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Abstract The diagnosis of unobservable faults in large and complex discrete event
systems modeled by parallel composition of automata is considered. A modular
approach is developed for diagnosing such systems. The notion of modular diag-
nosability is introduced and the corresponding necessary and sufficient conditions to
ensure it are presented. The verification of modular diagnosability is performed by a
new algorithm that incrementally exploits the modular structure of the system to
save on computational effort. The correctness of the algorithm is proved. Online
diagnosis of modularly diagnosable systems is achieved using only local diagnosers.
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Introduction

Many application areas including document processing systems, heating, ventilation,
and air-conditioning systems, intelligent transportation systems, chemical process
control, and telecommunication networks have successfully implemented mon-
itoring and diagnosis methodologies based upon discrete-event models of dynamic
systems. Most discrete-event fault diagnosis methodologies necessitate the con-
struction of a Bmonolithic’’ model of the system under consideration for diagnos-
ability analysis and implementation; see Aghasaryan et al. (1998), Bouloutas et al.
(1994), Console et al. (2002), Contant et al. (2004b), Debouk et al. (2000), Hashtrudi
Zad et al. (2003), Jiang and Kumar (2002), Jiang et al. (2003), Lafortune et al.
(2001), Lamperti and Zanella (2003, 2004); Lin (1994), Lunze (2000), Pencolé et al.
(2002), Sampath (2001), Sampath et al. (1995, 1996, 1998), Sengupta (2001),
Sinnamohideen (2001), Yoo and Garcia (2004).

Almost all systems possess a Bmodular’’ structure. In general a modular system is
composed of several modules, local components, or subsystems that could
themselves possibly be formed of several smaller individual modules. Such modular
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systems tend to have very large state spaces and thus they are complex to model and
difficult to diagnose in a holistic manner. Therefore, diagnosis methodologies
that take advantage of the natural decomposition of a modular system have the
potential to provide conceptual and computational advantages as compared to
methodologies requiring a monolithic representation of the entire system. Individual
modules are in general simpler to diagnose locally, but such diagnosis may not
account for the effect of the rest of the system. Therein lies the challenge of modular
diagnosis methodologies: performing diagnosis locally, i.e., at each module, while
at the same time accounting for the coupling of each module with the rest of the
system. Approaches that exploit the modular structure of a system for monitoring
and diagnosis have been developed in Benveniste et al. (2003), Debouk et al. (2002),
Garcia et al. (2002), Genc and Lafortune (2003), Holloway and Chand (1994),
Pandalai and Holloway (2000), Pencolé (2000), Ricker and Fabre (2000), Su and
Wonham (2004), Su et al. (2002). This paper has an objective similar to the one in
the previously mentioned references; however, the approach adopted here is dif-
ferent. We review some relevant references below.

In Debouk et al. (2002), the authors implement a modular architecture for local
diagnosis at each component. The procedure requires the construction of a local
diagnoser for each component. Sufficient conditions that ensure global diagnos-
ability are given. Diagnosability is verified using an incremental approach that
checks individually each subsystem. While our setup is similar to that in Debouk et
al. (2002), we use a different notion of diagnosability and further exploit the
structure of the system in verifying it. In Pencolé (2000), the authors are interested
in diagnosing distributed systems. Each system is composed of spatially distributed
subsystems. Each subsystem runs a local diagnoser, i.e., diagnoses only faults
occurring at the site. The complete system diagnosis is obtained by suitably merging
the local information of all subsystems, i.e., local models and sequences of
observable events. In Su et al. (2002), the authors develop a distributed diagnosis
method with communication. Local diagnosers are built for each local component.
Communication is possible via input and output connections that link the local
diagnosers. Local diagnosis is based mainly on local observations, and communica-
tion is used for refinement purposes. Our approach is different from Pencolé (2000),
Su et al. (2002) since we are not assuming real time communication among local
diagnosers. In Ricker and Fabre (2000), the authors present a modular approach for
detecting faults in large and distributed systems. The subsystems interact among one
another via sets of common resources that are assumed observable. However the
problem formulation in Ricker and Fabre (2000) is different from ours. In Holloway
and Chand (1994), the authors develop a methodology to monitor distributed faults
in manufacturing systems. Unlike our approach which is based on untimed models,
the methodology in Holloway and Chand (1994) employs timed models (called
Btime templates’’). The monitoring is done by a set of distributed interconnected
processors and event prediction is made possible by the use of sets of timing and
sequencing relationships available through the different templates assigned to processors.

The approach proposed in this paper is suited to systems that are modeled by the
parallel composition of automata, where each automaton represents a local compo-
nent, subsystem, or module of the global system. Furthermore, the proposed ap-
proach focuses on the case where building a monolithic model of the complete
system is impractical for computational or other reasons. In this context, the cen-
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tralized and decentralized versions of the so-called Diagnoser Approach in Sampath
et al. (1995) and Debouk et al. (2000) are inappropriate. In order to possibly
alleviate the drawbacks of methodologies based on monolithic models of the entire
system, it is essential to exploit the modular structure of the system, which naturally
emanates from the local automata that are coupled by parallel composition.

The first objective of the approach investigated in this paper is the on-line
diagnosis of a modular system using solely the diagnosers corresponding to
individual modules, or local diagnosers. In this regard, we define the property of
Bmodular diagnosability.’’ It is a variation of the definition of diagnosability in
(Sampath et al., 1995) that accounts for the modular structure of the system. We
show in the paper that systems that are modularly diagnosable can be diagnosed by
employing only local diagnosers. The second objective is to verify in a manner as
efficient as possible whether or not modular diagnosability holds. For this purpose,
we present an algorithm that is incremental in nature and that attempts to verify
modular diagnosability by considering one module at a time and without necessarily
using all the remaining modules in the system. Roughly speaking, the idea is to use
only the information about other modules that is absolutely necessary in
determining what faults can be diagnosed with certainty by a local diagnoser.

The contributions of this paper and its organization are as follows. The System
Model section presents some necessary notation used extensively throughout this
paper. The first contribution of the paper is the introduction of the notion of modular
diagnosability, which is explicitly geared towards systems with modular repre-
sentations. This notion is presented in the Modular Diagnosability section. The main
feature of modular diagnosability is that it requires persistent excitation of the module
or local component that exhibits a faulty behavior. The motivation and intuition of
the notion of modular diagnosability are presented and discussed along with asso-
ciated necessary and sufficient conditions. The Preliminary Discussion section gives a
preliminary discussion on the approach developed in the following sections for testing
modular diagnosability. The Properties of Modular Diagnosability section presents
properties of modular diagnosability that constitute the foundations of the correctness
proof of the developed approach. The second main contribution of this paper is the
development in the Test for Modular Diagnosability section of a novel algorithm for
verifying modular diagnosability. This algorithm (abbreviated as MDA hereafter)
proceeds incrementally by considering the automata models of other system compo-
nents only if they are required to draw definitive conclusions about the diagnosability
of faults within a given system component. This section also contains the correctness
proof of MDA and two examples that illustrate its application. Finally, online diag-
nosis based solely on local diagnosers is discussed in the Online Diagnosis section. A
summary of contributions and results concludes the paper in the Conclusion section.

System Model

We assume that the reader is familiar with basic notions1 in languages and automata
theory and with the notation and main concepts of the Diagnoser Approach

1 See, e.g., Chapter 2 of Cassandras and Lafortune (1999).

Discrete Event Dyn Syst (2006) 16: 9–37 11

Springer



introduced in Sampath et al. (1995) and used in several papers thereafter, such as
diagnosers, certain and uncertain states, and indeterminate cycles.

Let I be the total number of components or individual subsystems in the given
modular system under consideration. Let T = {1, . . . , I} and S � T. Elements i of T
are often termed Bsites’’ or Bmodules’’ hereafter. We use the notation

GS ¼ ðXS;@S; �S; xS0
;XSm

Þ ð1Þ

to denote the automaton with state space XS, set of events @S, (partial) transition
function �S, initial state xS0

, and set of marked states XSm
: When S = T, GS denotes the

global (or complete) system model. When S = {i}, with i 2 T, GS denotes individual
component model i. When S Î T, S m {i}, i 2 T, GS denotes the partial system model
(or subsystem) comprised of the individual automata in the set S, which we will call
the Bsystem GS’’ hereafter. In all of the above cases, system GS accounts for the
normal and failed behavior of the components in S, consistent with the Diagnoser
Approach of Sampath et al. (1995) and Sampath et al. (1996). GS ¼kz2S Gz is ob-
tained by composing the individual automata Gz, z 2 S, using the parallel composition
operation.

