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Multi-Dimensional Forward Contracts under Uncertainty
for Electricity Markets

Hamidreza Tavafoghi and Demosthenis Teneketzis

Abstract—We consider mechanism design problems for
strategic agents with multi-dimensional private information
and uncertainty in their utility/cost function. We show
that the optimal mechanism with firm allocation can be
implemented as a nonlinear pricing scheme, and the optimal
mechanism with random allocation can be implemented as a
menu of nonlinear pricing schemes. We provide two examples
to demonstrate the results: an optimal energy procurement
mechanism from a strategic seller with renewable (random)
generation, and the design of an optimal demand response
program for a network of heterogeneous loads.

Index Terms—renewable energy, demand response, con-
tract under uncertainty, electricity market

I. INTRODUCTION

In recent years, electricity markets have undergone
profound structural changes both in the generation and the
demand side. The traditionally monopolistic government-
regulated markets reformed toward liberalized electricity
markets in order to introduce competition and increase
efficiency in generation [19]. Privately-owned generators
and utility companies possess private information about
their cost/utility, behave strategically, and seek to max-
imize their profit. Moreover, the developing network of
smart grids aims to utilize the available flexibility on
the demand side to increase the efficiency of the grid.
To involve the demand side actively into the operation
of the grid, one needs to design appropriate mechanisms
that incentivize the demand to exercise flexibility in its
consumption behavior.

Long-term contracts, as an agreement between strategic
parties with private information, is one of the main trad-
ing mechanisms used in electricity markets. Generators
and utility companies sign long-term contracts to hedge
themselves against the risk of pooling markets. In fact, it
has been suggested that long-term contracts are necessary
along with the existing pooling markets to ensure the
stability and reliability of electricity markets [2].
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Contracts have been considered as one of the main
mechanisms to induce a desired behavior on the demand
side of smart grids. In comparison to real time pricing
or direct market participation, contracts with incentive
payments result in a direct control of resources, and thus,
give reliability and stability guarantees [11]. Furthermore,
contracts with incentive payments are simpler to imple-
ment and more appealing to smaller market participants
(e.g. households) [16].

In this paper, we study a general contract design prob-
lem for electricity markets in a principal-agent (buyer-
seller(s)) setup. We assume that both the buyer and the
seller sides have multi-dimensional private information
that and general utility/cost functions. Furthermore, we
explicitly consider a general uncertainty in our problem
formulation; uncertainty is becoming a critical issue in
electricity markets.

As the share of intermittent generation from renew-
able generation increases, the uncertainty in the available
generation will increase. Furthermore, the added flexi-
bility on the demand side in smart grids also means a
higher uncertainty on demand; such uncertainty should
be properly managed through appropriately designed in-
centives. In general, both the buyer and the seller may
have uncertainty, either in their cost/utility functions, or
the availability of the resources being traded between
them. By explicitly including uncertainty into our problem
formulation we capture these facts and can address the
problem of commitment (ex-post voluntary participation),
risk sharing, and forward contracts with random allocation.

The problems formulated in this paper enable us to
capture and analyze interaction between energy consumers
and renewable energy generators, as well as interactions
between an aggregator and a network of a demand popu-
lation participating in the demand response program. We
provide examples for each of these scenarios so as to
illustrate our results.

A. Related Literature
There is a growing literature on contract design for elec-

tricity with information asymmetry and strategic behavior.
A contract design problem for demand management with
one-dimensional private information and linear utility has
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been studied in [6]. The work in [1] addresses the problem
of contract design for deferrable demands with constant
marginal utility for demand. The work in [4] considers a
mechanism design problem for the forward reserved mar-
ket assuming that the participants have constant marginal
cost and no market power. Although the private informa-
tion in [1], and [4] is multi-dimensional, the simplifying
assumption of constant marginal cost/utility enables the
authors to rank different types, and is critical to the
solution approaches they provide. The specific structures
of utility/cost functions assumed in [1], [4], and [6] enable
the authors to provide solutions that are inspired by the
solution methodology of the one-dimensional screening
problem. Contract design problem for demand response
with quadratic cost functions is investigated in [7] by nu-
merical methods. The work in [14] considers a mechanism
design problem for energy procurement with a general
utility/cost function and uncertainty and applies a Vickery-
Clacks-Gloves (VCG) based mechanism. However, the
VCG mechanism is suboptimal for the problem formulated
in [14] when the cost function cannot be parameterized by
only a one-dimensional type (see [8], Ch. 14).

From the economics point of view, the problem we
formulate in this paper belongs to the class of screening
problems. In economics, the one-dimensional screening
problem has been well-studied with both linear and non-
linear utility functions [3]. However, the extension to the
multi-dimensional screening problem is not straightfor-
ward and no general solution is available. The authors in
[9] study a general framework for a deterministic multi-
dimensional screening problem with linear utilities. They
discuss two general approaches, the parametric-utility ap-
proach and the demand-profile approach. The methodol-
ogy we use to solve the problem formulated in this paper
is similar to the demand-profile approach. We consider
a multi-dimensional screening problem under uncertainty
with nonlinear utilities. The presence of nonlinearities and
uncertainty results in additional complications that are not
present in [9] where the utilities are linear and there is
uncertainty2.

B. Contribution

The contribution of this paper is two-fold. First, we
consider an optimal contract design problem for electricity
markets with utility/cost functions that are more general
than those considered in the literature ( [1], [4], [6], [7]).
The nature of utility/cost functions with multi-dimensional
private information is such that the solution methodology

2When a problem is linear, expectation of any random variable can be
replaced by its expected value and reduce the problem to a deterministic
one.

presented in [1], [4], and [6] does not extend to our
problem. The generality of our model enables us to capture
many instances of problems arising in electricity markets.
Two such instances are discussed in Section IV and VI.

