a; Kar et al. 2002; Rubenstein et al. 1999;
Graves et al. 2001; Shapiro et al. 2000; Tzeng and Siu 1997; Deb and Srikant
2004), routing (Zegura 1993; Park et al. 1995; Donahoo and Zegura 1996; Donahoo
et al. 1997; Shapiro et al. 2002) and reliability (Gupta and Walrand 1999; Kasera
et al. 2000; Duffield et al. 2002). Most of the literature on rate allocation is done
via the notion of fairness (Sarkar and Tassiulas 2000b, 1999, 2002, 2001, 2000a;
Rubenstein et al. 1999; Graves et al. 2001; Shapiro et al. 2000; Tzeng and Siu 1997;
Deb and Srikant 2004), specifically, max-min fairness (Bertsekas and Gallagher
1992) and proportional fairness (Kelly 1997). In particular, (Sarkar and Tassiulas
2002) develops a unified framework for diverse fairness objectives via the notion
of fair allocation of utilities. A more general approach to rate allocation is via
utility maximization. Utility maximizing is more general because rate allocation
with the fairness property is utility maximizing when the utility has a special
form (Massoulie and Roberts 1999; Sarkar and Tassiulas 2002; Deb and Srikant
2004; Shapiro et al. 2000). Although utility maximization has been extensively
studied within the context of unicast rate allocation to achieve congestion con-
trol (Kelly et al. 1998; Kelly 1994; Bartal et al. 1997; Low and Lapsley 1999;
Kunniyur and Srikant 2000; La and Anantharam 2000; Kar et al. 2001a; Thomas
et al. 2002; Stoenescu and Teneketzis 2002), relatively fewer studies approached
the multi-rate multicast allocation problem via a general utility maximization for-
mulation, with the notable exceptions (Deb and Srikant 2004; Kar et al. 2001a,
2002). Specifically, (Kar et al. 2001a) introduces a solution based on dual meth-
ods and (Kar et al. 2002) derives a primal algorithm based on non-differential
optimization methods, both assuming that the users’ utility functions are twice
continuously differentiable and their second derivative bounded. Algorithms intro-
duced in (Deb and Srikant 2004; Kar et al. 2001a, 2002) have a “flat architecture”
in that the optimal rate allocation messages are exchanged among nodes on the
multicast tree.

In this two-part paper we present a market-based approach/mechanism to
multi-rate multicast service provisioning. This approach relies upon: (i) the assump-
tion that users are unaware of the method of service delivery (e.g., they do not
know whether service provisioning is unicast or multicast and thus it is reasonable
to assume that they are price-takers); and (ii) the properties of the optimal solu-
tion to the corresponding centralized resource allocation problem. The proposed
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market-based mechanism satisfies the informational constraints imposed by the
nature of the multicast problem, results in a hierarchical architecture for resource
allocation [as opposed to the flat architecture used in (Deb and Srikant 2004; Kar
et al. 2001a, 2002)], and employs a Tâtonnement process that is different from
those of (Deb and Srikant 2004; Kar et al. 2001a, 2002).

The market mechanism consists of two types of agents: (1) the network
(auctioneer and service provider); and (2) the users. The network (auctioneer)
announces prices per unit of rate at each link of the network. The service pro-
vider determines the service price per unit of rate for each user and announces
these prices to the users. The users respond with a demand. Based on the excess
demand, the auctioneer revises the link prices per unit of rate and the process
repeats. This market mechanism looks at first glance like market mechanisms for
unicast service provisioning (e.g., (Stoenescu and Teneketzis 2002; Thomas et al.
2002)). The additional difficulty that arises in multirate multicast service provi-
sioning (as compared to unicast) is in the determination of service prices given a
set of fixed link prices. Since only one copy of the information is sent along links
used by more than one user, the key issue in determining service prices is to spec-
ify how a link’s price is split among the users that share the link. The mechanism
proposed in Part I of this two-part paper resolves this issue.

The Tâtonnement process we present in this two-part paper can be viewed as a
hierarchical process consisting of two layers: a lower layer and an upper layer. In
the lower layer of the process we solve the service provider’s problem. That is, we
present an algorithm which for a fixed set of link prices determines the price per
unit of service for each user. The algorithm also specifies the price-sharing of links
that are used by more than one user. In the upper layer of the hierarchy we present
a link price adjustment process (for the auctioneer) that is based on excess demand
at each link. The results of the upper and lower layers combined together lead to
an allocation which is an optimal solution of the centralized multirate multicast
problem.

The major contribution of Part I of this paper is the solution to the service
provider’s problem, mentioned above, and the determination of optimal link price-
sharing among the users of a link. The methodology for determining optimal link
price-sharing is different form the work cited earlier; it is also different from that of
(Friedman 1999; Herzog et al. 1997) which is based on cooperative game theory.

Under the assumption that the users are unaware of the method of delivery of
services, the formulation of the multirate multicast problem presented in this paper
and in (Deb and Srikant 2004; Kar et al. 2001a, 2002) is a reasonable one. If the
users are aware that service delivery is done by multicast, then the price-taking
assumption is hard to justify and a more appropriate formulation of the multirate
multicast problem may be one where the links shared by more than one user are
treated as public goods (Mas-Colell et al. 1995, Chap. 11). Such a formulation
could prevent the users from hiding their true characteristics (e.g. their true utility
functions) so as to benefit, and could avoid the free-rider problem (Mas-Colell et al.
1995, Chap. 11) which in the context of the multirate multicast problem manifests
itself as follows: the price of a link that is used by more than one user is shared
only by those users that demand the maximal rate.

The remainder of this paper is organized as follows. In Sect. 2 we formally pres-
ent the centralized multi-rate multicast problem. In Sect. 3 we develop properties
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of the optimal solution of this problem. In particular these properties determine
the optimal price sharing along each multicast tree. Using the properties developed
in Sect. 3, we present in Sect. 4 an iterative algorithm which computes the opti-
mal price per unit or service given a fixed price per unit of rate on each link. We
conclude the paper in Sect. 5.

2 The multicast problem

In this section, we present the mathematical formulation of a network multirate
multicast problem.

2.1 The model, terminology and notation

Consider a network consisting of a set of L unidirectional links, each link l ∈ L
having finite capacity cl . The network is used by a set M of multicast groups.
Each multicast group m ∈ M is specified by {sm, Rm, Lm}, where sm is the unique
source node, Rm is the set of receiver nodes, and Lm is the set of links used by the
group. Since each multicast group is a tree Fig. 1, we are going to use the terms
multicast group and multicast tree interchangeably.

We now present some terminology used for the multicast groups that is sim-
ilar to terminology developed in (Kar et al. 2001a, 2002). We start by looking at
the nodes that are part of an arbitrary multicast group m. There are four types of
nodes in this group: the source node sm , receiver nodes r ∈ Rm , junction nodes
and non-junction nodes. The junction nodes are the nodes that are connected to
more than two links of Lm , i.e. they are connected to a link which will lead to the
source and to two or more other links which will lead to some subset of Rm . We
denote the set of all the junction nodes of multicast group m by R̂m , and we let
R̃m � R̂m ∪ Rm . The non-junction nodes are all the nodes, excluding the source
node, that are connected to exactly two links of Lm .

From this moment on we are going to assume that for every receiver node in
m there is a unique link l ∈ Lm connected to it, i.e. the receiver nodes are termi-
nal nodes with an unique incoming link. For our formulation there is no loss in
generality by making this assumption, since if r ∈ Rm is a receiver node but not a

Fig. 1 A picture of a multicast tree
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terminal node, we can always replace the receiver node by a new terminal node r ′,
which is connected to r by an infinite capacity link.

We denote by R � ∪m∈M Rm the set of all receiver nodes over all the multicast
groups, and by Rl,m the set of all the receivers of multicast group m ∈ M using
link l ∈ L .

We define a branch to be the set of links that are between a source/junction
node and its immediate downstream junction/receiver node. Note that the set of
branches of m ∈ M forms a partition of Lm . Also note that each branch j can be
associated with its “downstream” junction/receiver node, which will be denoted
by r( j). Denote the set of branches associated with receiver nodes by Jm , and the
set of branches associated with all junction nodes by Ĵm . Let J̃m � Jm ∪ Ĵm be the
set of all branches over multicast group m ∈ M .

The parent of a receiver/junction node r ∈ R̃m refers to the closest junc-
tion/source node in the “upstream” path toward the source. Similarly the parent of
a branch j ∈ J̃m , if it exists, is the closest branch in the “upstream” path toward the
source. We denote the parent of node r ∈ R̃m by �m(r) and the parent of branch
j ∈ J̃m by πm( j). The children of a junction/source node r ∈ R̂m ∪ {sm} are the
set of receiver/junction nodes which have r as their parent and it will be denoted
by Chm(r).