The behavior of the system GS is described by the prefix-closed language
LðGSÞ generated by GS. LðGSÞ is assumed to be live. This means that there is a
transition defined at each state x in XS, i.e., GS cannot reach a point at which no
event is possible. The liveness assumption on LðGSÞ is made for the sake of
simplicity. With slight technical modifications, all the main results of this paper hold
true when the liveness assumption is relaxed, cf. the approach employed in Sampath
et al. (1998). Some of the events in @S are observable, i.e., their occurrence can be
observed by sensors, while the rest are unobservable. We use the notation @oS

and
@uoS

to represent the set of observable and unobservable events of GS, respectively,
where @oS

¼ @S n @uoS
: Let @f S

denote the set of fault events in the system GS.
Without loss of generality, we assume that @f S

� @uoS
, since an observable fault

event can be diagnosed trivially.
It will be necessary in many instances to explicitly identify the event set

associated with an automaton. By default, the event set @S associated with
automaton GS will be @S :¼ f� 2 s : s 2 LðGSÞg, namely, all the events that appear
in all the traces in LðGSÞ. Similarly, @z ¼ f� 2 s : s 2 LðGzÞg: Hence, in general,
@S �

S
z2S @z, due to the effect of parallel composition. In special cases it is

required to define a larger set of events associated with GS than the default one.
In this regard, the notation (GS, @) will denote the automaton GS together with
the event set @ such that @ � @S. For example, (Gi, @S) implies that the original
event set @i of Gi is now augmented by the set @S\@i. While (Gi, @S) has the same
language properties as (Gi, @i), it has different behavior when performing parallel
composition (or, more generally, any operation using sets of events) with other
modules as it will prevent the occurrence of events in @S \@i.

We use the notation @ ¼ @0 �[@00 to indicate that the event set @ is the disjoint union
of @0 and @00, i.e., @0 = @ \ @00. Let R Î T. The event set @R of subsystem GR is
partitioned as @R ¼ @CMR

�[@PVR
, where @CMR

¼ @R \ ½[z2TnR@z� represents the set
of common events in GR and @PVR

represents the set of private events in GR. We
define @CM ¼ [i2T@CMi

the set of all common events, namely, the set of all events that
are common to two or more individual components. We use the notation @CMoR

¼
@CMR

\ @oR
to represent the set of common and observable events of subsystem R.
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The notation CoAc(GS) represents the automaton obtained from GS by retaining
only those states x of GS that are coaccessible, namely, that can reach a (marked)
state in XSm

: This notation will often be specialized to CoAc(GS, Mx) where Mx

will be a particular label associated with the marked states of GS. In this case,
CoAc(GS, Mx) will be the coaccessible part of GS with respect to the marked states
of GS that are labeled with Mx.

An observer2 is a tool that allows to transform a non-deterministic automaton
into a deterministic one. In the DES literature, an observer is used to estimate
the states of the deterministic automaton G with Bobservable’’ events @o, which
is possible by considering unobservable events @uo as empty events " (and therefore
making it non-deterministic). This notion is a natural one in the sense that the
observer observes only observable events. In this paper we do not want to restrict
its application only to observable events. We are interested in extending the notion
of observer to any specific set of events @spe (i.e., any set of special events of interest
for the detection process, such as, common events, events of specific system
components, etc.). Let @ be the set of events of the deterministic automaton G
and @c

spe = @ \ @spe be the complement of the set @ w.r.t. @spe (where Bspe’’ stands
for Bspecial’’). We extend the procedure presented in Cassandras and Lafortune (1999)
to build an observer for a deterministic automaton with respect to special events @spe.
This is achieved by processing all events in @c

spe as if they were ". Therefore, the
event set of the observer will be @obs := @ 7 @spe (where Bobs’’ stands for Bobserver’’).
We define

ObsðG;@speÞ ¼ ðXobs;@obs; �obs; xobs
0 ;Xobs

m Þ ð2Þ

to be the state estimator of G with respect to @spe. This construction provides a
generic tool that we use in our algorithm in the Test for Modular Diagnosability
section. For example, Obs(Gi, @CMl

), l m i, is the state estimator of Gi with respect to
@CMl

, the common events of Gl.
Let @X and @Y be any sets of events. We define two projection operators relative

to these sets, Pf@X ;@Yg for the usual natural projection and Rf@X ;@Yg for the so-called
Breverse’’ projection. Specifically, the natural projection Pf@X ;@Yg : @X* ! @Y* is
defined in the usual manner:

Pf@X ;@Yg ð"Þ :¼ " ð3Þ

Pf@X ;@Ygð�Þ :¼ � if � 2 @y

" if � =2 @Y

�

ð4Þ

Pf@X ;@Ygðs�Þ :¼ Pf@X ;@YgðsÞPf@X ;@Ygð�Þ

for s 2 @X
* ; � 2 @X : ð5Þ

In contrast, the reverse projection Rf@X ;@Yg is applied to traces of events from @X*

and produces Binverse’’ traces from @Y* as is usually done in inverse projection
operations. More precisely, Rf@X ;@Yg : @X*! 2@Y*is defined as follows:

Rf@X ;@YgðsÞ ¼ ft 2 @Y* : Pf@Y ;@XgðtÞ ¼ sg: ð6Þ

2 See Cassandras and Lafortune (1999) for the basic definition of an observer.
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The natural and reverse projections can also be defined with respect to a par-
ticular language L. For L � @Y*,

PL
f@X ;@YgðsÞ ¼ ft 2 L : Pf@X ;@YgðsÞ ¼ tg; ð7Þ

and

RL
f@X ;@YgðsÞ ¼ ft 2 L : Pf@Y ;@XgðtÞ ¼ sg: ð8Þ

We conclude this section by stating a key assumption that will be required for the
results presented in the remainder of the paper.

ASSUMPTION 1 Observability of Common Events

For each module i 2 T, the common events of module i are observable, namely,
@CMi

� @oi
:

This assumption implies that all faults are private events (since they are
unobservable). We leave as future work the development of diagnostic methodol-
ogies when: (i) common events are not observable; and (ii) all common events be-
longing to one module are not observable by that module, but each common event
is observable by at least one module.

Modular Diagnosability

We define the notion of modular diagnosability as follows. Given a set A the
notation (@a : a 2 A) represents the list of sets @a for all elements a 2 A. For the sake
of generality, the definition is given with two parameter sets, Sj and S, that are such
that Sj � S � T.

DEFINITION 1 Modular Diagnosability

Let T = {1, . . . , I}, S � T, GS ¼ kz2S Gz, and Sj � S. The language LðGSÞ is
modularly diagnosable w.r.t.ð@oz

: z 2 SÞ and ð@fz
: z 2 S�Þ if 8i 2 Sj, 8f 2 @fi

; 8s 2
LðGSÞ s.t. s ends with f, 9n 2 N s.t. 8t 2 LðGSÞ=s; k Pf@S;@oi

gðtÞ k � n) DðstÞ ¼ 1:The
diagnosability condition function D is given by

DðstÞ ¼ 1 if ½! 2 R
LðGSÞ
f@oS

;@Sg½Pf@S;@oS
gðstÞ� ) f 2 !�;

0 otherwise:

(

ð9Þ

To draw comparisons between our modular diagnosability algorithm, presented
in the Test for Modular Diagnosability section, and any other potential approach,
we give necessary and sufficient conditions for modular diagnosability based on
monolithic constructions of the system model and diagnoser for a given set S of
system components. Let GdS

¼ ðQdS
;@oS

; �dS
; q0S
Þ andG0S ¼ ðXoS

;@oS
; �G0

S
; x0Þ denote,

respectively, the diagnoser of GS and the non-deterministic automaton built from GS

by eliminating unobservable events. Both are defined in Sampath et al. (1995); these
definitions are recalled in Appendix for the benefit of the readers.
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Consider module i 2 T and diagnoser GdS
where i 2 S, S � T. We have the

following definition.

DEFINITION 2 FMi -indeterminate cycle in GdS

A set of F-uncertain states q1; q2; . . . ; qn 2 QdS
is said to form an FMi -indeterminate

cycle in GdS
if the following condition C1 is satisfied.

C1) States q1; q2; . . . ; qn 2 QdS
form a cycle in GdS

with �dS
ðqu; �uÞ ¼ quþ1; u ¼

1; . . . ; n� 1; �dS
ðqn; �nÞ ¼ q1 where�u 2 @oS

; u ¼ 1; . . . ; n and 9l2 {1, .. . , n} s.t.
�l 2 @oi

.
Considering the states q1; q2; . . . ; qn 2 QdS

; 9ðxk
u; ‘

k
uÞ; ðyr

u;
~
‘r

uÞ 2 qu; u ¼ 1; . . . ; n;
k ¼ 1; . . . ; m, and r = 1, ..., m0 such that:

i) ½ðF 2 ‘k
uÞ ^ ðF =2 ~

‘
r

uÞ�, for all u, k, and r, where F represents the label
associated with the fault event f 2 @fi

; i 2 S,
ii) the sequences of states xu

k, u = 1, ... , n, k = 1, .. . , m, and {yu
r}, u = 1, .. . , n, r =

1, .. . , m0, form cycles in GS
0 with

& ðxk
u; �u; x

k
ðuþ1ÞÞ 2 �G0

S
, u = 1 , . . . , nj 1 , k = 1 , . . . , m , ðxk

n; �n; x
kþ1

1 Þ 2
�G0

S
; k ¼ 1; . . . ;m� 1; ðxm

n ; �n; x
1
1Þ 2 �G0

S
, and

& ðyr
u; �u; y

r
ðuþ1ÞÞ 2 �G0

S
; fu ¼ 1; . . . ; n� 1; r ¼ 1; . . . ;m0; ðyr

n; �n; y
rþ1
1 Þ 2

�G0
S
; r ¼ 1; . . . ;m0 � 1; ðym0

n ; �n; y
1
1Þ 2 �G0

S
:

Remark 1: The symbol BMi,’’ in the notation BFMi -indeterminate cycle,’’ stands for
BModule Gi.’’ FMi -indeterminate cycles differ slightly from the F-indeterminate
cycles introduced in Sampath et al. (1995) in two respects. First, we require that
there exists at least one observable event from module Gi in the cycle of states
q1; q2; . . . ; qn 2 QdS

: cf. B9l 2 {1, . . . , n} s.t. �l 2 @oi
’’ in Condition C1. Second, we

require that the label F in hypothesis (i) of Condition C1 represents the label
associated with the fault event f 2 @fi

, i.e., the fault event f originates from module
Gi.