Second, we explicitly incorporate a general uncertainty
in the realized cost/utility of the buyer and the seller. The
presence of uncertainty along with the nonlinearity of the
utilities result in problems where the methodology used
in previous works ( [1], [4], [6]) cannot be applied, as
in these works the utilities are linear and any uncertainty
can be replaced by its expected value. The inclusion of
uncertainty is crucial in the modeling and analysis of
emerging electricity markets because: (1) the share of
renewable generation increases; (2) the existing demand
becomes less shielded from the market outcome and more
elastic; and (3) new resources/loads (e.g. storage, plug-in
electric vehicles) enter the market. Due to uncertainty, firm
forward contracts (a priori fixed allocation and fixed pay-
ment) do not appear to be an appropriate form of contract
for emerging electricity markets. Moreover, in the presence
of uncertainty, interim voluntary participation (defined in
Section III) of the seller does not necessarily imply ex-post
voluntary participation of the seller (defined in Section V).
Therefore, additional considerations are needed to ensure
the commitment of the agents to the contract for every
realization of the uncertainty. We show that, in general,
the optimal mechanism for the problem formulated in
this paper is a menu of nonlinear pricing schemes. We
prove that by allowing the payment to depend on the
uncertainty, we can achieve ex-post voluntary participation
of the seller, and a desired risk-sharing (associated with
the uncertainty) between the buyer and the seller. To
the best of our knowledge, our results present the first
optimal forward contract under uncertainty for electricity
markets where the buyer and the seller have general
utility/cost functions parameterized by multi-dimensional
private information. We illustrate our results by providing
two examples from electricity markets: an optimal demand
response contract for ancillary service; and a bilateral trade
between a buyer and a renewable energy generator.

C. Organization

The paper is organized as follows. We introduce the
model in Section II. In Section III, we formulate and
analyze an optimal forward contract with deterministic
allocation, and address the problem of risk sharing be-
tween the buyer and the seller. We illustrate the result
via an example for a contract design problem for demand
response program in section IV. In Section V, we formulate
and analyze an optimal forward contract with random
allocation that depends on the uncertainty, and address
the problem of the seller’s imperfect commitment (ex-



3

post voluntary participation). We provide an example of
a bilateral trade between a buyer and a renewable energy
generator in Section VI. We discuss our results in Section
VII. We conclude in Section VIII. In the Appendix we
present the proofs of lemmas and corollaries appearing in
the paper.

II. MODEL

A buyer wants to design a mechanism to procure
energy/resource from a seller.3 Let q be the amount of
energy/resource the buyer procures, and t be his payment
to the seller. The buyer’s total profit is given by V(q)− t,
where V(q) is his utility by receiving q amount of en-
ergy/resource. The function V(·) is the buyer’s private
information and V(0) = 0.

The seller’s provision cost is given by C(q,x, w),
convex and increasing in q, x = (x1, x2, · · · , xn)∈χ⊆Rn

is the seller’s type, and w denotes the realization of a
random variable W (uncertainty) with a probability dis-
tribution FW (w) that is common knowledge. We assume
that C(0,x, w) (zero-provision cost) does not depend on
the realization of random variable w and is equal to x1,
i.e. C(0,x, w)=C(0,x)=x1. The seller’s utility is given
by her total expected revenue EW {t− C(q,x,W )}. The
seller’s type x is her private information, the set χ is
common knowledge, and there is a prior probability dis-
tribution Fx over χ which is common knowledge between
the buyer and the seller.

Let c(q,x) := ∂EW {C(q,x,W )}
∂q denote the expected

marginal cost for the seller’s type x. We assume that
∃m, 1<m≤ n, such that c(q,x) is increasing in xi for
1≤i≤m, and decreasing in xi for m<i≤n.4 Moreover,
there exists x∈χ (the seller’s worst type) such that xi≤xi
and xj≥xj for all x∈χ, 1≤i≤m and m<j≤n.

Definition 1. We say the seller’s type x is better (resp.
worse) than the seller’s type x̂ if c(q,x)≤c(q, x̂) for all
q ≥ 0 (resp. c(q,x) ≥ c(q, x̂)) with strict inequality for
some q.

Therefore, the seller’s type x is better than the seller’s
type x̂ if and only if xi≤x̂i for 1≤i≤m, and xi≥x̂i for
m<i≤n with strict inequality for some i. The following
example illustrates such ordering.

Example 1. Consider an energy seller with a wind turbine
and a gas generator. The generation from the wind turbine
is free and given by γw3, where γ is the turbine’s technol-
ogy and w is the realized weather. The gas generator has

3From now on, we refer to the buyer as “he” and to the seller as “she”.
4Note that for a general cost function C(q,x,W ) if the corresponding

c(q,x) changes sign for only finite number of times, one can expand the
type space χ and reorder its dimensions so that it satisfies the assumption
on the existence of m.

a fixed marginal cost θc. There is a fixed cost c0 which
includes the start-up cost for both plants and the capital
cost for the seller. Therefore, the seller’s type has n = 3
dimensions. The generation cost for the seller is given by

C(q, w,x) = c0 + θc max
{
q − γw3, 0

}
. (1)

The seller’s type x = (c0, θc, γ) is better than the seller’s
type x̂ = (ĉ0, θ̂c, γ̂) if and only if c0 ≤ ĉ0, θc ≤ θ̂c, and
γ ≥ γ̂, with one of the above inequalities being strict.

Note that in the one-dimensional screening problem,
the cost of production induces a complete order among
the seller’s types, which is crucial to the solution of the
optimal mechanism design problem. However, in multi-
dimensional screening problems, the expected cost of
production induces, in general, only a partial order among
the seller’s types.

We assume that the buyer has all the bargaining power;
thus, he can design the mechanism/set of rules that deter-
mines the agreement for the procurement quantity q, and
the payment t. After the buyer announces the mechanism
for procurement and the seller accepts it, both the buyer
and the seller are fully committed to following the rules
of the mechanism.

As a consequence of the assumption on the buyer’s
bargaining power and the fact that the seller’s utility does
not directly depend on the buyer’s private information
(private value), the solution of the problem formulated in
this paper does not depend on whether the buyer’s utility
V(·) is private information or common knowledge5.

In the rest of the paper we formulate two contract design
problems. In section III, we assume that the buyer can
only accept an a priori fixed energy delivery and formulate
a forward contract design problem with deterministic
allocation. In Section V, we assume that the buyer can
tolerate intermittency in the delivered energy by utilizing
his existing storage/reserve resources, and formulate a
forward contract design with random allocation.