2.2 The optimization problem

We assume that we have a unique user connected to each receiver node r ∈ R. For
each user we have a utility function Ur (xr ), where xr is the rate at which r receives
data. This utility function can be interpreted both from the point of perceived quality
of service received and the amount paid in order to receive the service. Since there
is a unique user connected to each receiver node, we will use the same notation
when we talk about the receiver nodes or the users connected to these nodes.

We make the following assumptions:

Assumption 1 The utility functions Ur (xr ) are strictly concave, differentiable and
increasing.

Assumption 2 The rate xr is assumed to be a continuous variable.

Assumption 3 Rate allocations are done along fixed multicast trees with fixed
number of users.

Assumption 1 reflects the fact that users have diminishing returns on the goods
consumed. Assumption 2 is an approximation to the actual problem. This approxi-
mation is made in most multirate multicast problems in the literature, e.g. (Deb and
Srikant 2004; Kar et al. 2001a, 2002), with notable exceptions (Sarkar and Tassiulas
2000a,b,c). Based on these assumptions we formulate the following static network
multicast problem for the model of Sect. 2.1

max
xr ,r∈R

∑

r∈R

Ur (xr ) Max 1
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such that: ∑

m∈M

max
r∈Rl,m

xr ≤ cl , ∀ l ∈ L (2.1)

xr ≥ 0, ∀ r ∈ R (2.2)

Constraint (2.1) is also known as the capacity constraint. For this constraint to
be satisfied, on each link, the totality of the rates used by each multicast tree cannot
exceed the link capacity. The capacity constraint insures that for all the multicast
trees, the rate on each branch of a tree is less than or equal to the rate on its parent
branch.

Noting that the constraints (2.1) and (2.2) make the set of feasible solutions
(x’s) compact, and since U ′

r s are assumed to be continuous, Weierstrass’s Theorem
(Simon and Blume, 1994, p. 823) guarantees the existence of a solution to Max 1.

3 Properties of optimal solutions of Problem Max 1

In this section, we derive properties of an optimal solution of Problem Max 1. These
properties provide guidelines for the development of a Market-based decentralized
algorithm that satisfies the informational constraints imposed by the nature of the
multicast problem (described in Part II of the paper) and achieves the solution to
Problem Max 1. The significance of each of the results developed in this section
will be discussed at the end of the section.

We proceed by considering the following problem:

max
xr ,r∈R

∑

r∈R

Ur (xr ) Max 2

such that: ∑

m∈M

xrl,m ≤ cl , ∀ l ∈ L , ∀ rl,m ∈ Rl,m . (3.1)

xrl,m ≥ 0, ∀ l ∈ L , ∀ rl,m ∈ Rl,m . (3.2)

where rl,m denotes a receiver on the mth multicast tree that employs link l.
Since the set of Eq. (3.1) is equivalent to the set of Eqs. (2.1), Problem Max

1 is equivalent to Problem Max 2. So any optimal solution of Problem Max 2 is
also an optimal solution for Problem Max 1.

Let |M| denote the number of multicast trees in the network. We define the set

�(l) � {(rl,1, . . . , rl,|M |
) : rl,i ∈ Rl,i , 1 ≤ i ≤ |M|},

to be the set of |M|-tuples, each tuple consisting of one receiver from each mul-
ticast tree, and every receiver of each tuple is downstream from link l ∈ L on its
respective multicast tree. We note that the number of elements in �(l) corresponds
to the number of constraints for link l in the set of Eqs. (3.1). We denote by rl an
element of �(l), and by rl,m a receiver on the mth multicast tree of rl . Note that if
for some multicast tree m ∈ M and some link l ∈ L , Rl,m = ∅, i.e. link l is not
part of the multicast tree m, then we let the rl,m entry of the rl tuple be empty, i.e.
no receiver from multicast tree m is assigned to any of the rl tuples. We define the
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set �(l, r) � {(rl,1, . . . , rl,|M |
) : r ∈ {

rl,1, . . . , rl,|M |
}
, rl,i ∈ Rl,i , 1 ≤ i ≤ |M|}

to be a subset of �(l) where all the tuples contain receiver r .
Using the above notation we can rewrite Eq. (3.1) as follows:

∑

m∈M

xrl,m ≤ cl , ∀ l ∈ L , ∀ rl ∈ �(l)

Then, the Lagrangian function for Problem Max 2 can be expressed as follows:

�(x, γ ) �
∑

r∈R

Ur (xr ) −
∑

l∈L

∑

rl∈�(l)

γrl

(
∑

m∈M

xrl,m − cl

)
. (3.3)

where γ � {γrl : γrl ∈ R+, rl ∈ �(l), l ∈ L}.
Assume that γ and x∗ satisfy:

γrl

(
∑

m∈M

x∗
rl,m

− cl

)
= 0, (3.4)

⎛

⎝∂Ur (xr )

∂xr
−

∑

l∈Lr

∑

rl∈�(l,r)

γrl

⎞

⎠

∣∣∣∣∣∣
xr =x∗

r

= 0. (3.5)

where Lr is defined to be the set of links connecting r ∈ Rm to the source sm .
Note that by construction �(x, γ ) ≥ ∑

r∈R Ur (xr ) for all feasible x , and
�(x∗, γ ) = ∑

r∈R Ur (x∗
r ). Hence, if x∗ turns out to be a local maximizer of

�(x, γ ) then it is also a local maximizer of Problem Max 2.
Since Ur (xr ) are strictly concave for all r ∈ R, �(x, γ ) is strictly concave for

all γ . Equation (3.5) along with Theorem (Bazaraa et al., 1993, Theorem 3.4.3)
give us that x∗ is a global maximizer of �(x, γ ), which implies that x∗ is a global
maximizer of Problem Max 2.

From Eq. (3.5) it follows that the rate demanded by user r at an optimal solution
of Problem Max 1 can be written as a function of the shadow prices γ . In particular:

x∗
r � xr

⎛

⎝
∑

l∈Lr

∑

rl∈�(l,r)

γrl

⎞

⎠ . (3.6)

We define
p(r, γ ) �

∑

l∈Lr

∑

rl∈�(l,r)

γrl (3.7)

to be user r ’s service price, which gives

x∗
r = xr (p(r, γ )). (3.8)

The underlying intuition behind the above Equations is that p(r, γ ) represents
the sum of the shadow prices for the constraints involving user r . Combining
Eq. (3.6) and (3.7) we get Eq. (3.8), which shows that at an optimal solution of
Problem Max 2 the demand of user r is a function of p(r, γ ).

In the rest of the section we will prove a series of theorems which describe
properties of any user r ’s service price and demand at an optimal solution of
Problem Max 2.
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Property 1 For any l ∈ L and any rl ∈ �(l), γrl > 0 implies that xrl,m =
maxr ′∈Rl,m xr ′(p(r ′, γ )) for any m ∈ M .

This result is intuitively expected since only the constraints that are active have
a positive Lagrange multiplier. For any link l ∈ L , the active constraints are the
ones for which the sum of rates is equal to capacity.

Proof We prove the theorem by contradiction. Assume that there exists rl ∈ �(l)
such that γrl > 0 and xrl,i (p(rl,i )) 	= maxr ′∈Rl,i xr ′(p(r ′, γ )) for some i ∈ M .
Then there exists an r ∈ Rl,i such that xr (p(r, γ )) = maxr ′∈Rl,i ,γ xr ′(p(r ′, γ )).
Since γrl > 0, this implies by Eq. (3.3) that

∑

m∈M

xrl,m (p(rl,m, γ )) = cl .

Then ∑

m∈{M−{i}}
xrl,m (p(rl,m, γ )) + xr (p(r, γ )) > cl (3.9)

and since
(
rl,1, . . . , rl,i−1, r, rl,i+1, . . . , rl,|M |

) ∈ �(l), (3.9) contradicts (3.1). 
�
To proceed further we need to define the concepts “subtree” and of the “splitting

tree”, as well as related terminology.

Definition 1 Let m ∈ M be a multicast tree and r ∈ R̂m . Let j be the branch
satisfying r = r( j). The set of links of branch j together with the set of links and
nodes downstream of branch j on multicast tree m will be called a subtree of m and
it will be denoted by Tj,m . Branch j will be called the root branch of this subtree,
while r will be called the root node of this subtree. A subtree is proper if there
exists a link which is part of the multicast tree but which is not part of the subtree.

Note that a subtree is a set of links and nodes. Branches of the multicast tree
m, which have the links be elements of Tj,m , are subsets of Tj,m .