THEOREM 1 Consider the language LðGSÞ generated by automaton GS ¼ kz2S Gz.
LðGSÞ is modularly diagnosable w.r.t.ð@oz

: z 2 SÞ and ð@f i
: i 2 SÞ, if there are no

FMi -indeterminate cycles in the diagnoser GdS
, for all i 2 S.

The proof of Theorem 1 is similar to the one in Sampath et al. (1995) and is
therefore omitted.

To gain insight into the definition of modular diagnosability, we reformulate with
minor modifications the notion of diagnosability introduced in Sampath et al.
(1995) and refer to it from now on as monolithic diagnosability.

DEFINITION 3 Monolithic Diagnosability

Let T = {1, . . . , I}, S � T, and GS ¼ kz2S Gz. The language LðGSÞis monolithically
diagnosable w.r.t. ð@oz

: z 2 SÞ and ð@f z
: z 2 SÞ if 8i 2 S, 8f 2 @fi; 8s 2 LðGSÞ s.t. s

ends with f, 9 n 2 N s.t. 8t 2 LðGSÞ=s; k Pf@S;@oS
gðtÞ k � n) DðstÞ ¼ 1, where the

diagnosability condition function D is as in equation (9).
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Remark 2: Definition 3 differs from the diagnosability definition introduced in
Sampath et al. (1995) as follows:

i) We use the equation k Pf@S;@oS
gðtÞ k � n instead of ktk Q n. This modification

implies that cycles of unobservable events are not taken into account when
verifying the diagnosability properties of a system.

ii) The order of the quantifiers allows one natural number n for each trace s
that ends with a fault event, instead of requiring one natural number for each
fault event f, i.e., for all traces s ending with f. This change3 allows for more
precise choices of lower bounds for fault detection and identification.

In the special case where the considered system GS is composed of a single
module, i.e., jSj = 1, there are no differences between first, the modular and
monolithic definitions, and second, FMi - and F-indeterminate cycles. In the general
case, the main difference between the modular and the monolithic definitions
of diagnosability concerns the type of traces that need to be considered. When
testing for diagnosability of a fault event f at the end of trace s, we consider
projections of any continuation t of length greater than n. For monolithic
diagnosability, the projection of t is with respect to the observable events of
system GS, i.e., k Pf@S;@oS

gðtÞ k � n. For modular diagnosability, the projection of t
is with respect to the observable events of system Gi, i.e., k Pf@S;@oi

gðtÞ k � n.
Therefore, modular diagnosability focuses only on traces where events from module Gi,
which is the module where the fault originates, occur with some regularity.
Consequently, the notion of modular diagnosability is weaker than the notion of
monolithic diagnosability since more languages will satisfy modular than monolithic
diagnosability.

Our primary motivation for defining modular diagnosability is to ensure that after
a fault occurs in one of the system modules, detection and isolation of that fault is
only required along continuations that involve events from the given module. It is
reminiscent of the familiar Bpersistency of excitation’’ condition in system
identification. In other words, continuations that entirely exclude the module where
the fault originates from cannot lead to a violation of modular diagnosability.
(Recall that the approach that we propose assumes that faults do not bring the
system, or any of its modules, to a halt.)

For the sake of illustration, let us consider a simple Local Area Network (LAN)
composed of several interconnected computers. The LAN is the system to
be diagnosed and the computers attached to it represent the local systems or
modules. The faults or special events to be detected are Billegal’’ intrusions into the
LAN. Therefore if an (unobservable) intrusion occurs at one of the computers and
that computer does not exhibit any behavior after the intrusion, i.e., the local site
does not supply any observable events, then clearly this intrusion does not need to
be diagnosed since it is not exploited by the intruder. On the other hand, if the
intruder takes advantage of its trespass, then it is essential to diagnose the intrusion.
In other words, we expect that the intruder will sufficiently exert the afflicted
computer so that the intrusion in the LAN can eventually be detected. This concept
of Bsufficient exertion’’ is similar to the one used in signature-based Intrusion

3 Other researchers have also independently suggested this change (Yoo and Garcia, 2004).
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Detection Systems (IDS) where the signatures are specific sequences of (observ-
able) events, cf. (Coolen and Luiijf, 2002). IDS gather sequences of observable
events and verify if they match any of the sequences in IDS signature databases. In
order to potentially match a signature, IDS require arbitrarily long exertion of the
targeted local system.

The following example illustrates the difference between modular and monolithic
diagnosability.

Example 1: Let T = {1, 2, 3}. Consider the system modules G1, G2, and G3, the
monolithic system GT = G1 k G2 k G3, the monolithic diagnoser GdT

, the local
diagnoser Gd1

, and their respective event sets @1, @2, @3, @T, @dT
, and @d1

. These models
are depicted in Fig 1. We have @uo = { f1, f2 }, @o= {a, b, c, d, x, y}, @1= {a, c, d, f1, f2}, @2

= @3 = {a, b, c, x, y}, @T = {b, d, f1}, @dT
¼ fb; dg, and @d1

¼ fa; c; dg. The diagnoser
Gd1

contains cycles of F1- and F2-uncertain states, where F1 and F2 are the label
associated with the fault events f1 and f2 2 @1, respectively. They are identified as F1-
and F2-indeterminate cycles, respectively. Therefore the diagnoser Gd1

is not
(monolithically/modularly) diagnosable w.r.t. @o1

and @f 1
: We now investigate if the

complete system is monolithically or modularly diagnosable. The diagnoser
GdT

contains a cycle of F1-uncertain states. We check the necessary and sufficient
conditions of modular and monolithic diagnosability. The diagnoser GdT

contains a
cycle formed by the self-loop b 2 @2 7 @3 at the F1-uncertain state q = {4N, 5F1}. It can
be verified that this is an F1-indeterminate cycle in GdT

. Therefore the system GT is not
monolithically diagnosable w.r.t.ð@oz

: z 2 TÞ and ð@f z
: z 2 TÞ. On the other hand,

there does not exist an FM1 -indeterminate cycle in GdT
since f1 2 @1 and b =2 @1. Hence

GT is modularly diagnosable w.r.t. ð@oz
: z 2 TÞ and ð@f z

: z 2 TÞ. Intuitively, the
above results are clear since the cycle of uncertain states in the (monolithic) diagnoser

Fig. 1 Modular vs. monolithic diagnosability example
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GdT
is only composed of events from subsystems G2 and G3 while the fault to be

diagnosed originates from module G1.

We formalize the relationship between modular and monolithic diagnosability in
the following theorem.

THEOREM 2

Part 1: Let T = {1, . . . , I}, S � T, and GS ¼ kz2S Gz. If the language LðGSÞ is
monolithically diagnosable w.r.t. ð@oz

: z 2 SÞ and ð@f z
: z 2 SÞ thenLðGSÞ is mod-

ularly diagnosable w.r.t. ð@oz
: z 2 SÞ and ð@f z

: z 2 SÞ:
Part 2: Let T = {1, . . . , I}, S � T, GS ¼ kz2S Gz, and i 2 S. If the language LðGiÞ is
monolithically diagnosable w.r.t. @oi

and @f i
then LðGSÞ is modularly diagnosable

w.r.t. ð@oz
: z 2 SÞ and @f i

.

Proof: Theorem 2 Part 1: We prove the contrapositive, i.e., if LðGSÞ is not
modularly diagnosable w.r.t. ð@oz

: z 2 SÞ and ð@f z
: z 2 SÞ, then LðGSÞ is not

monolithically diagnosable w.r.t. ð@oz
: z 2 SÞ and ð@f z

: z 2 SÞ. LðGSÞ not modularly
diagnosable w.r.t. ð@oz

: z 2 SÞ and ð@f z
: z 2 SÞ implies that 9i 2 S, 9f 2 @fi

;
9s 2 LðGSÞ s.t. s ends with f, 8n 2 N; 9t 2 LðGSÞ=s such that k Pf@S;@oi

gðtÞ k �
n) DðstÞ ¼ 0: Sincek Pf@S;@oi

gðtÞ k � n implies k Pf@S;@oS
gðtÞ k � n, then LðGSÞ is not

monolithically diagnosable w.r.t. ð@oz
: z 2 SÞ and ð@f z

: z 2 SÞ:
Í

Proof: Theorem 2 Part 2: By Part 1 of Theorem 2, if the language LðGiÞ is
monolithically diagnosable w.r.t. @oi

and @f i
, then LðGiÞ is modularly diagnosable

w.r.t. @oi
and @f i

. We now prove the following: if LðGiÞ is modularly diagnosable
w.r.t. @oi

and@f i
thenLðGSÞ is modularly diagnosable w.r.t. ð@oz

: z 2 SÞ and @f i
. We

prove the contrapositive of the above statement, i.e., if LðGSÞ is not modularly
diagnosable w.r.t. ð@oz

: z 2 SÞ and @f i
, then LðGiÞ is not modularly diagnosable

w.r.t. @oi
and @f i

.
LðGSÞ not modularly diagnosable w.r.t. ð@oz

: z 2 SÞ and @fi
implies that 9f 2 @fi

, i
2 S, 9s 2 LðGSÞ s.t. s ends with f, 8n 2 N; 9t 2 LðGSÞ=s such that k Pf@S;@oi

g
ðtÞ k � n) DðstÞ ¼ 0, i.e., 9!1; !2 2 LðGSÞ such that

– f 2 !1 where f 2 @fi
, i 2 S, !1 = s1t1, and s1 ends with f,

– f =2 !2,
– Pf@S;@oS

gð!1Þ ¼ Pf@S;@oS
gð!2Þ, and

– Pf@S;@oi
gðt1Þ is arbitrarily long.