III. FORWARD CONTRACTS WITH DETERMINISTIC
ALLOCATION

In this section we consider a problem of forward con-
tract design where the allocation q is deterministic and
is decided in advance at the time of contract signing.
Bilateral trades with conventional generators and demand
response (DR) contracts for direct load control are forms
of such a contract.

A. Problem Formulation

Let (M, h) be the mechanism/game form (see [10], Ch.
23) for energy procurement designed by the buyer. In this

5This becomes more clear by looking at the result of Theorem 1.
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game form, M describes the message/strategy space for
the buyer and the seller, respectively, and h determines the
outcome function; h :M→ R+×R. For every message
m ∈M the outcome function h specifies the amount q of
the procured energy/resource and the payment t made to
the seller, i.e. h(m) = (q(m), t(m)).6

The objective is to determine a mechanism (M, h) so
as to

maximize
(M,(q(·),t(·)))

Ex,W {V(q(m∗))− t(m∗)} , (2)

where m∗ ∈M is a Bayesian Nash equilibrium (BNE) of
the game induced by the mechanism (M, h). We want the
seller to voluntarily participate in the procurement process.
The voluntary participation (VP) (or individual rationality)
for each type of the seller can be written as

interim VP: EW{t(m∗)−C(q(m∗),x,W )}≥0,∀x∈χ (3)

That is, at equilibrium m∗ of the induced game the
mechanism the seller must have an expected (with respect
to the uncertainty W ) non-negative payoff. We call the
requirement expressed by (3) an interim voluntary partic-
ipation constraint.

We call the above problem (P1).

B. Analysis & Results

We prove that the optimal procurement mechanism is
a pricing scheme that the buyer offers to the seller and
the seller chooses a quantity according to her type. In
such a pricing scheme we have M = χ, q : χ → R+,
and the payment function t(·) can be defined indirectly
as a function of the quantity q(x), i.e. t(q(x)). We
characterize the optimal procurement mechanism by the
following theorem, which reduces the original functional
maximization problem (P1) to a set of equivalent pointwise
maximization problems.

Theorem 1. Under a certain concavity condition, stated
in Lemma 3 below, the optimal mechanism (q(·), t(·)) for
the buyer is a nonlinear pricing scheme given by

p(q) = arg max
p̂
{P [x ∈ χ|p̂ ≥ c(q,x)] (V ′(q)− p̂)},(4)

t(q) =

∫ q

0

p(l)dl + C(0,x), (5)

q(x) = arg max
l∈R+

{t (l)− EW {C(l,x,W )}} (6)

where V ′(q) := dV(q)
dq and M = χ.

The assertion of Theorem 1 is established via several
steps. Below we present these steps and the key ideas

6Note that we use q (resp. t) to denote both the quantity value
(resp. payment value) and the quantity outcome function (resp. payment
function) of mechanism (M, h).

behind each step. The proofs of the lemmas and corollaries
appearing in theses steps can be found in the appendix.
In the sequel, we omit the argument of the functions q(·)
and t(·) whenever such an omission causes no confusion.

Step 1. We set message space M = χ and formulate
the following problem (P2) that is equivalent to problem
(P1):

maximize
(q(·),t(·))

Ex,W {V(q(x))− t(x)} (7)

subject to

IC : x=arg max
x′

EW [t(x′)−C(q(x′),x,W )] ,∀x∈χ(8)

interim V P : EW [t(x)−C(q(x),x,W )]≥0,∀x∈χ, (9)

where q : χ→ R+ and t : χ→ R.
The equivalence follows from the revelation principle

[5]. By invoking the revelation principle, without loss
of optimality, we restrict attention to direct mechanisms
(where M = χ) that are incentive compatible and indi-
vidually rational. Incentive compatibility (IC) for a direct
mechanism requires that truth-telling must be an optimal
strategy for the seller.

Step 2. We show that for any incentive compatible
mechanism (q, t) the seller’s worst type x gets the min-
imum utility among all of the seller’s types. We utilize
the partial order among the seller’s different types to rank
her utility for her different types (Lemma 1), and reduce
the VP constraint (13) for all the seller’s types to the VP
constraint only for the seller’s worst type (Corollary 1).

Lemma 1. For a given incentive compatible mechanism
(q, t), a better type of the seller gets a higher utility. That
is, let U(x) := EW {t(x)− C(q(x),x,W )} denote the
expected profit of the seller with type x. Then,

1) ∂U
∂xi
≤ 0, 1 ≤ i ≤ m,

2) ∂U
∂xi
≥ 0,m < i ≤ n.

A direct consequence of Lemma 1, is that the seller’s
worst type x receives the minimum utility among all the
seller’s types.

Corollary 1. The voluntary participation constraint is
only binding for the worst type x. That is, the general
VP constraint (13) can be reduced to

U(x) := EW {t(x)− C(q(x),x,W )} ≥ 0. (10)

Step 3. We show, via Lemma 2 below, that the optimal
mechanism (q, t) is a pricing scheme. That is the payment
function t(x) can be defined indirectly as a function of q
as t(q(x)).

Lemma 2. For any pair of functions (q, t) that satisfies
the IC constraint, we can rewrite t(x′) as t (q(x′)).
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With some abuse of notation we assume that the
payment function t : R → R refers to the indirectly
defined function t(q(x)) (non-linear pricing scheme) and
we denote t(q(x)) by t(q).

Lemma 2 implies that the VP constraint (10) can be
written as

U(x) := EW {t(q(x))− C(q(x),x,W )} ≥ 0. (11)

. Step 4. We show that under a certain quasi-concavity
condition, stated in Lemma 3 below, we can define in-
directly the allocation function q(x) as a function of the
payment function t(l) by utilizing the incentive compat-
ibility constraint. We define the following problem (P3),
that is equivalent to problem (P2), in terms of the marginal
price p(l) = dt(l)

dl and the minimum payment t(0):

max
p(·),t(0)

∫ ∞
0

P [x∈χ|p(l)≥c(l,x)](V ′(l)−p(l))dl−t(0)(12)

subject to

interim VP: EW

{
t(0)+

∫ q(x)

0

p(l)dl−C(q(x),x,W )

}
≥0. (13)

The equivalence is established in two steps. First, con-
sider an arbitrary incentive compatible mechanism (q, t).
The optimal quantity q∗(x) for each type x of the seller
is given by

q∗(x) = arg max
l

EW {t (l)− C(l,x,W )} . (14)

Incentive compatibility then requires that the seller must
tell the truth to achieve this optimal value, and cannot do
better by lying, i.e. q(x) = q∗(x) for all x ∈ χ. For
any function t(·), this last equality can be taken as the
definition for the associated function q(·). Thus, the IC
constraint can be eliminated by defining q(·) := q∗(·)
and the problem of designing the optimal direct revelation
mechanism (q, t) can be reduced to an equivalent problem
where we determine only the optimal payment function
t(·) subject to the voluntary participation constraint for
the worst type.