Definition 2 Let γ be the Lagrange multipliers of Problem Max 2 at an optimal
solution. For any m ∈ M and r ∈ Rm , we define receiver r’s splitting tree to be the
set of links and nodes denoted by Tr (γ ). Tr (γ ) is the largest multicast subtree of
which r is a member and on which the rate demanded by r is greater than or equal
to the rate on any of the branches of this multicast subtree.

We make the observation that for any multicast tree m ∈ M and any receiver
r ∈ Rm , the splitting tree of r is a function of the rate demanded by the users of the
multicast tree m, and by (3.6) the rate demanded by the users is a function of γ .

The following terminology is related to the concept of a splitting tree, and is
needed for future proofs.

Definition 3 We define the level of a receiver node to be 0. We define the level
of a junction node j to be one plus the level of the highest level junction node
downstream of j .

Definition 4 We define the level of the user i splitting tree (denoted by �(Ti (γ ))),
to be the level of the root node of Ti (γ ) .
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The concept of a splitting tree is needed later in the computation of the optimal
receiver prices. In Properties 2, 3 and 4 we show that only the links of a receiver’s
splitting tree contribute to the receiver’s service price.

Let the set of links of Tr (γ ) be denoted by Lr (γ ) � L ∩ Tr (γ ), and the set
of receivers of Tr (γ ) be denoted by Rr (γ ) � R ∩ Tr (γ ), and let Rr (γ ) � {h ∈
Rr (γ ) : xh(p(h, γ )) = xr (p(r, γ ))}. We denote by Lr (γ ) the set of links on the
splitting tree Tr (γ ) on which the rate allocated is equal to xr (p(r, γ )). We illustrate
the above concepts with the following example:

Example 1 Consider Fig. 2.
For nodes 8 and 9 we have: the splitting trees T8(γ ) = T9(γ ) = {6, 8,

9, l6, l8, l9}, which have level 2 and root node 3. Also L8(γ ) = L8(γ ) = L9(γ ) =
L9(γ ) = {l6, l8, l9}, and R8(γ ) = R8(γ ) = R9(γ ) = R9(γ ) = {8, 9}.

For node 7 we have: the splitting tree T7(γ ) = {7, l7} which have level 2 and
root node 3. Also L7(γ ) = L7(γ ) = {l7}, and R7(γ ) = R7(γ ) = {7}.

For node 5 we have: the splitting treeT5(γ )={3, 5, 6, 7, 8, 9, l3, l5, l6, l7, l8, l9}
which have level 3 and root node 1. Also L5(γ ) = {l3, l5, l6, l7, l8, l9}, L5(γ ) =
{l3, l5}, R5(γ ) = {5, 7, 8, 9}, and R5(γ ) = {5}.

For node 4 we have: the splitting tree T4(γ ) = {4, l4} which have level 3 and
root node 1. Also L4(γ ) = L4(γ ) = {l4}, and R4(γ ) = R4(γ ) = {4}.

For node 2 we have: the splitting tree T2(γ ) = {1, 2, 3, 4, 5, 6, 7, 8, 9,

l1, l2, l3, l4, l5, l6, l7, l8, l9}. Also L2(γ ) = {l1, l2, l3, l4, l5, l6, l7, l8, l9}, L2(γ ) =
{l1, l2}, R2(γ ) = {1, 2, 3, 4, 5, 6, 7, 8, 9}, and R2(γ ) = {2}. �

We define

λl �
∑

rl∈�(l)

γrl ∀ l ∈ L . (3.10)

The intuition behind this definition is that at the optimal solution of Prob-
lem Max 2, λl represents the price per unit of rate at link l ∈ L and it equals the
sum of shadow prices of all the users using link l.

Fig. 2 A picture of a multicast tree
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Property 2 For m ∈ M and any r ∈ Rm ,

∑

l∈Lr (γ )

λl =
∑

h∈Rr (γ )

p(h, γ ). (3.11)

In words, this theorem says that the sum of service prices over all the users of
a splitting tree is equal to the sum of prices per unit of rate over all the links of the
splitting tree.

Proof We have the following set of equalities:

∑

l∈Lr (γ )

λl =
∑

l∈Lr (γ )

∑

rl∈�(l)

γrl (3.12)

=
∑

h∈Rr (γ )

∑

l∈Lh

∑

rl∈�(l,h)

γrl (3.13)

=
∑

h∈Rr (γ )

p(h, γ ). (3.14)

We first note that Eq. (3.12) follows from (3.10) while Eq. (3.14) follows from
(3.7). To establish Eq. (3.13) we note that the left hand side is equal to the sum of
the shadow prices on the links of the splitting tree of r while the right hand side
is equal to the sum of the shadow prices on the links of the splitting tree or r plus
shadow prices upstream of the splitting tree of r which by Property 1 have value
equal to zero. 
�
Property 3 For any m ∈ M and any r ∈ Rm ,

∑

l∈Lr (γ )

λl =
∑

h∈Rr (γ )

p(h, γ ). (3.15)

This property establishes the fact that on any splitting tree, the service prices of
the receivers demanding the maximal service are determined from the link prices
of the links with the maximal rate demand.

Proof Using Property 2 we get the following equalities:

∑

l∈Lr (γ )

λl +
∑

l ′∈{Lr (γ )−Lr (γ )}
λl ′ =

∑

l∈Lr (γ )

λl

=
∑

h∈Rr (γ )

p(h, γ )

=
∑

h∈Rr (γ )

p(h, γ ) +
∑

h′∈{Rr (γ )−Rr (γ )}
p(h′, γ )

(3.16)
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First we note that:

∑

h∈{Rr (γ )−Rr (γ )}
p(h, γ ) =

∑

h∈{Rr (γ )−Rr (γ )}

∑

l∈Lh

∑

rl∈�(l,h)

γrl

≤
∑

l∈{Lr (γ )−Lr (γ )}

∑

rl∈�(l)

γrl

=
∑

l∈{Lr (γ )−Lr (γ )}
λl . (3.17)

Since all the Lagrange multipliers for any h ∈ {Rr (γ ) − Rr (γ )} are 0 on all
the links l /∈ {Lr (γ ) − Lr (γ )}, the inequality in Eq. (3.17) comes from the fact
that the left hand side is a sum of Lagrange multipliers over the links that do not
demand the maximum rate, while the right hand side is the sum of all the Lagrange
multipliers over the links that do not demand maximum rate.

We also note that:

∑

h∈Rr (γ )

p(h, γ ) =
∑

h∈Rr (γ )

∑

l∈Lh

∑

rl∈�(l,h)

γrl

≤
∑

l∈Lr (γ )

∑

rl∈�(l)

γrl

=
∑

l∈Lr (γ )

λl (3.18)

Since for any h ∈ Rr (γ ) all the Lagrange multipliers are over links in Lr (γ ), the
inequality in equation (3.18) comes from the fact that the left hand side is a sum of
Lagrange multipliers over the links that demand the maximum rate, while the right
hand side is the sum of all the Lagrange multipliers over the links that demand
maximum rate.

Combining Eq. (3.16), (3.17) and (3.18) we get
∑

l∈Lr (γ )
λl = ∑

h∈Rr (γ )

p(h, γ ). 
�
The following property shows that the sum of the service prices of the receivers

on a particular subtree Tj,m , m ∈ M and j ∈ J̃m , is equal to the sum of all the link
prices on Tj,m plus the price incurred upstream from Tj,m by the receivers with
maximal demand.

Property 4 For any m ∈ M and j ∈ J̃m there exists r ∈ Rm ∩ Tj,m such that
j ⊂ Tr (λ), then

∑

h∈Rm∩Tj,m

p(h, γ ) =
∑

l∈Tj,m∩L

λl +
∑

h∈Rr (λ)∩Tj,m

∑

l ′∈{Tr (γ )∩Lr }−{Tj,m∩L}

∑

k∈�(l ′,h)

γk

(3.19)
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Proof We have:
∑

h∈Rm∩Tj,m

p(h, γ ) = ∑
h∈Rm∩Tj,m

∑
l∈Lh

∑
rl∈�(l,h)

γrh (3.20)

∑

h∈Rm∩Tj,m

∑

l∈Lh

∑

rl∈�(l,h)

γrh =
∑

h∈Rm∩Tj,m

∑

l∈Tj,m∩L

∑

rl∈�(l,h)

γrl +
∑

h∈Rr (λ)∩Tj,m

×
∑

l′∈{Tr (γ )∩Lr }−{Tj,m∩L}

∑

k∈�(l′,h)

γk (3.21)

=
∑

l∈Tj,m∩L

λl +
∑

h∈Rr (λ)∩Tj,m

×
∑

l ′∈{Tr (γ )∩Lr }−{Tj,m∩L}

∑

k∈�(l ′,h)

γk (3.22)

where (3.20) follows from (3.7), (3.21) follows from the fact that all the constraints
for the links in Tj,m contain a user from Rm ∩Tj,m and the fact that only the users in
Rr (λ) have non-zero Lagrange multiplier for the constraints on the links upstream
from branch j , while (3.22) follows from (3.10). 
�

The following two properties give us properties of the optimal service prices.