Let ! i
1 ¼ Pf@S;@igð!1Þ; si

1 ¼ Pf@S;@igðs1Þ; ti
1 ¼ Pf@S;@igðt1Þ, and !i

2 ¼ Pf@S;@igð!2Þ. Hence
we have the following:

– ! i
1; !

i
2 2 LðGiÞ,

– f 2 !1
i where !1

i = s1
i t1

i and s1
i ends with f,

– f =2 !2
i,

– Pf@i ;@oi
gð! i

1Þ ¼ Pf@i ;@oi
gð! i

2Þ, and
– Pf@i ;@oi

gðti
1Þ is arbitrarily long.

Therefore LðGiÞ is not modularly diagnosable w.r.t. @oi
and @fi

. Í
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Preliminary Discussion

In the previous section we presented and motivated the notion of modular
diagnosability and the conditions necessary and sufficient to ensure it. The
verification process, based on the above results, requires the construction of
the monolithic system (i.e., the parallel composition of the modules) and
its corresponding diagnoser. In the case of large and complex systems both
constructions can be computationally demanding. Therefore, we are interested in
verifying the modular diagnosability property without necessarily building the
monolithic system and its diagnoser. This section gives the intuition and the steps of
the thinking process towards this goal. The outcome is a set of properties and an
algorithm presented in the Properties of Modular Diagnosability section and the
Test for Modular Diagnosability section, respectively.

Our objective is to determine whether the monolithic system is modularly
diagnosable without constructing it and checking its diagnoser, if possible.
Therefore, the first task is to determine (i) the origin of the set of traces that
form an indeterminate cycle in the monolithic system, i.e., the modules responsible
for the formation of the indeterminate cycle, and (ii) the survival of such traces
when several of the modules or all of them are considered in the parallel
composition. We call Btroublesome traces,’’ the traces forming an indeterminate
cycle in a local diagnoser. In the sequel (the Properties of Modular Diagnosability
section), we establish the following results: (a) if an indeterminate cycle exists in
the monolithic diagnoser then necessarily one of the local diagnosers contains an
indeterminate cycle; (b) if none of the local diagnosers contains an indeterminate
cycle then the monolithic diagnoser does not contain an indeterminate cycle; and
(c) if an indeterminate cycle exists in a local diagnoser then it may or may not exist
in the monolithic diagnoser. The above results cover all possible outcomes
(concerning indeterminate cycles in local diagnosers) that can occur when a sys-
tem’s modules are composed in parallel. Therefore, we focus on Case (c).

Case (c) yields the following objective. Starting from an individual module whose
diagnoser contains an indeterminate cycle, our goal is to determine if this
indeterminate cycle (call it ICX) is going to survive in the monolithic diagnoser
without constructing it, if possible. In other words, we have to determine the
reachability of the troublesome traces formed by ICX when the system’s modules
are composed in parallel. Since traces in a parallel composition operation are
synchronized via common events, traces can be blocked only by common events.
Thus, it suffices to consider in a module only the traces corresponding to an
indeterminate cycle and only the common events in these traces. Then, the first
verification step is to create a parallel composition involving (i) the module under
consideration (where we keep only the common events of ICX), and (ii) all
modules that have events in common with the ones of ICX. Two outcomes are
possible: (1) the indeterminate cycle ICX is not present (i.e., not reachable) in the
resulting parallel composition; in this case we say that ICX is blocked by
the parallel composition process; and (2) the indeterminate cycle ICX is present
(i.e., reachable) in the resulting parallel composition; in this case we need to
further verify whether or not ICX is blocked indirectly via other traces by
incrementally integrating more modules. Thus, in the case of outcome (2), the
next verification steps are as follows. At each increment we add the modules
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that have an event in common with the events in the previously resulting
automaton, do the parallel composition, and check if the indeterminate cycle
exists due to ICX in the new resulting automaton. We need to repeat these
incremental steps until one of the following outcomes occur: (i) the indeterminate
cycle due to ICX is blocked; (ii) the rest of the modules and the automaton
resulting from the previous parallel composition do not have any events in
common; or (iii) all the modules have been accounted for. In the Test for
Modular Diagnosability section we prove that this approach achieves the above-
stated goal.

Properties of Modular Diagnosability

This section presents a set of preliminary results that are essential in establishing the
proof of Theorem 4, which asserts that MDA presented in this paper determines
correctly whether or not LðGTÞ is modularly diagnosable. We define ND = T \ D
where D ¼ fz : LðGzÞ is monolithically diagnosable w.r.t. @oz

and @fz
g.

LEMMA 1 If 8i 2 S \ND; LðGSÞ is modularly diagnosable w.r.t.ð@oz
: z 2 SÞ and

@fi
then LðGSÞ is modularly diagnosable w.r.t. ð@oz

: z 2 SÞ and ð@fz
: z 2 SÞ.

Proof: We assume that 8i 2 S \ND; LðGSÞ is modularly diagnosable w.r.t. ð@oz
:

z 2 SÞ and @fi
. Therefore Definition 1 is satisfied 8i 2 S 7 ND and 8f 2 @fi

: By Part
2 of Theorem 2, Definition 1 is satisfied for 8i 2 S 7 D and 8f 2 @fi

. Thus LðGSÞ is
modularly diagnosable w.r.t. ð@oz

: z 2 SÞ and ð@fz
: z 2 SÞ. Í

LEMMA 2 If 8i 2 T 7 ND, 9S �T s.t. i 2 S and LðGSÞ is modularly diagnosable w.r.t.
ð@oz

: z 2 SÞ and @fi
then LðGTÞ is modularly diagnosable w.r.t. ð@oz

: z 2 TÞ and
ð@fz

: z 2 TÞ.

Proof: We prove the contrapositive: if LðGTÞ is not modularly diagnosable w.r.t.
ð@oz

: z 2 TÞ and ð@fz
: z 2 TÞ then 9i 2 T 7 ND s.t. 8S � T with i 2 S, LðGSÞ is not

modularly diagnosable w.r.t. ð@oz
: z 2 SÞ and @fi

.
From Definition 1 and Part 2 of Theorem 2, LðGTÞ not modularly diagnosable

w.r.t. ð@oz
: z 2 TÞ and ð@fz

: z 2 TÞ implies that 9i 2 T 7 ND, 9s; s0 2 LðGTÞ;
9f 2 @fi

s.t. f 2 s and f =2 s0, Pf@T ;@oT
gðsÞ ¼ Pf@T ;@oT

gðs0Þ, and Pf@T ;@oi
gðtÞ is arbitrarily

long. Also, 8S � T s.t. i 2 S we have the following: Pf@T ;@oS
gðsÞ ¼ Pf@T ;@oS

gðs0Þ and
Pf@T ;@oi

gðsÞ ¼ Pf@T ;@oi
gðs0Þ since Pf@T ;@oT

gðsÞ ¼ Pf@T ;@oT
gðs0Þ. Furthermore, Pf@T ;@oi

gðs0Þ
is arbitrarily long since Pf@T ;@oi

gðsÞ is arbitrarily long. Let sx; s
0
x 2 LðGSÞ s.t. sx ¼

Pf@T ;@SgðsÞ and s0x ¼ Pf@T ;@Sgðs0Þ. Then f 2 sx and f =2 sx
0. Also Pf@S;@oi

gðsxÞ;
Pf@S;@oi

gðs0xÞ are arbitrarily long since Pf@T ;@oi
gðsÞ; Pf@T ;@oi

gðs0Þ are arbitrarily long.
In summary, 9i 2 T 7 ND s.t. 8S � T with i 2 S, 9sx; s

0
x 2 LðGSÞ; 9f 2 @fi

; f 2
sx; f =2 s0x; Pf@S;@oS

gðsxÞ ¼ Pf@S;@oS
gðs0xÞ, and Pf@S;@oi

gðsxÞ is arbitrarily long. Therefore
LðGSÞ is not modularly diagnosable w.r.t. ð@oz

: z 2 SÞ and @fi
. Í

COROLLARY 1 If 8i 2 T; LðGiÞ is monolithically diagnosable w.r.t. @oi
and @fi

; then
LðGTÞ is modularly diagnosable w.r.t. ð@oz

: z 2 TÞ and ð@fz
: z 2 TÞ.
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Proof: Corollary 1 is a particular case of Lemma 2 when S = {i}. Í
An elementary Fm-indeterminate cycle, m 2 {1,. . . ,M}, is formed by (i) a sequence

of Fm-uncertain states and (ii) possibly several sequences of events that form the
cycle and satisfy the Fm-indeterminate cycle definition. We call EICz, z 2 {1,. . . ,Z},
such cycles and ty

z, y 2 {1,. . . ,Yz}, their corresponding sequences of events, where Z
represents the total number of elementary Fm-indeterminate cycles in the diagnoser
Gdi

, i 2 ND, and Yz represents the total number of sequences of events that satisfy
the indeterminate cycle definition for the particular EICz.