Next, using Lemma 3, stated below, we rewrite the
buyer’s expected utility in terms of the marginal price
p(q):= ∂t(q)

∂q and the minimum payment t(0) (which along
with p(·) uniquely determines the payment function t(·)).

Lemma 3. Assume that the seller’s problem defined by
(14) is continuous and quasi-concave7. Then, the buyer’s

7This is a standard assumption in economics literature, e.g. see [9] and
[18]. Basically, it can be seen as a situation where the seller can decide
for each marginal unit of production independently. Thus, in general,
there is no guarantee that the seller’s independent decisions about each
marginal unit of production results in a continuous and plausible total
production quantity q. Therefore, the continuity of the result must be
checked a posteriori for each type of the seller.

expected utility can be expressed in terms of p(.) and t(0)
as

Ex[V(q∗(x))]−Ex[t(q∗(x))]=∫∞
0
P (x ∈ χ|q∗(x)≥l)V ′(l)dl

−t(0)−
∫∞
0
P (x∈χ|q∗(x)≥l) p(l)dl, (15)

where
P (x ∈ χ|q∗(x) ≥ l) = P [x ∈ χ|p(l) ≥ c(l,x)] . (16)

Using (15) and (16), we can rewrite the objective of
problem (P2) and obtain the equivalent problem (P3) given
by (12) and (13)

Equation (16) states that the seller is willing to produce
the marginal quantity at l if the resulting expected marginal
profit is positive, i.e. the marginal price p(l) exceeds the
marginal expected cost of generation c(l,x). Equation (15)
expresses the buyer’s total expected utility in term of an
integral of his total marginal utility V ′(l)−p(l) at quantity
l, times the probability that the seller’s production exceeds
l, minus the minimum payment t(0).

Step 5. We prove that the seller’s worst type produces
the minimum quantity among all the seller’s types, i.e.
q(x) = minx∈χ q(x). As a result, we show that problem
(P3) is equivalent to the following problem (P4):

max
p(·)

∫ ∞
0

P [x ∈ χ|p(l) ≥ c(l,x)] (V ′(l)− p(l)) dl (17)

subject to

iterim VP:C(0,x)+

∫ q∗(x)

0

p(l)dl≥EW [C(q∗(x),x,W)].(18)

We establish the equivalence by providing a ranking for
the seller’s optimal decision q∗(x) based on the partial
order among the seller’s types.

Lemma 4. For a given mechanism specified by (t(·), q(·)),
a better type of the seller produces more. That is, the
optimal quantity q∗(x) that the seller with true type x
wishes to produce satisfies the following properties:

a) ∂q∗(x)
∂xi

≤ 0, 1 ≤ i ≤ m,
b) ∂q∗(x)

∂xi
≥ 0,m < i ≤ n.

As a consequence of Corollary 1 and Lemma 4 we can
then simplify the VP constraint (13) as follows.

Corollary 2. The interim VP constraint is satisfied if
t(0) = C(0,x) and the seller’s worst type payment is
equal to her expected production cost, i.e. t(q∗(x)) =
EW{C(q∗(x),x,W )}.

The equivalence of problems (P3) and (P4) follows
from Corollary 2 and by replacing the VP constraint (13)
by (18). Note that we also dropped the constant term
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t(0) = C(0,x) (from Corollary 2) in the objective of
problem P4 given by (17).

Problem (P4) is in terms of the marginal price p(l) and
requires that the payment the seller’s worst type receives
is equal to her cost of production.

Step 6. We show that the solution of problem (P4) is
given by

p(l) = arg max
p̂
{P [x∈χ|p̂ ≥ c(l,x)](V ′(l)− p̂)}

To prove the claim of Step 6 we consider a relaxed
version of (P4) without the VP constraint (18). The
unconstrained problem can be solved pointwise at each
quantity l to determine the optimal p(l) as

p(l)=arg max
p̂
{P [x∈χ|p̂ ≥ c(l,x)](V ′(l)− p̂)} , (19)

which is the same as (4). From Corollary 2 and the fact
that the worst type has the highest expected marginal cost,
we can simplify (19), for l ≤ q∗(x), as

p(l) = c(l,x), for l ≤ q∗(x). (20)

Note that for l ≤ q∗(x) we have P [x∈χ|p̂ ≥ c(l,x)] = 1
from Lemma 4. Therefore, the minimum marginal price
p(l) that ensures all the seller’s type are willing to produce
more than q∗(x) is equal to the marginal expected cost
for the seller’s worst type c(l,x). Therefore, the solution
to the unconstrained version of problem (P4) satisfies
constraint (18) of problem (P4), and therefore, (19) is also
the optimal solution of problem (P4).

We complete now the proof of Theorem 1. Using Claim
4 along with Corollary 2, the optimal payment function
(nonlinear pricing) can be written as

t(q) =

∫ q

0

p(l)dl + C(0,x)

which is the same as (5). From (14) we determine the
optimal energy procurement function,

q(x) = arg max
l

EW {t (l)− C(l,x,W )}

which is the same as (6). The specification of t(·) and
q(·) completes the proof of theorem 1 and the solution to
problem (P1).

In essence, Theorem 1 states that at each quantity
l, the optimal marginal price p(l) is chosen so as to
maximize the expected total marginal utility at l, which
is given by the total marginal utility (V ′(l)− p(l)) times
the probability that the seller generates at least l.