Property 5

1. Given any multicast tree m ∈ M and for any link l ∈ Lm , λl can be split into
shares ϕl,r �

∑
rl∈�(l,r) γrl among all r ∈ Rl,m , where the rate demanded by

r is equal to the rate on link l.
2. For any r ∈ Rm , the optimal service price is equal to

∑
l∈Lr

ϕl,r .

Property 5 says that at an optimal solution of Problem Max 1, the price per unit
of rate of each user r ∈ R is equal to the sum of shares of the link prices {λl}l∈L
over the links used by this user. The share of the link price on each link l ∈ L for
user r is equal to the sum of Lagrange multipliers at link l which involve user r .

Proof Part 1 follows from equation (3.10) and Property 1. Part 2 follows from
(3.7). 
�
Property 6 Given fixed λ, the computation according to Property 5 of the opti-
mal service prices on any multicast tree m ∈ M is independent of the demands
requested by the users of other multicast trees.

Proof By assumption, a service to a user r is provided along a single multicast
tree, say m. From Eq. (3.8) the optimal service rate for the user is a function of the
price p(r, γ ) defined by (3.7). By Property 5, p(r, γ ) is determined solely by the
price shares user r pays along the links of m. 
�

In conclusion, the main contribution of this section is the presentation of an
extensive set of properties which relate the prices per unit of rate on each link and
the price per unit of service at an optimal solution of Problem Max 1. The notion
of splitting tree proved to be crucial in deriving this properties. The results of
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this section were derived under the assumption that the information is centralized.
Within the context of the multicast problem these results are vital in the develop-
ment of resource allocation algorithms that satisfy the informational constraints
imposes by the nature of the multicast problem, and converge to the solution of
Problem Max 1. Specifically, Properties 5 and 6 motivate the development of an
algorithm (cf. Sect. 4) that computes the optimal service price for each user along
any multicast tree given a fixed set of prices per unit of rate at each link. Further-
more, Properties 1–4 are useful in proving properties of link price updates; these
properties play a key role in the proof of convergence of the market mechanism
proposed in Part II of this work.

We would also like to remark that all the properties developed in this section
can be derived without assuming that user utility functions are differentiable. This
can be achieved by replacing the derivative of Ur in Eq. (3.5) with the subgradient
of Ur .

4 A price splitting algorithm

In Sect. 3 we showed that at an optimal solution of Problem Max 1 the shadow
prices generate a set of optimal link prices and service prices, which are related
by the result of Property 5. In this section, we present an algorithm, which we call
“price splitting algorithm”, that computes along each multicast tree the price per
unit of service for each user given the set of prices per unit of rate at each link.

For the rest of the section we fix λ := {λl : l ∈ L} to be the set of prices
per unit of rate on the links1. According to Property 5, for each given multicast
group it is optimal2 to split the cost incurred on each branch among the users using
the maximum rate on that branch. Since the link prices seen by different multicast
trees are going to be the same, and because of Property 6, the algorithm on each
multicast group can run independently of the other multicast groups. Thus, we will
describe how the algorithm works on a single multicast group m ∈ M .

We proceed as follows: in Sect. 4.1 we illustrate the idea of how to split the price
on a branch which is common to two users. In Sect. 4.2 we give a detailed example
of how the algorithm works in a tree of level grater than one, and explain how
the cost incurred on one branch can be split among multiple children. In Sect. 4.3
we present a high level description of the algorithm for a general network. The
formal description of the algorithm and the proof of its convergence are presented
in Appendices A and B, respectively.

In the following examples, the message passing between the users and the
network is done over the multicast tree by using intermediate nodes as relays. Note
that this does not have to be the case. As long as users have a way of communicating

1 Note that we do not assume that λ is generated from a set of shadow prices which corresponds
to an optimal solution of Problem Max 2.

2 Given a set of fixed link prices λ, by an optimal splitting of λ we want to find a set
of price shares γ ′’s and service prices p(r, γ ) which generate user demands xr (p(r, γ )) �
argmaxx Ur (x) − p(r, γ ) × x having the following properties: (i) for any m ∈ M ,∑

l∈Lm
maxr∈Rl,m xr × λl = ∑

r∈Rm
xr (p(r, γ )) × p(r, γ ); and (ii) the sum of user’s utility

functions given xr (p(r, γ )) is maximized. We note that although the analysis in Sec. 3 was done
at an optimal solution of Problem Max 2, the proofs of Properties 2–6 hold for optimal splitting
of arbitrary link prices.
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Fig. 3 Two users sharing link 3

with the network, the same algorithm can be used by the network in order to
compute the service prices.

4.1 Example of two users with one link in common

Consider a tree consisting of 3 links as in Fig. 3. The prices per unit of rate on links
1,2,3 are λ1, λ2, λ3, respectively. The optimal sharing of the price λ3 is determined
by the following algorithm:

1. Set α(1) = 1/2, n = 1 and assume w.l.o.g. that x1(λ1) ≥ x2(λ2).
2. If x1(λ1 + λ3) ≥ x2(λ2) stop; the prices per unit of rate for user 1 and 2

are λ1 + λ3, λ2, respectively. If x1(λ1 + λ3) ≤ x2(λ2) then proceed with the
following recursion.

3. Compute x1(λ1 + α(n) × λ3) and compare it to x2(λ2 + (1 − α(n)) × λ3).
4. (a) If x1(λ1 +α(n)λ3) = x2(λ2 + (1−α(n))λ3) stop; α(n)λ3 and (1−α(n))λ3

provide the optimal price sharing of the price λ3 for users 1 and 2,
respectively.

(b) If x1(λ1 + α(n)λ3) > x2(λ2 + (1 − α(n))λ3) set α(n+1) = α(n) + 1
2n+1 .

(c) If x1(λ1 + α(n)λ3) < x2(λ2 + (1 − α(n))λ3) set α(n+1) = α(n) − 1
2n+1 .

5. Increment n and return to step 3.

We prove that this algorithm determines the optimal sharing of the price λ3.
Note that there are two cases:

Case1 If x1(λ1) ≥ x2(λ2) and x1(λ1 + λ3) ≥ x2(λ2) then the optimal price
sharing is the following: user 1 pays for both the links it uses, i.e. links 1
and 3; user 2 is charged only the price of link 2.

Case2 If x1(λ1) ≥ x2(λ2) but x1(λ1 + λ3) ≤ x2(λ2) then users 1 and 2 have
to split the price of link 3. We show that the algorithm determines as
n → ∞, the share of λ3 that receiver 1 will have to pay.

The result for Case 1 follows directly from Property 5.
For Case 2 we first note that both x1 and x2 are assumed to be continuous, strictly

monotonically decreasing functions (i.e. the demand for rate decreases monotoni-
cally in price). This implies that g(α) � x1(λ1 + αλ3) − x2(λ2 + (1 − α)λ3) is a
continuous, strictly monotonically decreasing function of α. By the Intermediate
Value Theorem, since g(0) > 0 and g(1) < 0, there exists a 0 < α < 1 for which
user’s 1 demand equal user’s 2 demand. Also by the strict monotonicity property
of g, α is unique. We prove that by the construction of the algorithm the sequence
{α(n)}n∈N converges to α as n → ∞.
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The proof of this result follows by contradiction. Assume that
α(n) −−−→

n→∞ β 	= α. Note that at each iteration the algorithm determines the value

of the kth digit of β written in binary expansion. Let k be the first digit (in the binary
expansion) for which α and β differ. If the kth digit of β is 1, then the kth digit
of α is 0, implying that g(α(k)) < 0. In this case, at kth iteration of the algorithm,
α(k) is assigned value 0 for the kth digit, which implies that the kth digit of β is
0, a contradiction. On the other hand, assume that the kth digit of β is 0, then the
kth digit of α is 1, implying that g(α(k)) > 0. In this case, at the kth iteration of
the algorithm, α(k) is assigned value 1 for the kth digit, which implies that the kth

digit of β is 1, a contradiction. So α and β are equal since their binary expansion
is the same. 
�
Remark 1 The sequence of {α(n)} generated by the above process is a conver-
gent dyadic sequence with some limit α̇. α̇ has the property that x1(λ1 + α̇λ3) =
x2(λ2 + (1 − α̇)λ3), and the distance between α(n) and α̇ is at most 1/2n .