For each i 2 ND, we number and name SEQ1; SEQ2; . . . ; SEQXi
all sequences of

events ty
z, y = 1, . . . , Yz and z = 1, . . . , Z. Therefore, each SEQx, x 2 {1, . . . , Xi}, is

associated with: (i) one Fm-indeterminate cycle; (ii) one fault of type m, m 2 {1,
. . . , M}; (iii) one corresponding sequence of states Qx ¼ q1 . . . qNx

; and (iv) one
sequence of events ty

z, z 2 {1, . . . , Z}, y 2 {1, . . . ,Yz}, that form the cycle. We attach
the label Mx, x 2 {1, . . . , Xi}, i 2 ND, to states q 2 Qx in Gdi

.
The following lemma is a specialized form of Lemma 2.

LEMMA 3 Consider S � T, SEQx, x 2 {1, . . . , Xi}, i 2 S 7 ND, and any two arbitrarily
long traces !x; !

0
x 2 LðGiÞ such that: (i) !x, !x

0 lead to the indeterminate cycle
associated with SEQx in Gdi

; (ii) Pf@i;@oi
gð!xÞ ¼ Pf@i ;@oi

gð!0xÞ ¼ ss1s2s1 ¼ sSEQxs1

where SEQx = s1s2; (iii) fm 2 !x, fm =2 !x
0 , and fm corresponds to the fault type

associated with SEQx. If G !S; !
0
S 2 LðGSÞ such that Pf@S;@igð!SÞ ¼ !x; Pf@S;@igð!0SÞ ¼

!0x, and Pf@S;@oi
gð!SÞ is arbitrarily long, then G!; !0 2 LðGTÞ such that Pf@T ;@igð!Þ ¼

!x; Pf@T ;@igð!0Þ ¼ !0x, and Pf@T ;@oi
gð!Þ is arbitrarily long.

Proof: We prove by contradiction. By assumption, 9S � T, 9SEQx, x 2 {1, . . . , Xi}, i
2 S 7 ND, and there exist two arbitrarily long traces !x; !x

0 2 LðGiÞ such that: (i) !x,
!x
0 lead to the indeterminate cycle associated with SEQx in Gdi

; (ii) Pf@i;@oi
gð!xÞ ¼

Pf@i;@oi
gð!x

0Þ ¼ sSEQxs1 where SEQx = s1s2; (iii) fm 2 !x, fm =2 !x
0 , and fm corresponds

to the fault type associated with SEQx. Suppose that (iv) !S; !
0
S 2 LðGSÞ such that

Pf@S;@igð!SÞ ¼ !x; Pf@S;@igð!0SÞ ¼ !0x, and Pf@S;@oi
g ð!SÞ is arbitrarily long and (v) 9!,

!0 2 L(GT) such that Pf@T ;@igð!Þ ¼ !x;Pf@T ;@igð!0Þ ¼ !0x; and Pf@T ;@oi
gð!Þ is arbitrarily

long.
By assumption (v) and the natural projection definition, 9!S; !

0
S 2 LðGSÞ such that

Pf@T ;@Sg ð!Þ ¼ !S; Pf@T ;@Sgð!0Þ ¼ !0S, and Pf@S;@oi
gð!SÞ is arbitrarily long. Furthermore

we have Pf@S;@igð!SÞ ¼ Pf@S;@ig½Pf@T ;@Sgð!Þ� ¼ Pf@T ;@igð!Þ ¼ !x and Pf@S;@igð!0SÞ ¼
!0x: Therefore 9!S; !

0
S 2 LðGSÞ such that Pf@S;@igð!SÞ ¼ !x; Pf@S;@igð!0SÞ ¼ !0x, and

Pf@S;@oi
gð!SÞ is arbitrarily long, which yields the desired contradiction. Í

Remark 3: When the hypothesis of Lemma 3 holds, we say that the indeterminate
cycle associated with SEQx is BNot Reachable’’ in GS and GT. In other words, the
coupling of module Gi with the remainder of the system results in the elimination of
the traces in LðGiÞ that lead to that indeterminate cycle.

COROLLARY 2 If the hypothesis of Lemma 3 holds for all x, x 2 {1,...,Xi}, then LðGTÞ is
modularly diagnosable w.r.t. ð@oz

: z 2 TÞ and @fi
.
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LEMMA 4 If 9i 2 T, 9S � T s.t.i 2 S, Sc = T \ S, and 9!S; !
0
S 2 LðGSÞ such that:

(i) !S, !S
0 violate the modular diagnosability of LðGSÞ w.r.t. ð@oz

: z 2 SÞ and @fi
,

and Pf@S;@oi
gð!SÞ ¼ sSEQxs1; SEQx ¼ s1s2, x 2 {1, ..., Xi};

(ii) 8�x 2 !S; 8�y 2 Sc ; �x 6¼ �y; then LðGTÞ is not modularly diagnosable w.r.t.
ð@oz

: z 2 TÞ and ð@fz
: z 2 TÞ:

Proof: We have GT ¼ GS k GSc : Build G~
S s.t. LðG~

SÞ :¼ f!S ; !0Sg. Define G~
T :¼ G~

S k
GSc : By the definition of G~

T and assumption (ii), 9!;!0 2 LðG~
T Þ s.t.

– Pf@~
T
;@~

T
gð!Þ ¼ !S ; Pf@~

T
;@~

T
gð!0Þ ¼ !0S ,

– Pf@~
T
;@o~

T
gð!Þ ¼ Pf@~

T
;@o~

T
gð!0Þ,

– f 2 !, f =2 !0, where f 2 @fi , and
– Pf@~

S
;@oi
gð!SÞ is arbitrarily long because Pf@S ;@oi

gð!SÞ is arbitrarily long as it
violates modular diagnosability by assumption (i).

Since LðG~
SÞ � LðGT Þ; !; !0 2 LðG~

T Þ implies !; !0 2 LðGTÞ and therefore !, !0

violate the modular diagnosability of LðGT Þ w.r.t. ð@oz
: z 2 TÞ and ð@f z

: z 2 TÞ. Í
We make the following observation regarding the proof of Lemma 4. Any ! 2

LðG~
T Þ is built from !S 2 LðG~

SÞ by interleaving events from @Sc according to the
transition structure of GSc . Hence, since @~

S \ @Sc ¼ ;, we can build !0 from !S
0 by

doing the same interleaving as when building ! from !S. The resulting !0 necessarily
satisfies Pf@~

T
;@o~

T
gð!Þ ¼ Pf@~

S
;@o~

T
gð!0Þ.

Remark 4: When the hypothesis of Lemma 4 holds, we say that the indeterminate cycle

associated with SEQx is BReachable’’ in GS and GT. In other words, the coupling of

module Gi with the remainder of the system results in the propagation of the traces in

LðGiÞ that lead to that indeterminate cycle.

LEMMA 5 Assume 9i 2T, 9S �T s.t. i 2 S, Sc = T \ S, and 9!S ; !
0
S 2 LðGSÞ such that:

(i) !S, !S
0 violate the modular diagnosability of LðGSÞ w.r.t. ð@oz

: z 2 SÞ and f i
, and

Pf@S ;@oi
gð!SÞ ¼ sSEQxs1, SEQx = s1s2, x 2 {1, . . .,Xi};

(ii) 9�x 2 !S and 9�y 2 @Sc such that �x = �y. From hypotheses (i) and (ii), we
cannot conclude whether LðGT Þ is or is not modularly diagnosable w.r.t. ð@oz

:
z 2 TÞ and @f i

.

Proof: We have GT ¼ GS k GSc . By assumption (ii), two (exhaustive) cases are
possible. Define !, !0 2 @T* such that:

– Pf@T ;@Sgð!Þ ¼ !S ; Pf@T ;@Sgð!0Þ ¼ !0S ,
– Pf@T ;@oT

gð!Þ ¼ Pf@T ;@oT
gð!0Þ,

– f 2 !, f =2 !0, where f 2 f i
, and

– Pf@S ;@oi
gð!SÞ is arbitrarily long.

Case 1: If such !, !0 exist in LðGT Þ, then LðGT Þ is not modularly diagnosable w.r.t.
ð@oz

: z 2 TÞ and @f i
.

Case 2: On the other hand, if no such !, !0 exist then LðGT Þ is modularly diagnosable
w.r.t. ð@oz

: z 2 TÞ and @fi
. Í
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We discuss the intuition behind Lemma 5. Any ! 2 LðGT Þ is built from !S 2
LðGSÞ by interleaving events from @Sc according to the transition structure of GSc .
Hence, since @S \ @Sc 6¼ ;, any event �x 2 @S \ @Sc may or may not be synchro-
nized during the parallel composition GT ¼ GS k GSc . The existence of the
traces !, !0 in the proof of Lemma 5 depends on the outcome of such
synchronization. The reason for stating as a lemma the fact that hypotheses
(i) and (ii) are not conclusive regarding modular diagnosability is because this
fact will be used in the logic and proof of MDA presented in the following
section.