Remark 1. In problem (P1), we assume that there exists
a seller’s worst type which has the highest cost at any
quantity among all the seller’s types, and we reduce the
VP constraint for all of the seller’s type to only the VP

constraint for this worst type. As a result, we pin down
the optimal payment function by setting t(0) = C(0,x) to
ensure the voluntary participation of the worst type, which
consequently implies the voluntary participation for all of
the seller’s types. In absence of the assumption on the
existence of the seller’s worst type, the argument used to
reduce the VP constraint is not valid anymore and we
cannot pin down the payment function and specify t(0)
a priori. Assuming that all types of the seller participate
in the contract, their decision on the optimal quantity q∗

only depends on the marginal price p(q), and therefore,
the optimal marginal price p(q), given by (19), is still
valid without the assumption on the existence of the worst
type. To pin down the payment function t(·), we find the
minimum payment t(0) a posteriori so that all types of the
seller voluntarily participate. That is,

t(0)=max
x∈χ

[
EW {C(q(x),x,W )} −

∫ q∗(x)

0

p(l̂)dl̂

]
, (21)

where the optimal decision of type x is given by

q∗(x) = arg max
l

[∫ l

0

p(l̂)dl̂ − EW {C(l,x,W )}

]
. (22)

Remark 2. In a setup with a positive zero-provision cost
for the seller, it might not be optimal for the buyer to
require all the seller’s types to voluntarily participate in
the procurement process, since t(0) depends on the zero-
provision cost of the seller’s worst type C(0, x). In such
cases, it might be optimal for the buyer to exclude some
“less efficient” types of the seller from the contract, select
an admissible set of the seller’s types, and then design
the optimal contract for this admissible set of the seller’s
types8. Note that this is not the case for setups without
a zero-provision cost. In such setups, if it is not optimal
for some type x to be included in the optimal contract,
it is equivalent to set q(x) = 0 in a contract menu that
considers all types of the seller.

C. Risk Allocation

In the optimal mechanism/contract menu presented by
Theorem 1, the buyer faces no uncertainty, and he is
guaranteed to receive quantity q(x), and all the risk
associated with the realization of W is taken by the seller.
We wish to modify the mechanism to reallocate the above-
mentioned risk between the buyer and the seller. To do
so, we modify the payment function so that the risk is
reallocated between the buyer and the seller. Consider the
following modified payment function with α∈[0, 1],

8To find the optimal admissible set, the optimal contract can be
computed for different potential admissible sets. Then, the resulting
utilities can be compared to find the optimal admissible set.
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t̂(x, w) = t(q(x)) + α [C(q(x),x, w)

−EW {C(q(x),x,W )}] . (23)

From (23) it follows that EW
{
t̂(x,W )

}
=t(q(x)). There-

fore, the strategic behavior of the seller does not change
and the seller chooses the same quantity under the modi-
fied payment function t̂(·) as under the original payment
function t(q) given by (5). Note that for α = 0 we have the
same payment as t(q). For α = 1, the seller is completely
insured against any risk and all the risk is taken by the
buyer. The parameter α determines the allocation of the
risk between the buyer and the seller; the buyer undertakes
α and the seller undertakes (1− α) share of the risk.

The result of Theorem 1 is illustrated by Example 1 in
section IV.

IV. EXAMPLE - DEMAND RESPONSE (DR)

We consider a contract design for DR program. There
is a load aggregator that offers contracts with incentive
payments to a heterogeneous population of loads who are
willing to yield the direct control of their load to the
aggregator given that they are offered an appropriate incen-
tive payment. The aggregator participates in an ancillary
service market and sells the aggregated resources to the
reserve market at exogenous marginal price pr.9 Formally,
there are I types of loads with a population distribution f
over different types. Each load of type i has a maximum
controllable load Li. Let qi ≤ Li denote the quantity that
each load of type i yields its control to the aggregator to
be dispatched. We assume that each load of type i has a
quadratic cost (increasing marginal cost) given by

Ci = α0
i + α1

i qi + α2
i q

2
i . (24)

Therefore, the load’s type is x = (Li, α
0
i , α

1
i , α

2
i ). Let ti

denotes the incentive payment to each load of type i for
yielding the control of load qi. Then, the total utility of
each load of type i is given by

Ui = ti −
(
α0
i + α1

i qi + α2
i q

2
i

)
. (25)

The aggregator participates in the ancillary service market
and provides capacity q =

∑
fiqi at a given uniform price

pr. Therefore, the aggregator’s revenue is given by

pr
∑

(fiqi)−
∑

(fiti) . (26)

We consider I = 5 types of loads described in Table I
along with a normalized population distribution f with∑
fi = 1, and set pr = 2 ¢/kWh. Note that no complete

ordering can be defined based on their marginal cost and

9If pr is not exogenous, the aggregator’s interactions with the reserve
market on one hand and the demand population on the other hand become
coupled. In this case these interactions must be studied simultaneously.

there exists no worst type; at lower quantities smaller loads
(e.g. type (b)) have a lower marginal cost while at higher
quantities larger loads (e.g. type (e)) have lower cost.

Via Theorem 1 we determine the optimal menu of
contracts the aggregator offers to the heterogeneous pop-
ulation of loads (Table II). The optimal menu of contracts
can be interpreted also as a nonlinear pricing that the
aggregator offers to loads (Fig. 1).

The optimal choice and the resulting payoff for each
type of load are summarized in Table III. We note that,
unlike one-dimensional contracts, a type with a higher
quantity does not necessarily get a higher payoff.

type Li(kWh) α0
i (¢) α1

i (
¢

kWh
) α2

i (
¢

kWh2 ) fi
(a) 0.5 0.1 5 10 0.1
(b) 1 0.1 4 10 0.3
(c) 1.5 0.6 8 5 0.2
(d) 2 0.6 5 8 0.3
(e) 2.5 1.2 6 5 0.1

TABLE I: Different types of loads

Quantity q(·) (kWh) 0.38 0.64 0.82 1.10 1.40
Payment t(·) (¢) 3847 7569 10498 15450 20991

TABLE II: Options menu offered by the aggregator

Type Quantity Payment Cost Profit
(a) 0.382 3847 3469 378
(b) 0.643 7569 6897 762
(c) 1.100 15450 15450 0
(d) 0.8185 10498 10052 446
(e) 1.400 20991 19400 1591

TABLE III: Optimal contract and the resulting outcome

Fig. 1: The optimal pricing scheme for DR program

V. FORWARD CONTRACTS WITH RANDOM
ALLOCATION

In some instances of the problem considered in this
paper, the buyer has a reserve resource [17] or wants to
supply deferrable loads [1] that gives him the flexibility to
accept a random allocation q(x,W ) that depends on the
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uncertainty W , and compensate the randomness in the al-
location utilizing the existing flexibility. In this section, we
formulate and analyze a forward contract design problem
with random allocation. We assume that the realization of
the random variable W is common knowledge between
the buyer and the seller.