4.2 A two level example

In this section, we present via an example of a generalization of the algorithm
developed in Sect. 4.1. In the example presented below each junction node has
two children nodes. After the completion of the example we describe a procedure
which reduces the case where some junction nodes have more then two children
nodes to the one where each junction node has precisely two children nodes.

Consider a tree consisting of 5 links as in Fig. 4. In this case the price splitting
algorithm proceeds as follows:

Algorithm of node i=1,2,4:

1. Wait for Reset from parent. Upon reception go to 2.
2. For node 1,2,4, upon receiving a Reset from parent with a price p, return a

demand interval [xi (p), xi (p)], where xi (p) is the demand of node i for price
p, i = 1, 2, 4. Go to step 1.

Algorithm of node i=3:
Let D(n)

3 denote the demand interval of node 3 at iteration n; denote by p(n)
1 ,

p(n)
2 the prices node 3 sends to nodes 1 and 2, respectively, at iteration n.

The algorithm at node 3 proceeds as follows: upon receiving a Reset from node
5 with price p start the initial stage.

Fig. 4 A more complex example of a multi-rate multicast tree
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Initial stage

1. Send a Reset to nodes 1 and 2 with prices p(0)
1 = λ1, p(0)

2 = λ2 respectively.

2. Node 1 returns the demand interval
[
x1(p(0)

1 ), x1(p(0)
1 )

]
.

Node 2 returns the demand interval
[
x2(p(0)

2 ), x2(p(0)
2 )

]
.

3. Compare x1

(
p(0)

1

)
with x2

(
p(0)

2

)
. Assume without loss of generality (w.l.o.g.)

that x1

(
p(0)

1

)
≥ x2

(
p(0)

2

)
. The algorithm proceeds in the same way (with

obvious modifications) if the opposite inequality is true.
4. Set p(1)

1 = λ1 + p, p(1)
2 = p(0)

2 = λ2.

5. Send a Reset to nodes 1 and 2 with prices p(1)
1 , p(1)

2 , respectively. Wait for the
demand intervals from nodes 1 and 2.
(a) If x1

(
p(1)

1

)
≥ x2(p(1)

2 ), send the interval [x1

(
p(1)

1

)
, x1

(
p(1)

1

)
] to node

5 and stop.

(b) If x1

(
p(1)

1

)
< x2(p(1)

2 ) set

p(2)
1 = p(1)

1 − 1
2 p

p(2)
2 = p(1)

2 + 1
2 p,

and send the interval
[
x1

(
p(1)

1

)
, x2

(
p(1)

2

)]
to node 5.

Stage n

1. Send a Reset to nodes 1 and 2 with prices p(n)
1 , p(n)

2 , respectively.

2. Node 1 returns the demand interval
[
x1

(
p(n)

1

)
, x1(p(n)

1 )
]
.

Node 2 returns the demand interval
[
x2

(
p(n)

2

)
, x2(p(n)

2 )
]
.

3. Compare x1

(
p(n)

1

)
with x2

(
p(n)

2

)
.

(a) If x1

(
p(n)

1

)
= x2

(
p(n)

2

)
send the demand interval

[
x1

(
p(n)

1

)
, x1

(
p(n)

1

)]

to node 5 and stop.

(b) If x1

(
p(n)

1

)
> x2

(
p(n)

2

)
set

p(n+1)
1 = p(n)

1 + 1
2n p

p(n+1)
2 = p(n)

2 − 1
2n p,

send the interval
[
x2

(
p(n)

2

)
, x1

(
p(n)

1

)]
to node 5, and go to Step 1 of

Stage n+1.

(c) If x1

(
p(n)

1

)
< x2

(
p(n)

2

)
set

p(n+1)
1 = p(n)

1 − 1
2n p

p(n+1)
2 = p(n)

2 + 1
2n p,

send the interval
[
x1(p1)

(n), x2

(
p(n)

2

)]
to node 5, and go to Step 1 of

Stage n+1.
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Algorithm of node i=5:
Let D(n)

5 denote the demand interval of node 5 at iteration n; denote by p(n)
3 ,

p(n)
4 the prices node 5 sends to nodes 3 and 4, respectively at iteration n.

The algorithm at node 5 proceeds as follows:
Upon receiving a Reset from source node with price λ5 start the initial stage.

Initial stage

1. Send a Reset to nodes 3 and 4 with prices p(0)
3 = λ3, p(0)

4 = λ4, respectively.

2. Node 3 starts returning3 demand intervals of form
[
x3

(
p(0)

3

)
, x3

(
p(0)

3

)]
4.

Node 4 returns the demand interval
[
x4

(
p(0)

4

)
, x4

(
p(0)

4

)]
.

3. Wait until x4

(
p(0)

4

)
/∈

[
x3

(
p(0)

3

)
, x3

(
p(0)

3

)]
5.

4. If x3

(
p(0)

3

)
≥ x4

(
p(0)

4

)
then:

(a) Set p(1)
3 = λ3 + λ5, p(1)

4 = p(0)
4 = λ4.

(b) Send a Reset to nodes 3 and 4 with prices p(1)
3 , p(1)

4 , respectively. Wait
for the demand intervals from nodes 3 and 4.

(i) If x3

(
p(1)

3

)
≥ x4

(
p(1)

4

)
, send the interval [x3(p(1)

3 ), x3(p(1)
3 )],

and every subsequent demand interval received from node 3, up-
stream to the source node. Stop the algorithm at this node.

(ii) If x3(p(1)
3 ) < x4(p(1)

4 ), set

p(2)
3 = p(1)

3 − 1
2λ5

p(2)
4 = p(1)

4 + 1
2λ5,

and send the interval [x3(p(1)
3 ), x4(p(1)

4 )] to the source node. Go to
stage 2 of the algorithm.

5. If x4(p(0)
4 ) ≥ x3(p(0)

3 ) then:

(a) Set p(1)
3 = p(0)

3 = λ3, p(1)
4 = p(0)

4 + λ5.

(b) Send a Reset to nodes 3 and 4 with prices p(1)
3 , p(1)

4 , respectively. Wait for
the demand intervals from node 3 and 4.

i. If x4

(
p(1)

4

)
≥ x3

(
p(1)

3

)
, send the interval

[
x4

(
p(1)

4

)
, x4

(
p(1)

4

)]

upstream to the source node, and stop the algorithm at this node.

ii. If x4

(
p(1)

4

)
< x3

(
p(1)

3

)
, set

p(2)
3 = p(1)

3 + 1
2λ5

p(2)
4 = p(1)

4 − 1
2λ5,

3 At node 3 there is an optimization process running at the same time with the one at node 5.
Node 3 will continuously be sending demand intervals to node 5. These demand intervals have
the property that they are nested into one another and decreasing in size.

4 Note that in this case this interval may not be just a singleton, i.e. x3(p(0)
3 ) < x3(p(0)

3 )
5 If the demand of node 4 is in all the demand intervals of node 3, then the optimal demand

of node 4 equal to the optimal demand of node 3. In this case we have reached the optimal price
split.
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send the interval
[
x4

(
p(1)

4

)
, x3

(
p(1)

3

)]
to the source node. Go to

stage 2 of the algorithm.

Stage n.

1. Send a Reset to nodes 3 and 4 with prices p(n)
3 , p(n)

4 , respectively.

2. Node 3 starts returning demand intervals of form
[
x3

(
p(n)

3

)
, x3

(
p(n)

3

)]
.

Node 4 returns the demand interval
[
x4

(
p(n)

4

)
, x4

(
p(n)

4

)]
.

3. Wait until x4(p(n)
4 ) /∈

[
x3

(
p(n)

3

)
, x3

(
p(n)

3

)]
.

(a) If x4(p
(1)
4 )= x3(p(n)

3 )= x3(p(1)
3 ), send the interval

[
x4

(
p(1)

4

)
, x4

(
p(1)

4

)]

to the source node and stop the process at this node.

(b) If x3

(
p(n)

3

)
> x4

(
p(n)

4

)
set

p(n+1)
3 = p(n)

3 + 1
2n λ5

p(n+1)
4 = p(n)

4 − 1
2n λ5,

send the interval
[
x4

(
p(n)

4

)
, x3

(
p(n)

3

)]
to the source node, and go to

Step 1 of Stage n+1.

(c) If x3(p(n)
3 ) < x4

(
p(n)

4

)
set

p(n+3)
3 = p(n)

3 − 1
2n λ5

p(n+1)
4 = p(n)

4 + 1
2n λ5,

send the interval
[
x3(p3)

(n), x4

(
p(n)

4

)]
to the source node, and go to Step

1 of Stage n+1.