Remark 5: If LðGSÞ is not modularly diagnosable w.r.t. ð@oz
: z 2 SÞ and @f i

then GS

necessarily satisfies the hypotheses of Lemmata 4 or 5.

In Fig 2, we depict the implications of Theorem 2, Corollary 2, and Lemmata 4, 5.
The figure shows that if LðGiÞ is modularly diagnosable w.r.t. @oi

and @f i
, or LðGSÞ is

modularly diagnosable w.r.t. ð@oz
: z 2 SÞ and @f i

, then LðGT Þ is modularly
diagnosable w.r.t. ð@oz

: z 2 TÞ and @f i
. If LðGiÞ is not modularly diagnosable w.r.t.

@oi
and @f i

, or LðGSÞ is not modularly diagnosable w.r.t. ð@oz
: z 2 SÞ and @f i

, then the
output on the modular diagnosability of LðGT Þ w.r.t. ð@oz

: z 2 TÞ and @f i
is uncertain

unless GS satisfies Lemma 4.

Fig. 2 Properties of modular diagnosability.

Discrete Event Dyn Syst (2006) 16: 9–37 23

Springer



Test for Modular Diagnosability

In the Modular Diagnosability section we presented the notion of modular
diagnosability for modular discrete event systems and conditions necessary and
sufficient to guarantee it. In this section, we propose a novel approach that tests
modular diagnosability by incorporating incrementally, in a systematic manner,
subsystems into the test. We prove that our approach provides the correct answer to
the question BIs LðGT Þ modularly diagnosable w.r.t. ð@oz

: z 2 TÞ and ð@f z
: z 2 TÞ?’’

in a finite number of steps. We proceed as follows. In the Modular Diagnosability
Algorithm subsection we present the algorithm; in the Properties of MDA
subsection we state and prove its properties; in the Discussion subsection and the
Online Diagnosis section we present a discussion of the key steps of the algorithm
and online diagnosis, respectively.

Modular Diagnosability Algorithm

We present a detailed statement of our Modular Diagnosability Algorithm (MDA).
For the sake of clarity, MDA is broken into three algorithms. Algorithm 1 is the
core of MDA; it calls Algorithm 2 to perform preliminary steps involving
indeterminate cycles that could lead to a violation of modular diagnosability. The
goal of Algorithm 2 is to identify all the indeterminate cycles that are present in the
modules and yield a list of sequences of states and events that is used in the other
algorithms. Algorithm 1 also calls Algorithm 3 where the incremental analysis of
each indeterminate cycle is performed.

ALGORITHM 1—MDA

1) Let T = {1, . . ., I}. Construct the local diagnosers Gdi
, i 2 T, and search

for indeterminate cycles. If, 8i 2 T ; LðGiÞ is monolithically diagnosable w.r.t.
@oi

and @f i
, i.e., none of the local diagnosers Gdi

have F-indeterminate cycles,
then stop and declare LðGT Þmodularly diagnosable w.r.t. ð@oz

: z 2 TÞ and
ð@f z

: z 2 TÞ. Else, go to Step 2.
2) Let ND = T \D, where D ¼ fz : LðGzÞ @oz and @f z

g is monolithically diagnosable
w.r.t. @oz

and @fz
. Call Preliminary Function with argument {ND} and store its

output. For each local diagnoser Gdi
, i 2 ND, and for each sequence of traces

SEQx, x 2{1, . . ., Xi}, perform the Steps 2-a to 2-d:

2-a) Mark with the label Mx, x 2{1, . . ., Xi}, i 2 ND, the states q 2 Qx in Gdi
. The

label Mx stands for BState of Gdi
part of the indeterminate cycle associated

with SEQx.’’
2-b) Construct

GCMi
¼ ObsðGdi

;@CMi
Þ: ð10Þ

A state of GCMi
is marked with label Mx if one or more of its state

components are marked with Mx.
2-c) Construct

GICMx
¼ CoAcðGCMi

;MxÞ: ð11Þ
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The resulting event set of automaton GICMx
is denoted by @ICMx

: Enlarge the
set of events @ICMx

by adding @CMi
n @ICMx

to it. The automaton GICMx
and its

newly associated event set @CMi
are hereafter represented by the notation

ðGICMx
; @CMi

Þ.
2-d) Call Reachability Function with argument fi; SEQx;GICMx

;@ICMx
;@CMi

g. If
the Reachability Function returns BReachable’’ then stop and declare LðGT Þ
not modularly diagnosable w.r.t. ð@oz

: z 2 TÞ and ð@f z
: z 2 TÞ. If the Reach-

ability Function returns BNon-Reachable’’ then continue.
3) Stop and declare LðGT Þ modularly diagnosable w.r.t. ð@oz

: z 2 TÞ and ð@f z
:

z 2 TÞ.

ALGORITHM 2—Preliminary function {ND}

I) For each i 2 ND, do the following:

i) Call EICz, z 2 {1, . . ., Z}, the elementary4 indeterminate cycles in Gdi
and ty

z, y
2 {1, . . ., Yz}, their corresponding sequences of events, where Z represents the
total number of elementary indeterminate cycles in diagnoser Gdi

, i 2ND, and
Yz represents the total number of sequences of events that satisfy the
indeterminate cycle definition for the particular EICz.

ii) 8z 2 {1, . . ., Z}, if 9y1, y2 2 {1, . . .,Yz} and t0, t00 such that y1 < y2, tz
y1
¼ t0t00,

and tz
y2
¼ t00t0 then delete tz

y2
from the list as follows: let n = y2 and

ii-a) tz
yn

:¼ tz
ynþ1

ii-b) if n + 1 = Yz then delete tn + 1
z ; otherwise let n := n + 1 and go to

(ii-a).
iii) Number and name SEQ1; SEQ2; . . . ; SEQX i

all sequences of events ty
z, y = 1,

. . . , Yz and z = 1, . . ., Z. To each SEQx, x 2 {1, . . ., Xi}, associate its
corresponding Fm-indeterminate cycle, m 2{1, . . ., M}, its corresponding
sequence of states Qx ¼ q1 . . . qNx

, and its corresponding sequence of events
ty
z, z 2 {1, . . .,Z}, y 2 {1, . . ., Yz}, that form the cycle.

iv) If 9x0, x00 2 {1, . . ., Xi}, where x0 < x00, and Q0, Q00, SEQ0, SEQ00 such that

– Qx0= Q0 Q00 and Q00x = Q00 Q0,
– SEQx0 = SEQ0SEQ00 and SEQx00 = SEQ00SEQ0, and
– jSEQ0j= j Q0j,
then concatenate SEQx0 and SEQx00 by doing the following steps. Add to the
information associated with SEQx0 the information relative to SEQx00 [i.e.,
the Fm-indeterminate cycle and elementary cycle EICz of SEQx00, and the
sequence of states Qx00]. Similarly to step (ii), we delete SEQx00 from the list
as follows: let n = x00 and

iv-a) SEQn := SEQn+1

iv-b) if n + 1 = Xi then delete SEQn+1; otherwise let n := n + 1 and go to
(iv-a).

II) Return to MDA with Preliminary Function {ND} = {SEQx, Qx: x 2 {1, . . ., Xi}
and i 2 ND}.

4 A cycle is called elementary if no state appears more than once in it.
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ALGORITHM 3—Reachability function fi; SEQx;GICMx
;@ICMx

;@CMi
g

A) Let c := 1, Bc
x = {i}, Sc = Bc

x, and

~sx ¼ Pf@oi
;@CMoi

gðSEQxÞ: ð12Þ

Let c := c + 1,

Bx
c ¼ fl : ½@CMl

\ @ICMx
6¼ ; _ ðl 2 Bx

c�1Þ�; l 2 Tg; ð13Þ

and

Sc ¼ Bx
c n Bx

c�1: ð14Þ

B) Construct

Gmodx
c
¼ ðGICMx

;@CMi
Þ k ðkl2Bx

c;l 6¼i GCMlÞ: ð15Þ

If there does not exist in Gmodx
c

a cycle of states labeled Mx then return to MDA
with Reachability Function fi; SEQx; GICMx

; @ICMx
; @CMi

g ¼ fNon< Reachableg;
otherwise denote by s1

c, s2
c, . . ., sP

c the sequences of events that describe such
elementary cycles and go to step C.

C) 8p 2 {1, . . ., P}, let

~sc
p ¼ Pf@CMoS

;@CMoi
gðsc

pÞ; S :¼ Bx
c: ð16Þ

If 9p 2 {1, . . ., P} such that ~sx ¼ ~sc
p or if 9s0x, s00x, and p 2 {1, . . ., P} such that

~sx ¼ s0xs00x and s00xs0x ¼ ~sc
p, then go to Step D; otherwise return to MDA with

Reachability Function fi;SEQx; GICMx
; @ICMx

; @CMi
g ¼ fNon<Reachableg.