A. Problem Formulation

Let e(x) denote the forward scheduled quantity (de-
terministic) by the buyer and q(x, w) denote the ran-
dom delivered quantity by the seller with type x. Let
CR(e(x)− q(x, w)) denote the cost incurred by the buyer
to compensate the real-time deviation e(x)−q(x, w) from
the forward schedule e(x). Then, for a given set of contract
menus (q(x, w), t(x, w)), the buyer’s optimal schedule
e(x) for the seller’s type x is defined by

e(x)=argmax
ê

EW{V(ê)−t(x,W)−CR(ê−q(x,W))}, (27)

and the buyer’s expected utility is given by

EW,x{V(e(x))−t(x,W )−CR(e(x)− q(x,W ))} . (28)

The buyer wants to design a mechanism (q(x, w), t(x, w))
so as to maximize his expected utility given by (28), sub-
ject to the voluntary participation of the seller. Formally,
the contract design problem with random allocation for
the buyer, called (Q1), can be stated as follows:

maximize
{q(·,·),t(·,·)}

EW,x{V(e(x))−t(x,W)−CR(e(x)−q(x,W))} (29)

subject to

EW{t(x,W )− C(q(x,W ),x,W )} ≥ 0,∀x ∈ X . (30)

B. Analysis & Results

We show, via Theorem 2 below, that the optimal forward
contract with random allocation is a menu of pricing
schemes, one for each type of the seller.

Theorem 2. The optimal forward contract with random
allocation for problem (Q1) is a menu of pricing schemes
given by

e(x) = q̃(x) (31)
q(x, w) = q̃(x)− qR(x, w), (32)
t(x, w) = t̃(x)− CR(qR(x, w)), (33)

where
{
q̃(x), t̃(x)

}
denotes the optimal solution to the

optimization problem

maximize
{q̃(·),t̃(·)}

EW,x
{
V(q̃)− t̃

}
(34)

subject to

EW,x
{
t̃(x)− C̃(q̃(x),x,W )

}
≥ 0, (35)

C̃(q,x, w):=min
l
{C(l,x, w) + CR(q̃ − l)}, (36)

and

qR(x, w):=argmin
l
{C(q̃(x)−l,x, w)+CR(l)} . (37)

Proof. Consider the following contract design problem
where the seller’s cost function is defined as

C̃(q̃,x, w) = min
l
{C(l,x, w) + CR(q̃ − l)} ,

where C(·, ·, ·) is the seller’s cost function in (Q1), and
the buyer’s utility is defined as

EW,x
{
V(q̃)− t̃(q̃)

}
. (38)

The optimal contract design problem for the defined
environment above, called (Q2), can be stated as

maximize
{q̃,t̃}

Ex,W

{
V(q̃)− t̃

}
(39)

subject to

IC: x=argmax
x′

EW
{
t̃(x′)−C̃(q̃(x′),x,W )

}
,∀x∈χ (40)

interim VP: EW
{
t̃(x)−C̃(q̃(x),x,W )

}
≥0,∀x∈χ (41)

where q̃ and t̃ denote the quantity and payment function
for the defined problem above. By construction, problem
(Q2) is the same as problem (P2). Let

{
q̃(x), t̃(x)

}
denote the optimal contract for problem (Q2) obtained
via Theorem 1. Note that through the cost function
C̃(q̃(x),x, w), defined by (36), we absorb the optimal
schedule choice e(x), given by (27), and internalize the
compensation cost CR(e(x) − q(x,W )) for the random
deviation e(x)−q(x,W ) in problem (Q1) into the seller’s
cost function. Therefore, the optimal scheduled quantity
e(x) for problem (Q1) is equal to the optimal function q̃(x)
for problem (Q2), i.e. e(x) = q̃(x). Consequently, one
can reconstruct the optimal contract {q(x, w), t(x, w)} for
problem (Q1) using the optimal contract

{
q̃(x), t̃(x)

}
for

the equivalent problem (Q2) as

q(x, w) = q̃(x)− qR(x, w),

t(x, w) = t̃(x)− CR(qR(x, w)),

where

qR(x, w):=argmin
l
{C(q̃(x)−l,x, w)+CR(l)} ,

denotes the random reserve quantity required to compen-
sate the random allocation q(x, w).

Theorem 2 has the following interpretation. The
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buyer offers different pricing schemes (quantity-payment
curves), and each type of the seller chooses one based on
her private information and expectation about W . Then,
in real time as W is realized, based on the realization w,
one point from the chosen pricing scheme is selected and
the payment t and the energy delivery q are determined.

C. Imperfect Commitment and Ex-post Voluntary Partici-
pation

The voluntary participation constraint imposed in prob-
lem (Q1) is interim. That is, the expected profit with
respect to W must be non-negative for each type of the
seller. Up until now (problem (P1) and (Q1)) we have
assumed that once the seller agrees to sign the contract
(such an agreement takes place before the realization of
random variable W ) she is fully committed to following
the agreement, even if the realized profit is negative (due
to some realization w)10. Therefore, it would be desirable
to modify the contract in order to ensure a positive payoff
for the seller for every realization of W and full commit-
ment without any outside enforcement. To ensure that the
seller’s realized profit is non-negative for every realization
w, we impose an ex-post voluntary participation constraint
and replace the interim VP constraint (30) by

Ex-post VP: t(x)− C(q,x, w) ≥ 0,∀w, ∀x∈χ. (42)

To satisfy the ex-post voluntary participation constraint,
we modify the payment function of the mechanism given
by Theorem 2 as follows:

ť(x, w)= EW {t(x,W )}−EW {C(q(x,W ),x,W )}
+C(q(x, w),x, w). (43)

We have EW
{
ť(x,W )

}
= EW {t(x,W )}, and there-

fore, the seller always chooses the same quantity q
under the modified payment function ť as under the
original payment function t given by (33). Furthermore,
we have ť(x, w)−C(q(x, w),x, w) = EW {t(x,W )}−
EW {C(q(x,W ),x,W )} ≥ 0 for all w, x, where the last
inequality is true since {q, t} satisfies the interim VP
constraint (30). Therefore, under the modified payment
function ť,

{
q, ť
}

satisfies the expost VP constraint (42).