Algorithm of the source node:

1. The source node will send a Reset to node 5 with price λ5. This Reset will
start the algorithm.

In the example presented in this section every junction node has two children.
The case where some junction nodes have more then two children can be reduced
to the one where each junction node has exactly two children. The reduction is
based on the following observation: For a given set of link prices per unit of rate,
links that have infinite capacity and zero price per unit of rate can be added to
or removed from the multicast tree without altering the problem of price sharing
along the tree. For example, if in the system of Fig. 4 the price per unit of rate on
link 3 (i.e. λ3) is zero and link 3’s capacity is infinite, then link 3 can be removed,
links 1, 2 and 4 can be connected to link 5, and the price per unit of service for
each user in the new multicast tree is the same as in the original tree. The reason
for this equivalence is the following. By Property 5, the optimal service price for
each receiver node is equal to the sum of the shares of the shadow prices of the
constraints that are active in Problem Max 2. Therefore, by removing all links that
have zero price per unit of rate, the service price will remain the same for all users
(and this in turn implies that the rate demanded by each user will remain the same).

The above observation has the following general implication. Suppose there is
a junction node i that has k > 2 children j1, j2, . . . , jk . Introduce intermediate
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nodes i1 and i2 such that i , i1 are linked together by a link that has infinite capacity
and zero price per unit of rate, and the same is true for the link connection i and
i2. We call such links intermediate links. Link half of the children of i to node
i1 and the other half to node i2. By repeating the above process and introducing
intermediate nodes one can end up with a multicast tree where each junction node
has exactly two children. As a result of this construction, only the links connected
to the original children j1, j2, . . . , jk have a non-zero price per unit of rate. In
the rest of the section we shall assume that each junction node has exactly two
children.

4.3 Price-splitting algorithm description

To determine the optimal service price6 for each user, given a fixed link price,
the algorithm requires that each node communicate with its parent and children.
The downstream communication (i.e. the communication from the source to the
users) will consist of a Reset packet/signal to which a price is appended, while the
upstream communication (i.e. the communication from the users to the source) will
consist of a demand interval. In the rest of Sect. 4.3 we explain qualitatively how
the algorithm works. A formal description of the price-splitting algorithm appears
in Appendix A.

Initiation step The algorithm begins with the source node sending a Reset
signal downstream the multicast tree. The price attached to each Reset sent on
any branch of the multicast tree is the price per unit of rate on that branch. Upon
receiving a Reset signal each junction node saves the price per unit of rate of the
branch corresponding to it, and sends a Reset to its children.

Iterative step When a receiver node receives a Reset signal with a price p from
its parent, it computes its demand, given price p, and sends this demand upstream
to its parent node.

Since each junction node has two children, and each one of them may be
demanding a different rate, the junction node sends its demand request to its parent
node in the form of a demand interval. The demand interval of a junction node
at a particular stage in the process is generated as follows: The lower bound of
the demand interval is equal to the minimum of the lower bounds of its childrens’
demand intervals, while the upper bound of the demand interval is equal to the
maximum of the upper bounds of its childrens’ demand intervals. Note that upon
the arrival of a new demand interval from one of its children, a junction node’s
demand interval may change, in which case the new demand interval is transmitted
upstream to the parent. For consistency we consider the demand requested by a
receiver node as a demand interval formed by a singleton.

The goal of each junction node i ∈ R̂m is to decide how to split the upstream
cost incurred by the receivers of tree Ti,m based on the demand intervals received
from its children nodes. This is done by splitting the price per unit of rate attached
to the Reset signal received by node i , among the children of i . The way that this
price is split proceeds as follows.

6 By the optimal set service prices given a set of link prices we mean the set of service prices
generated from the set of link prices which generate demands which maximize the sum of the
user utility functions.
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Step 1 Junction node i receives from its parent node a Reset signal with a price
p; this price has to be split among the children of Ti,m .

Step 2 Node i sends a Reset to each child node containing the price of the child’s
branch.

Step 3 Upon receiving demand intervals from each child, node i waits until one of
two events occur:
3.1 The demand interval of one child, say j , is larger then the demand

interval of the other child.
3.2 The demand intervals of the two children of i are overlapping, and are

arbitrarily small.
Step 4

4.1 If 3.1 is true, node i sends a Reset signal to node j . The price of
this Reset signal is equal to the price p plus the price of the branch
associated with node j .

4.2 If 3.2 is true, node i chooses one of the two nodes at random, say node
k, and sends to k a new Reset signal. The price of this Reset is equal
to the price p plus the price of the branch associated with node k.

Step 5
5.1 If 4.1 is true, node i determines how price p shall be split among its

children nodes as follows: Node i receives a new demand interval from
node j . As proved in Sect. B, this demand interval decreases with time
in a nested fashion. Node i waits until j’s demand interval becomes
disjoint from the other child’s demand interval. If the demand interval
of j is larger then that of the other child of i , j will incur the whole
price p, otherwise the two children of i will share the price p.7

5.2 If 4.2 is true, node i determines how price p shall be split among its
children nodes as follows: Node i receives a new demand interval from
node k. As proved in Sect. B, this demand interval decreases with time
in a nested fashion. Node i waits until k′s demand interval becomes
disjoint from the other child’s demand interval. If the demand interval
of k is larger then that of the other child of i , k will incur the whole
price p, otherwise the two children of i will share the price p.7

Step 6 Based on 4.3, junction node i knows if price p is incurred fully by one
of its children or it is to be split in some ratio (that has to be determined)
between its two children. If the price is to be split among its children, junc-
tion node i determines the optimal price share by a procedure which is
formally presented in Appendix A.

In Appendix A, we present a formal description of the above price splitting
algorithm. We prove the following properties of the algorithm in Appendices B
and C, respectively:

Theorem 1 The price splitting algorithm determines asymptotically the optimal
service prices given a fixed price per unit of rate on each link.

7 It may happen that these two demand intervals do not become disjoint in finite time. This
is the case when both set of demand intervals converge to the same singleton. To alleviate this
problem one can decide to split the price p among the children of i when the demand intervals
node’s i two children become arbitrarily small.
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Theorem 2 Let λ := {λl , l ∈ L} be a set of link prices and xi (p(λ)), i =
1, 2, . . . , N be the user demands corresponding to p(λ) determined by Theorem 1.
Define the excess demand at link l for given λ by:

zl(λ) �
∑

m∈M

max
r∈Rl,m

xr (p(r, λ)) − cl . (4.1)

For any l ∈ L for which zl(λ) 	= 0, the price splitting algorithm determines
the sign of the excess demand function zl(λ) in a finite number of iterations.

The results of Theorems 1 and 2 are key in the development of the market based
mechanism, presented in Part II of this paper, which solves Problem Max 1.

As before, the above price splitting algorithm can be implemented for both a flat
and hierarchical architecture. Although we have described the algorithm from the
perspective of passing information among the various nodes of the multicast trees,
in our formulation the network manager can centrally compute the user service
prices by iteratively exchanging information with the users. This is due to the fact
that the network manager is assumed to have full information about the network
topology, the links forming the multicast trees, and the prices per unit of rate on
all the links. This type of implementation of the price splitting algorithm is used
in Part II of the paper, where we also present numerical results.

5 Conclusion

In Part I of this two-part paper we presented a distributed algorithm which
computes, for a set of fixed link prices per unit of rate, the set of user prices
per unit of service that maximizes the sum of the users’ utilities. Thus, implicitly
the algorithm determines how a link’s price is spent among the users that use the
link. This algorithm plays a key role in Part II of the paper where a decentralized
market-based mechanism, that achieves welfare-maximizing resource allocations,
is developed.

The main contributions of Part I of the paper are: (1) the development of prop-
erties of an optimal solution of the centralized analogue of the multirate multicast
problem, (2) the specification of a distributed algorithm which, under the price-tak-
ing assumption, solves the price-sharing problem that arises in multirate multicast
and determines the optimal service prices per unit of rate for each user, given a set
of fixed prices per unit of rate on each link.

Appendices

A Formal setup

In Sect. 4.2 we introduced the notion of “intermediate nodes”. With this notion we
showed that a general tree is equivalent to a tree where each node has at most two
children.

We now describe the formal setup of the algorithm for a tree where each node
has two children. The algorithm deals with three types of nodes: (i) receiver nodes,
(ii) junction nodes, (iii) source nodes. We describe the algorithmic procedure for
each type of nodes separately.
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Algorithm of Receiver Node i:
On receiving a Reset with price p from the parent:

Compute the demand xi (p).
Send the demand interval Di = [xi (p), xi (p)] to parent.