D) Construct

eGGc ¼ CoAcðGmodx
c
;MxÞ: ð17Þ

Let e@@c be the event set of eGGc.E)
Let c := c + 1 and

Bx
c ¼ fl : ½ð@CMl

\ e@@c�1 6¼ ;Þ _ ðl 2 Bx
c�1Þ�; l 2 Tg: ð18Þ

Define

Sc ¼ Bx
c n Bx

c�1: ð19Þ

If Sc m ; then go to step B; otherwise declare the indeterminate cycle associated
with SEQx BReachable’’ and return to MDA with Reachability Function
fi;SEQx;GICMx

;@ICMx
;@CMi

g ¼ fReachableg:

A Simple Example

For the sake of completeness, we apply the algorithm to the system used in the
straightforward example presented in the Modular Diagnosability section, cf.
Example 1 and Fig. 1. We present a summary of the results (see Contant et al.,
(2004a) for a step-by-step explanation).
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There exist two indeterminate cycles in the local diagnoser Gd1
, cf. Fig. 1 and,

from Algorithm 2, two troublesome traces need to be checked. Therefore Algorithm
3 needs to be applied for each trace. The resulting machines Gmod1

2
and Gmod2

2
do

not contain a cycle of states labeled M1 and M2, respectively. Therefore we declare
the monolithic system, LðGT Þ, modularly diagnosable w.r.t. ð@oz

: z 2 TÞ and
ð@f z

: z 2 TÞ.

A Detailed Illustrative Example

For the sake of clarity, we provide an example that illustrates more thoroughly the
steps of the algorithm. The considered system is composed of eight modules G1 to
G8. For the sake of simplicity, the modules G2 to G8 contain only common events
(and implicitly no fault events). Therefore 8i Q 2 we haveGi � Gdi

� GCMi
. Modules

G1 and GCM2
to GCM8

are presented in Figs. 3 and 4.

& MDA Step (1): we construct the local diagnoser Gd1
, cf. Fig. 3. There exist

several indeterminate cycles. Hence, we go to Step (2).
& MDA Step (2): we perform the Preliminary Function.
& Preliminary Function Step (I-i): we list the elementary indeterminate cycles (for

all fault types) and the corresponding sequences of events, cf. Table 1. A cycle
may consist of several sequences of events (e.g., EIC4), and may have several
entry points (e.g., EIC1).

Fig. 3 Module G1 and local diagnoser Gd1

Fig. 4 Modules GCM2
to GCM8
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& Preliminary Function Step (I-ii): we delete all sequences of events that cor-
respond to different entry points (viz., t2

1 from EIC1). In other words, we remove
the sequences that are cyclic permutations of other sequences, cf. Table 3. For
the sake of clarity we name the states in Gd1

as indicated in Table 2.
& Function Step (I-iii): we form a list of the troublesome traces, SEQx, cf. Table 3.
& Preliminary Function Step (I-iv): we cluster the sequences of events and states

that are cycle permutations of one another. Then we form a list of troublesome
traces, SEQx, cf. Table 4 and return to MDA Step (2).

& MDA Steps (2-a) to (2-d): we repeat these steps for each sequence of traces
SEQx.

To avoid redundancy we present only the first of the five sequences. We refer the
reader to Contant et al. (2004a) for a complete description of the example.

Sequence SEQ1 = o2ha

& MDA Step (2-a): we mark with the label M1 the states Q1 in Gd1
, cf. Fig. 5.

& MDA Step (2-b): we construct GCM1
(see Fig. 6).

& MDA Steps (2-c): we construct GICM1
(see Fig. 7).

& MDA Step (2-d): we call the Reachability Function with i = 1, x = 1.
& Reachability Function Step (A): B1

1 = {1}, S1 = B1
1, and ~s1 ¼ Pf@o1

;@CMo1
g ðo2haÞ ¼ ha.

Let c :¼ 2; B1
2 ¼ fl : ½@CM l

\ fa; b; hg 6¼ ; _ ðl 2 B1
1Þ�; l 2 Tg ¼ f1; 2; 3g, and S2 =

B2
1 \ B1

1 = {2, 3}.
& Reachability Function Step (B): we construct Gmod1

2
¼ ðGICM1

;@CM1
Þ k GCM2

k
GCM3

, cf. Fig. 8. There exists a cycle of states labeled M1. We denote this cycle
by s1

2 = ha and go to Step (C). [N.B.: ðGICM1
; CM1
Þ means that the set of events of

GICM1
; fa; b; hg, is augmented with @CM1

¼ fa; b; d; g; hg. This modification allows
us to block event d and g from occurring in Gmod1

2
. As seen at the next iteration,

only three modules instead of six will be considered. The reason to augment the
set of events is to block directly the events that would be blocked if we were to
compose the complete system.

& Reachability Function Step (C): ~s2
1 ¼ Pf@CMoS

;@CMo1
gðhaÞ ¼ ~s1 ¼ ha. Thus we go to

Step (D).
& Reachability Function Step (D): we construct eGG2 ¼ CoAcðGmod1

2
;M1Þ. We have

eGG2 � Gmod1
2
, cf. Fig. 8.

EICz EIC1 EIC2 EIC3

ty
z t 1

1 = o2 ha, t 2
1 = hao2 t 1

2 = hb t 1
3 = d

EICz EIC4 EIC5

ty
z t 1

4 = d, t 2
4 = g t 1

5 = d, t 2
5 = g

Table 1 Preliminary function,
Step (I-i): elementary cycles

Table 2 States and state components of Gd1

States 0 1 2 3 4 5 6

States Components 0N 2N6F1 3N7F1 1N5F1 4N8F1 10F28F1 1N

28 Discrete Event Dyn Syst (2006) 16: 9–37

Springer



& Reachability Function Step (E): let c := 3 and B1
3 ¼ fl : ½ð@CMl

\ fa; e; hg
6¼ ;Þ _ ðl 2 B3

2Þ�; l 2 Tg ¼ f1; 2; 3g. S3 = B3
1 \ B2

1 = ;. Since S3 = ; then we
declare the indeterminate cycle associated with SEQ1 BReachable,’’ return to
MDA Step (2-d) and declare LðGT Þ, the complete system, not modularly
diagnosable w.r.t. ð@oz

: z 2 TÞ and ð@f z
: z 2 TÞ:

Properties of MDA

THEOREM 3 MDA Returns an answer in a finite number of steps.

Proof: Since there is a finite number I of subsystems and Bc
x is monotonically

increasing by equation (18), the loop in Steps (B)–(E) of the Reachability Function
is carried out a finite number of times. Thus Reachability Function returns an
answer in a finite number of steps for every sequence of events SEQx. Since there is
a finite number of sequences of events SEQx, MDA returns an answer in a finite
number of steps. Í
THEOREM 4 MDA Returns the correct answer, namely, whether LðGT Þ is or is not
modularly diagnosable w.r.t. ð@oz

: z 2 TÞ and ð@f z
: z 2 TÞ.

Proof: We prove that Steps 1, 2-d, and 3 of MDA and steps B, C, and E of the
Reachability Function return the correct answer. The correctness of Steps 2-d and 3
of MDA depends on the correctness of the Reachability Function. Thus, we proceed
as follows. We first prove that the Reachability Function returns the correct answer
to the question: BIs the indeterminate cycle associated with SEQx reachable in the
global system behavior LðGT Þ?.’’ Then we prove the correctness of Steps 1, 2-d, and
3 of MDA, using the correctness of the Reachability Function.

Table 3 Preliminary function, Step (I-ii and I-iii): sequence of events SEQx

SEQx EICz Fm-Indet. Cycle Qx

SEQ1 = t1
1 = o2ha EIC1 F1-Indet. Cycle Q1 = 1, 2, 3

SEQ2 = t1
2 = hb EIC2 F1-Indet. Cycle Q2 = 2, 3

SEQ3 = t1
3 = d EIC3 F1-Indet. Cycle Q3 = 4

SEQ4 = t1
4 = d EIC4 F1-Indet. Cycle Q4 = 5

SEQ5 = t2
4 = g EIC4 F1-Indet. Cycle Q5 = 5

SEQ6 = t1
5 = d EIC5 F2-Indet. Cycle Q6 = 5

SEQ7 = t2
5 = g EIC5 F2-Indet. Cycle Q7 = 5

Table 4 Preliminary function, Step (I-iv), and MDA, Step (2-a)

SEQx EICz Fm-Indet. Cycle Qx Mx

SEQ1 = t1
1 = o2ha EIC1 F1-Indet. Cycle Q1 = 1, 2, 3 M1

SEQ2 = t1
2 = hb EIC2 F1-Indet. Cycle Q2 = 2, 3 M2

SEQ3 = t1
3 = d EIC3 F1-Indet. Cycle Q3 = 4 M3

SEQ4 = t1
4 = t1

5 = d EIC4 & EIC5 F1- and F2-Indet. Cycle Q4 = 5 M4

SEQ5 = t2
4 = t2

5 = g EIC4 & EIC5 F1- and F2-Indet. Cycle Q5 = 5 M5
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Correctness of Step B of the Reachability Function: By construction, Gmodx
c

is
composed of projections of subsystems Gz, where z 2 S and S = Bc

x. As a
reminder, the states of the indeterminate cycle associated with SEQx in Gdi

are
marked with the label Mx and by construction the states of the machines GdS

and Gmodx
c

are marked with labels Mx if one or more state components are
marked with the label Mx. Consider any two arbitrarily long traces !x; !