VI. EXAMPLE - FORWARD BILATERAL TRADE

Consider a forward bilateral trade between a buyer and
a seller with wind generation. The buyer has an (almost
inelastic) energy demand curve given by Fig. 2.

The seller has a wind farm and (possibly) a reserve
generator/storage that can be used to compensate for wind

10Since the seller’s reserved utility is zero by not participating (outside
option), we can always think of the seller walking away from the
agreement for these negative profit realizations and not following the
mechanism rules.

Fig. 2: The buyer’s demand curve

Fig. 3:The wind turbine generation curveg(w,vci,vr,vco,γ)

Fig. 4: The wind forecast FW

generation intermittency. The seller’s wind generation is
given by g(w, vci, vr, vco, γ) as in Fig. 3, where w denotes
the wind speed and (vci, vr, vco, γ) denotes the specifica-
tion of the wind turbine. The wind speed is random and
the wind forecast fW is given by Fig. 4, which is a Weibull
distribution with shape parameter k = 3 and average wind
speed of 5m/s. We assume that the wind forecast fW as
well as the wind realization w are common knowledge
between the buyer and the seller. The wind generation has
a marginal operational cost θw. The seller (possibly) has a
reserve generator/storage with capacity r and a marginal
cost θr that can be utilized if needed. The seller has a zero-
production cost c0 which accounts for her capital cost and
the start-up cost of her facilities. Therefore, the seller’s
private information is as x = (c0, θw, θr, vci, vr, vco, γ, r).

We assume that the buyer has a reserve genera-
tor/deferrable load that can be utilized to compensate the
real-time random energy delivery by the seller. We assume
that deviation from the scheduled energy has an increasing
marginal cost for the buyer given by b0 + b1q.

We consider 4 types for the seller as in Table IV, and
set b0 = 1.4 $

kwh and b1 = 0.05 $
kWh2 .

The optimal forward contract menu for the buyer is
given by Fig. 5. Since the energy demand considered in
this example is almost inelastic, the scheduled quantity
e(x), and therefore, the quantity-demand curves are also
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type c0 θw θc vci vr vco γ r fi
a 90 0.20 1.2 0.4 13 23 1 60 0.1
b 60 0.25 1.4 0.8 17 25 1.25 30 0.3
c 40 0.10 1.0 0.1 15 20 1.5 10 0.2
d 20 0.15 - 1.0 17 28 1.7 0 0.3

TABLE IV: Different types of the seller

close to each others.11 Table V summarizes the optimal
energy schedule e(x), and the expected utility U(x) for
different types of the seller.

Fig. 5: The optimal forward contract menus

type a b c d
e(x) 122.3 118.5 120.4 116.5
U(x) 84.47 35.10 101.82 0

TABLE V: The outcomes of the optimal contract menus

The energy q(x, w) delivered to the buyer, the payment
t(x, w) made to the seller, and the seller’s utility u(x, w)
in terms of wind w are given by Figures 6, 7, and 8,
respectively.

For low realizations of wind speed, the delivered energy
is low and the seller may even incur some penalty for
very low energy delivery (Fig. 5). For higher realization of
wind speed, the energy delivery increases, and therefore,
the payment and the realized utility increase. However,
for very high realization of wind speed that surpasses the
cut-off speed vco (see Figure 3), the energy delivery, and
consequently the payment and the realized utility, drop.

Fig. 6: Energy deliver q(x, w) in terms of wind w

VII. DISCUSSION

For the problem on energy/service procurement formu-
lated in this paper the optimal mechanism is a menu of

11For a completely inelastic energy demand, we have e(x) fixed and
independent of the seller’s type x. Therefore, all the quantity-demand
curves coincide and are equal to the quantity-cost curve for the worst
type.

Fig. 7: Payment t(x, w) in terms of wind w

Fig. 8: The seller’s utility u(x, w) in terms of wind w

contracts/nonlinear pricing schemes. The nonlinearity is
due to three factors. First, the buyer’s utility function V(q)
is not linear in the quantity q. Second, for each type of
the seller, the cost function is a nonlinear function of the
quantity . Third, the seller has private information about
her technology and cost (seller’s type).

The buyer has to pay information rent (monetary in-
centive) to the seller to incentivize her to reveal her true
type. Therefore, the payment the buyer makes to the seller
includes the cost of provision the seller incurs plus the
information rent, which varies with the seller’s type; the
better the seller’s type, the higher is the information rent.

The optimal forward contracts discovered in this paper
can be implemented as follows: the buyer offers the seller
a menu of contracts (nonlinear pricing schemes); the seller
chooses one of these contracts based on her type.

The optimal forward contracts induce some incentives
for investment in infrastructure and technology develop-
ment. From Lemma 1, the seller with the higher type has
a higher utility. Therefore, there is an incentive for the
seller to improve her technology and decrease her cost of
generation.

It is well-known that in the presence of private infor-
mation and strategic behavior, in general, there exists no
mechanism/contract that is (1) individually rational, (2)
incentive compatible, and (3) efficient (Pareto-optimal)
[13]. In the optimal forward contract given by Theorems 1,
and 2 the allocation for the seller’s different types is not
ex-post efficient (Pareto-optimal) except for the seller’s
worst type who gets zero utility.

In this paper, we formulated the contract design problem
in a principal-agent setup. Therefore, the result can be
applied to the contract design problem for a setup with
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one buyer (principal) and a heterogeneous population of
sellers (agents), if the buyer has a linear utility function,
as in Example 1, or if the share of each individual agent is
small and their effect on the market is negligible. However,
if one considers a setup with nonlinear utility for the buyer
or market power for each individual agent, the associated
problem for such setup with multiple agents becomes
equivalent to the design of optimal multi-unit auctions
in economics. It is known that there exist no closed
form solution to the general problem of optimal multi-
unit auctions, and their solutions can only be computed
numerically or with approximation [8].