Algorithm of Junction Node i :
Denote by n the iteration number.
Define Di � [bi , Bi ] to be the i th node’s current demand interval,

and Di � [bi , Bi ] to be the i th node’s previous demand interval.
Define Di ( j) � [b j , B j ], j ∈ Ch(i) := { j1, j2}, to be the j th node’s demand interval that

node i keeps for node j .
Define p j to be the price per unit of rate on the branch connecting nodes i and j ∈ Ch(i).

On receiving a Reset with a price p from parent the algorithm starts
Set demand interval Di = Di = [0,∞], and n = 1.
For all j ∈ Ch(i) set demand intervals Di ( j) = [0,∞].
Send Reset to all children with price p j to j th child.
Wait until there exists ji ∈ Ch(i), say j1, such that Di ( j1) > Di ( j2)89

Send Reset to child j1 with branch price (p j1 + p).
Wait until Di ( j1) ∩ Di ( j2) = ∅.10

While waiting for Di ( j1) ∩ Di ( j2) = ∅.
Upon receiving a demand interval from a child, set

Di = [max{bi , min{b j1 , b j2 }}, min{Bi , max{B j1 , B j2 }}.
Send Di to parent and set Di = Di .

If Di ( j1) > Di ( j2) go to �.
Otherwise, the price p is split between j1 and j2.
The optimal splitting of p is achieved as follows:

Set α j1 = α j2 = 1
2 and increment n.

Send Reset to j1, j2 with prices (p j1 + α j1 × p),(p j1 + α j2 × p) respectively.
Set Di ( j1) = Di ( j2) = [0,∞).
� Wait for demands from children.

While Di ( j1) ∩ Di ( j2) 	= ∅
Upon receiving a demand interval from a child, set

Di = [max{bi , min{b j1 , b j2 }}, min{Bi , max{B j1 , B j2 }}.
Send Di to parent and set Di = Di .

If Di ( j ′) > Di ( j ′′), where j ′, j ′′ ∈ { j1, j2}, then:
Set Di = [max{bi , min{b j ′ , b j ′′ }}, min{Bi , max{B j ′ , B j ′′ }}.
Send Di to parent and set Di = Di .
Set Di ( j ′) = Di ( j ′′) = [0,∞).
Add 1/2n to α j ′ , subtract 1/2n from α j ′′ and increment n
Send Reset to j ′, j ′′ with price (p j ′ + α j ′ × pi ), (p j ′ + α j ′′ × pi )

respectively, and loop back to �.

� The price p is incurred by node j1. While waiting for a reset
from the parent node, relay all the demand intervals received

8 Di ( j ′) ≥ Di ( j) means that ∀x ∈ Di ( j ′), y ∈ Di ( j) �⇒ x ≥ y.
9 This step of the algorithm determines a node j1 to see if the price p will be split or not

between the two children of i . If after some time Di ( j1) ∩ Di ( j2) 	= ∅ for j1, j2 ∈ Ch(i) then
one of the children of i is picked to be j1. If the wrong decision is made, then the algorithm
may decide to split the price between j1, j2 instead of assigning the whole upstream cost p to
one of them. In this case the algorithm will converge to a 0 price share to the child incurring no
upstream cost.
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from node j1 to parent.

Algorithm of the Source Node s:
On the start of the algorithm:

Send a Reset to its children, with the price p j to j th child, j ∈ Ch(s).

In the next section, we shall prove that the algorithm converges to the optimal
service price for each user.

B Proof of Theorem 1

Prior to proving the convergence of the algorithm to optimal price sharing, we
establish a few lemmas.

Lemma 1 In the algorithm, for any upstream price βi at junction node i, the value
of the optimal rate demand on branch i given βi is in all the demand intervals at
node i .

Proof The assertion of Lemma 1 follows directly from the construction of the
algorithm and from the fact that utilities are strictly concave and monotonically
increasing. 
�
Lemma 2 For any upstream price βi , in the algorithm of junction node i the
demand intervals are nested and the sequence of demand intervals converges to a
point. This point is the optimal rate demand given the upstream price βi .

Proof The fact that the intervals are nested follows from construction. The fact
that the sequence of demand intervals converges to a point can be established by
induction.

Basis of induction (level 1 nodes) If i is a node of level 1 then its children are
receiver nodes and their demand intervals are singletons. Since the utility functions
of the users are monotonically increasing, strictly concave, differentiable, and the
price share assigned to each user is a converging dyadic sequence, the demand
interval for node i will converge to a singleton (see Remark 1).

Induction step (level n nodes) Assume that node i has level n and for any
node of level n − 1 the demand intervals converge to a point. This implies that
at each iteration of the algorithm for node i the demand intervals of the children
become disjoint in finite time11. Therefore the following facts are true: (F1) suc-
cessive iterations/updates of the algorithm (for node i) occur in finite time; (F2)
for each child j of i and for any given upstream price share α j the demand interval
of j converges to a point and contains the optimal demand of j given α j ; and
(F3) by the construction of the algorithm, for each child node j of i the sequence
of upstream price shares α j resulting from the algorithm’s iterations/updates is a

10 The intervals remain overlapped only if the optimal split of p has been achieved.
11 If the demand intervals of the children of i do not become disjoint in finite time it means that

the children have the same demand. In this case the optimal price split has been achieved, and
since the demand intervals of the children of i are decreasing to a point, by the construction of
the algorithm the demand intervals of node i decrease to a point.
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diadic sequence that converges to an optimal upstream price share. By strict con-
cavity of the utility functions and facts F1–F3 the demand intervals for node i will
converge to a singleton.

Since by Lemma 1 the optimal rate is in all demand intervals, the convergence
of the demand intervals to the optimal rate follows. 
�
Lemma 3 Let i be a junction node upstream of receiver node j . For any ε > 0,
if βi , β

′
i are two upstream price shares at node i such that |βi − β ′

i | < ε, then
|p∗

j,βi
− p∗

j,β ′
i
| < ε where p∗

j,βi
, p∗

j,β ′
i

are the optimal service price of node j given

βi , β
′
i , respectively.

Proof Assume without loss of generality that βi ≥ β ′
i and βi − β ′

i < ε. We prove
that for any receiver j ′ downstream of node i , if we increase the upstream price
share of node i from β ′

i to βi then optimal service price of j ′ will also increase.
That is, if p∗

j ′,βi
(p∗

j ′,β ′
i
) is the optimal service price of receiver j ′ given βi (β ′

i ),

then we will have p∗
j ′,βi

≥ p∗
j ′,β ′

i
.

Assume by contradiction that for some j ′ we have that p∗
j ′,βi

< p∗
j ′,β ′

i
, which

implies that for the corresponding demands we will have x j ′(p∗
j ′,βi

) > x j ′(p∗
j ′,β ′

i
).

Pick junction node k upstream of node j ′ in the following way:

– If for the upstream price share β ′
i at i the optimal rate demanded by j ′ is the

rate through branch i , then set k to be node i .
– Else let k be the node upstream of j ′ with the property that the optimal rate on

branch k given β ′
i is equal to the optimal rate demanded by j ′ given β ′

i , and is
strictly less than the optimal rate on the parent branch of k under β ′

i .

Denote by Lβi the set of links of branch k union the set of links downstream of
node k for which the optimal rate given βi is equal to the optimal rate on branch
k given βi . Denote by Rβi the set of users downstream of node k for which the
optimal demand given βi equals the rate on branch k.

The contradiction is now established by the following inequalities:
∑

l∈Lβi

λl ≤
∑

r∈Rβi

p∗
r,βi

(2.1)

Equation 2.1 follows by the algorithm construction, since the price per unit of
rate on any link l is split between the users downstream of l demanding the rate of
l. Furthermore, ∑

r∈Rβi

p∗
r,βi

<
∑

r∈Rβi

p∗
r,β ′

i
(2.2)

Equation 2.2 is true since for any user j ′′ ∈ Rβi the optimal rate of j ′′ given
βi is greater than or equal to the rate of j ′ given βi which is strictly greater than
the rate of j ′ given β ′

i . However, since the rate of j ′ given β ′
i is equal to the rate on

branch k, then the rate demanded by j ′′ given β ′
i is less than or equal to the rate of

j ′ given β ′
i . Finally,

∑

r∈Rβi

p∗
r,β ′

i
≤

∑

l∈Lβi

λl (2.3)
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Equation 2.3 follows since no price upstream of link k is split between the users
of Rβi , and a share of the prices of the links in Lβi may be assigned to users that
are not in Rβi .