VIII. CONCLUSION

We investigated the problem of optimal forward contract
design under uncertainty and multi-dimensional private in-
formation. The consideration of multi-dimensional private
information and general utility/cost functions enables us
to capture many applications in electricity markets as well
as other disciplines. We assume that the buyer and/or the
seller has uncertainty in their utility/cost function which is
realized after the time of contract signing. We considered
froward contracts with random allocation that depends
on the real-time realization of the uncertainty. We char-
acterized the optimal forward contract under uncertainty
as a menu of contracts. We addressed the problem of
commitment (ex-post voluntary participation), and risk
sharing in the presence of uncertainty. We demonstrated
our results by two examples; an optimal contract design
for a demand response program, and an optimal forward
bilateral trade between a buyer and a seller with wind
energy generation.

APPENDIX - PROOFS

Proof of lemma 1. The given mechanism (q, t) is incen-
tive compatible, so we can rewrite U(x) as

U(x) = max
x′

EW {t(x′)− C(q(x′),x,W )} (44)

By applying the envelope theorem [12] on (44), we get

∂U

∂xi
= − ∂EW {C(q(x′),x,W )}

xi

∣∣∣∣
x′=x

. (45)

The above equation along with the assumption on the
monotonicity of the marginal expected cost c(q, x) with
respect to xi (Section II.A) gives

∂U

∂xi
≤ 0, 1 ≤ i ≤ m (46)

∂U

∂xi
≥ 0,m < i ≤ n. (47)

Proof of lemma 2. The proof is by contradiction. Assume
that there exist x,x′ ∈ χ such that q(x) = q(x′) but

t(x′) > t(x). Then a seller with type x is always better
off by reporting x′ instead of her true type x, which
contradicts the IC constraint.

Proof of Lemma 3. Consider the buyer’s objective (7).
For any function t(·), we can determine from (14) the
cumulative distribution function for q∗, called Fq∗ . Con-
sequently, we can rewrite the buyer’s objective as

Eq∗ [V(q∗)− t(q∗)] =

∫ ∞
0

(V(l)− t(l)) dFq∗(l)

= (Fq∗(l)− 1) (V(l)− t(l))|∞0

+

∫ ∞
0

(1− Fq∗(l))
d (V(l)− t(l))

dl
dl. (48)

We have

(Fq∗(l)− 1) (V(l)− t(l))|∞0 = −t(0) (49)

because V(0) = 0 by assumption, and (Fq∗(∞)− 1) = 0.
Because of (49), we can rewrite (48) as

Eq∗ [V(q∗)− t(q∗)] =

∫ ∞
0

P (q∗ ≥ l) (V ′(l)− p(l)) dl

−t(0) (50)

where V ′(l) = dV(l)
dl .

We can rewrite P (q∗ ≥ l) as

P(q∗≥l)=P [x∈χ|argmax
l̂

EW
{
t(l̂)−C(l̂,x,W )

}
≥l]. (51)

We implicitly assume that the seller’s problem given by
(14) is continuous and quasi-concave, so that from the first
order optimality condition for (14) we obtain

p(q∗(x)) =
∂EW {C(l,x,W )}

∂l

∣∣∣∣
q∗(x)

= c(q∗(x),x). (52)

Therefore, from the optimality of q∗(x) and the quasi-
concavity of (14), we must have p(l) > c(l;x) and
p(l) < c(l;x) for l < q ∗ (x) and l > q∗(x), respectively.
That is, each type of the seller wishes to produce more
than quantity l if and only if the marginal price p(q) that
she is paid at l is higher than the expected marginal cost
of production c(l,x) that she incurs at l. Consequently,
combining (51) and (52) we obtain

P (q∗ ≥ l) = P [x∈χ|p(l) ≥ c(l,x)] . (53)

Substituting (53) in (50), we obtain the following alter-
native expression for the buyer’s objective

Eq∗ [V(q∗)−t(q∗)]=
∫ ∞
0

P [x∈χ|p(l)≥c(l,x)]

(V ′(l)−p(l)) dl− t(0). (54)
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Proof of lemma 4. Let x,x′ ∈ χ, where x is a better type
than x′. From IC for seller’s type x we have

t(q(x))−EW{C(q(x),x,W )}≥
t(q(x′))−EW{C(q(x′),x,W )} (55)

Similarly from IC for seller’s type x′ we have

t(q(x′))− EW {C(q(x′),x′,W )} ≥
t(q(x))− EW {C(q(x),x′,W )}(56)

Subtracting (56) from (55), we get

EW {C(q(x),x′,W )} − EW {C(q(x′),x′,W )} ≥
EW {C(q(x),x,W )} − EW {C(q(x′),x,W )}(57)

By assumption, dEW{C(l,x,W )}
dl ≤ dEW{C(l,x′,W )}

dl if x is a
better type than x′. Therefore, (57) holds if and only if

q(x) ≥ q(x′). (58)

Proof of corollary 2. Because of corollary 1, the VP con-
straint implies

U(x) = t(q(x))− EW [C(q∗(x),x,W )] = 0, (59)

which is equivalent to

t(0) +

∫ q∗(x)

0

p(l)dl = EW [C(q∗(x),x,W )] . (60)

Furthermore, from Lemma 4 it follows that if the worst
type wishes to produce more than q∗(x), then all types
produce more than q∗(x). Therefore,

P [x ∈ χ|p(l) ≥ c(l,x)] = 1, for l ≤ q∗(x). (61)

Using (61), we can rewrite the objective function of
problem (P3) as,

−

(
t(0) +

∫ q∗(x)

0

p(l)dl

)
+

∫ q∗(x)

0

V ′(l)dl

+

∫ ∞
q∗(x)

P [x ∈ χ|p(l) ≥ c(l,x)] (V ′(l)− p(l)) dl.(62)

The term t(0)+
∫ q∗(x)
0

p(l)dl appears in both the objec-
tive (62) and the VP constraint (60). Therefore, without
loss of optimality, we can assume t(0) = C(0,x), and set
t(q(x)) = EW {C(q(x),x,W )}.
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