Combining 2.1, 2.2 and 2.3 we achieve a contradiction to the assumption that
p∗

j ′,βi
< p∗

j ′,β ′
i
. This gives us that the optimal service prices of users downstream

of node i are monotonically increasing in the price share upstream of node i .
By the construction of the algorithm, the sum of the service prices downstream

of node i is equal to the sum of link prices downstream of node i plus the price share
upstream of node i . This implies that the sum of the service prices downstream of
i given βi is within ε of the sum of the service prices downstream of i given β ′

i .
Since the service prices downstream of node i are monotonic in the price share
upstream of node i , then for any j downstream of node i , optimal service prices
of j given βi and β ′

i are within ε of each other. 
�
We are now going to prove that for fixed link prices the service prices generated

by the price splitting algorithm maximize the users’ total utility.

Proof (Proof of Theorem 1)
Fix ε > 0. We show that in a finite number of steps the price seen by any

receiver node j is within ε of the optimal price.
Let junction nodes {i1, i2, . . . , in} be such that: they are all upstream of node

j , the parent of node i1 is the source node, the parent of the j is in and the parent
of ik is node ik−1.

We first apply Lemma 2 to node i1. Then, in finite time the upstream price
share at node i2 is within ε/2 of the optimal upstream price share. By Lemma 3
the optimal service price of j given the upstream price share of node i2 is, in finite
time, within ε/2 of the optimal service price. Applying Lemmas 2–3 at node i2 we
determine in finite time an upstream price share of i3, such that the optimal service
price of j given this upstream price share of i3 is within 3ε/4 of the optimal service
price. Proceeding in this manner along the tree we have that the in finite time the
service price of receiver j is within ε of the optimal service price. 
�

Discussion

The formal description of the algorithm and its analysis were done for the case
where each junction node has exactly two children. We showed in Sect. 4.3 that
any multicast tree can be transformed into an equivalent tree where each node has
two children. Thus, the result of Theorem 1 is valid for any multicast tree.

C Proof of Theorem 2

We first establish the following result:

Lemma 4 Let λ be a set of link prices and m ∈ M be a multicast tree. The price
splitting algorithm determines the splitting trees of each user in m in a finite number
of iterations.
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Proof Let { j1, j2, . . . , jk} be the set of root branches of the splitting trees of the
users in m, excluding the branch which is connected directly to the source node.
Let { ji , j ′i } = πm( j), and define εi be the difference between the optimal rate on
j ′i and ji . By the definition of a splitting tree, εi > 0 for all i ∈ {1, 2, . . . , k}.
Define ε = mini∈{1,2,...,k} εi . By Theorem 1 the service prices determined by each
iteration of the price splitting algorithm converge to the optimal service prices.
Since the utility functions are assumed to be strictly concave, Theorem 1 implies
that after a finite number of iterations all the user demands generated by the price
splitting algorithm will be within ε/2 of the optimal service demands. Since for any
branch j on the multicast tree m the demands on j equal the largest user demand
downstream of j , after a finite number of iterations all the rates on all the branches
of the multicast tree will be within ε/2 of the optimal rates. This implies that for
any i ∈ {1, 2, . . . , k}, after a finite number of iterations of the price splitting algo-
rithm, all the rates demanded on ji will be smaller then the rates demanded on j ′i ,
which implies that the splitting trees of m are determined after a finite number of
iterations. 
�

Using Lemma 4, we proceed to complete the proof of Theorem 2. Assume that
for a given set of link prices λ there exists l ∈ L for which |zl(λ)| = e > 0. For
any m ∈ M containing l denote by l ′m the root of the smallest splitting tree of m
containing l, and denote by M the number of multicast trees which contain l. From
Theorem 1 and Lemma 4 we have that for each m ∈ M after a finite number of
iterations the length of the demand interval at l ′m is less then e

M. Denote such an
interval by [bl ′m ,m, bl ′m ,m]. We have the following two cases to consider:

Case 1 zl(λ) = e > 0
First we establish the following:

Fact C1 zl(λ) > 0 ⇐⇒ after a finite number of iterations∑
m∈{m′:l∈Lm′ } bl ′m ,m > cl .

(:�⇒) We have:

zl(λ) =
∑

m∈M

max
r∈Rl,m

xr (p(r, λ)) − cl (C.1)

>
∑

m∈{m′:l∈Lm′ }
bl ′m ,m − cl (C.2)

>
∑

m∈{m′:l∈Lm′ }

(
max

r∈Rl,m
xr

(
p(r, λ)

)
− e

M

)
− cl (C.3)

= zl(λ) − e = 0 (C.4)

where Eq. (C.1) and (C.4) follow from the definition of the excess demand
function, Eq. (C.2) follows from Lemma 1, and Eq. (C.3) follows from
Lemma 1 and the fact that the length of the demand intervals considered
is at most e/M.
The chain of inequalities (C.1)–(C.4) proves that given l ∈ L if zl(λ) > 0
then after a finite number of iterations the sum over all the multicast trees
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of the lower bounds of the demand intervals on the roots of the splitting
trees containing l will be larger than the capacity at l., i.e.

∑

m∈{m′:l∈Lm′ }
bl ′m ,m > cl . (C.5)

(:⇐�) To prove the sufficiency part of Fact C1 it is sufficient to show
that: if zl(λ) ≤ 0 then (C.5) is never true. Suppose that zl(λ) ≤ 0, and
let {[bl ′1,1, bl ′1,1], [bl ′2,2, bl ′2,2], . . . , [bl ′M ,M, bl ′M ,M]} be any set of demand
intervals. Note that by the algorithm construction the optimal rate demand
at any link l ∈ L of the multicast tree m ∈ M is in all the demand intervals
of l ′m , which implies that:

∑

m∈{m′:l∈Lm′ }
bl ′m ,m ≤

∑

m∈M

max
r∈Rl,m

xr (p(r, λ)) ≤ cl . (C.6)

Thus we have established Fact C1. Using Fact C1 and the fact that the
splitting trees of all users of any multicast tree are determined in a finite
number of iterations (Lemma 4), we conclude that the assertion of the
Theorem 2 is true when zl(λ) > 0.

Case 2 zl(λ) = −e < 0

First we establish the following:

Fact C2 zl(λ)<0 ⇐⇒after a finite number of iterations
∑

m∈{m′:l∈Lm′ } bl ′m ,m <cl .

(:�⇒)
We have:

zl(λ) =
∑

m∈M

max
r∈Rl,m

xr (p(r, λ)) − cl (C.7)

<
∑

m∈{m′:l∈Lm′ }
bl ′m ,m − cl (C.8)

<
∑

m∈{m′:l∈Lm′ }

(
max

r∈Rl,m
xr

(
p(r, λ)

)
+ e

M

)
− cl (C.9)

= zl(λ) + e = 0 (C.10)

where Eq. (C.7) and (C.10) follow from the definition of the excess demand func-
tion, Eq. (C.8) follows from Lemma 1, and Eq. (C.9) follows from Lemma 1 and
the fact that the length of the demand intervals considered is at most e/M.

The chain of inequalities (C.7)–(C.10) proves that given l ∈ L if zl(λ) < 0 then
after a finite number of iterations the sum over all the multicast trees of the of the
upper bounds of the demand intervals on the roots of the splitting trees containing
l will be larger then the capacity at l. i.e.,

∑

m∈{m′:l∈Lm′ }
bl ′m ,m < cl . (C.11)
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(:⇐�) It is sufficient to show that: if zl(λ) ≥ 0 then (C.11) is never true. Suppose

that zl(λ) ≥ 0, and let {[bl ′1,1, bl ′1,1], [bl ′2,2, bl ′2,2], . . . , [bl ′M ,M, bl ′M ,M]} be any
set of demand intervals. Note that by the algorithm construction the optimal rate
demand at any link l ∈ L of the multicast tree m ∈ M is in all the demand intervals
of l ′m , which implies that:

∑

m∈{m′:l∈Lm′ }
bl ′m ,m ≥

∑

m∈M

max
r∈Rl,m

xr (p(r, λ)) ≥ cl . (C.12)

Thus we have established Fact C2. Using Fact C2 and the fact that the splitting
trees of all users of any multicast tree are determined in a finite number of iter-
ations (Lemma 4), we conclude that the assertion of the Theorem 2 is true when
zl(λ) < 0. 
�

In the above proof we needed to determine the sign of the excess demand func-
tion on a link l from the demand intervals at the root of the smallest splitting tree
containing l. The reason for this is that if l is not a root of a splitting tree the demand
intervals at l are not nested, they vary in size over time, and may not contain the
optimal rate of link l. The root of the smallest splitting tree containing l, call it
l ′, has the same optimal rate as l which is contained in all of its demand intervals
(direct consequence of Lemma 1 since the upstream price at l ′ is equal to the price
of the rate on l ′, and it is constant). Also the demand intervals at l ′ are nested and
they converge to the optimal rate (Lemma 2). Therefore, the demand intervals at
l ′ can be used to determine the sign of the excess demand function at l.
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