0
x 2

LðGiÞ such that: (i) fm 2 !x where fm corresponds to the fault type associated
with SEQx; (ii) fm =2 !x

0; (iii) !x, !x
0 lead to the indeterminate cycle associated

with SEQx in Gdi
(where states Qx are labeled Mx); and (iv) Pf@i;@oi

gð!xÞ ¼
Pf@i;@oi

gð!0xÞ. If there does not exist in Gmodx
c

a cycle of states labeled Mx then, by
construction of Gmodx

c
; !S ; !

0
S 2 LðGSÞ such that Pf@S ;@igð!SÞ ¼ !x; Pf@S ;@igð!0SÞ ¼

!0x, and Pf@S ;@oi
gð!SÞ is arbitrarily long. Hence, by Lemma 3 and Remark 3, the

indeterminate cycle associated with SEQx is BNot Reachable’’ and we return to
MDA. If, in Step B, there exists in Gmodx

c
a cycle of states labelled Mx then we

cannot conclude on the reachability of the indeterminate cycle; thus we number
s1

c, s2
c, . . . , sp

c the sequences of events that describe such cycles and go to Step C.
Correctness of Step C of the Reachability Function: Consider any two
arbitrarily long traces !x; !

0
x 2 LðGiÞ such that: (i) fm 2 !x where fm corresponds

to the fault type associated with SEQx; (ii) fm =2 !x
0; (iii) !x, !x

0 lead to the
indeterminate cycle associated with SEQx in Gdi

; and (iv) Pf@i ;@oi
gð!xÞ ¼

Pf@i;@oi
gð!0xÞ ¼ sSEQxs1 where SEQx = s1s2. From equations (12) and (16), we

have that ~sx ¼ Pf@oi
;@CMoi

gðSEQxÞ and, 8p 2 {1, . . . , P}, ~sc
p ¼ Pf@CMoS

;@CMoi
gðsc

pÞ. If
p 2 f1; . . . ;Pg such that ~sx ¼ ~sc

p and if s
0x; s

0 0x, and p 2 {1, . . . , P} such that
~sx ¼ s

0xs
0 0x and s

0xs
0 0x ¼ ~sc

p, then, by construction of Gmodx
c
; !S ; !

0
S 2 LðGSÞ such

that Pf@S ;@igð!SÞ ¼ !x; Pf@S ;@igð!0SÞ ¼ !0x, and PfS ;oi
gð!SÞ is arbitrarily long. Hence,

by Lemma 3 and Remark 3, the indeterminate cycle associated with SEQx is
BNot Reachable’’ and we return to MDA. If 9p 2 {1, . . . , P} such that ~sx ¼ ~sc

p or
if 9s0x, s00x, and p 2 {1, . . . , P} such that ~sx ¼ s

0xs
0 0x and s

0xs
0x ¼ ~sc

p, then we cannot
conclude on the reachability of the indeterminate cycle and go to Step D.
Correctness of Step E of the Reachability Function: Consider any two
arbitrarily long traces !x; !

0
x 2 LðGiÞ as defined above in the proof of

correctness of Step C. Consider Gmodx
c�1

, which is composed of projections of
subsystems Gz, where z 2 S and S = Bcj1

x . Since there exist in Gmodx
c�1

one or

Fig. 5 Local diagnoser Gd1
with labels Mx

Fig. 6 GCM1
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more cycles of states labeled Mx that correspond to a projection of SEQx,
then, by construction of Gmodx

c�1
; 9!S ; !

0
S 2 LðGSÞ that violate the modular

diagnosability of LðGSÞ w.r.t. ð@oz
: z 2 SÞ and fm, and moreover satisfy the

following conditions: (i) fm 2 !S where fm is the fault associated with SEQx; (ii)
fm =2 !S

0 ; (iii) Pf@S ;@igð!SÞ ¼ !x; (iv) Pf@S;@igð!0SÞ ¼ !0x; (v) Pf@S ;@oi
gð!SÞ ¼

Pf@S ;@oi
gð!0SÞ ¼ sSEQxs1, SEQx = s1s2, x 2 {1, . . . , Xi}; and (vi) Pf@S ;@oi

gð!SÞ is
arbitrarily long. Therefore hypothesis (i) of Lemma 4 is satisfied. The condition
Sc = ; implies that there does not exist any subsystem Gl, l =2 S, that contains
common events with the automaton eGGc�1; thus hypothesis (ii) of Lemma 4 is
satisfied. Then, by Lemma 4 and Remark 4, we declare the indeterminate cycle
associated with SEQx BReachable’’ in GS and GT and return to MDA. If Sc m ;
then we cannot decide on the reachability of the indeterminate cycle (cf.
Lemma 5) and go to Step B.
We have proven that the Reachability Function returns the correct answer to
the question: BIs the indeterminate cycle associated with SEQx reachable in the
global system behavior LðGT Þ?.’’ We use this to complete the proof of the
correctness of MDA.
Correctness of Step 1 of MDA: The correctness of Step 1 follows directly from
Corollary 1.
Correctness of Step 2-d of MDA: If, in the Reachability Function, we declare
the indeterminate cycle associated with SEQx BReachable’’ then we conclude
that, by Lemma 4, LðGT Þ is not modularly diagnosable w.r.t. ð@oz

: z 2 TÞ and
@f i

, which also implies that LðGT Þ is not modularly diagnosable w.r.t. ð@oz
: z 2

TÞ and ð@f z
: z 2 TÞ.

Correctness of Step 3 of MDA: If, in the Reachability Function, we declare the
indeterminate cycles associated with SEQx, x = 1, . . . , Xi, BNot Reachable’’ then,
by Corollary 2, we conclude that LðGT Þ is modularly diagnosable w.r.t. ð@oz

:
z 2 TÞ and @f i

. If the above is true for all i 2 ND then, by Lemma 1, LðGT Þ is
modularly diagnosable w.r.t. ð@oz

: z 2 TÞ and ð@f z
: z 2 TÞ. Í

Fig. 7 GCM2
� GCM5

built from GCM1

Fig. 8 Gmod1
2

Discrete Event Dyn Syst (2006) 16: 9–37 31

Springer



Discussion

To give more insight into MDA, we present its flowchart, cf. Fig. 9, and discuss the
key steps of its operation. The procedure starts by building local diagnosers for each
module of the system and checking if they are monolithically diagnosable or not. As
mentioned before, if each individual module is (monolithically/modularly) diagnos-
able, then the complete system is both monolithically and modularly diagnosable.
Therefore, we need only focus on the modules that are not diagnosable in order
to find out if a violation of modular diagnosability occurs or not when the given
module is coupled with the rest of the system.

To do so, we concentrate on the traces that form indeterminate cycles in local
diagnosers, called the troublesome traces (cf. the Preliminary Discussion section).
We need to test these troublesome traces one by one and determine if they survive
in the diagnoser of the complete system, without necessarily constructing this
monolithic diagnoser.

The testing procedure starts by selecting one indeterminate cycle in a given (non-
diagnosable) local diagnoser and isolating all its troublesome traces (there could be
more than one troublesome trace depending on the accessibility of the indetermi-
nate cycle in the transition structure of the local diagnoser). For each troublesome
trace, we select all other modules that contain an event common with the ones in the
troublesome trace, build observer automata for common events (cf. Step 2-b of
Algorithm 1) for each module selected, perform the parallel composition of these
automata, and finally check if the indeterminate cycle under consideration survives
(cf. Step B of Algorithm 3). If it does not survive at this stage then it will not survive
if we were to construct the monolithic diagnoser. However, if it does survive, then
we need to consider the effect of other modules, namely those that have common
events with the result of the above parallel composition. This is the heart of
the incremental procedure performed in Algorithm 3. We iterate using essentially
the same steps as described above—cf. the loop formed by Steps B through E of
Algorithm 3.

Fig. 9 Algorithm flowchart
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The incremental procedure in Algorithm 3 ceases to add local modules and
consequently stops when either (i) it has been determined that the indeterminate
cycle under consideration is not reachable in the complete system—if this holds
for all indeterminate cycles then the monolithic system is modularly diagnosable
or (ii) no other module is added in the incremental process at Step E of
Algorithm 3—in which case the monolithic system is not modularly diagnosable.
Note that the latter conclusion can be reached without having to consider all
modules in the set T. This potential computational gain depends on the structure of
the automaton Gmodx

c
and its co-accessibility properties with respect to the

indeterminate cycle under consideration, as determined in Steps C and D of
Algorithm 3.

Figure 10 describes the architecture of the modular diagnosability decision pro-
cess with respect to Module 1. The process has to be repeated for all modules
in the system in order to infer on the modular diagnosability of the monolithic
system.

The main feature exploited within MDA is the incremental addition of modules
by considering only those that are necessary to reach a decision on the modular
diagnosability of the monolithic system. Depending on the structure of the system,
MDA may consider a smaller number of modules rather than all of T when
performing parallel composition operations. The worst case can possibly occur and
yield jBc

xj = jTj, which implies that every system module is considered in the parallel
composition for obtaining Gmodx

c
. At this stage, further computational experience is

needed to more precisely assess the role of the system’s structure on the
computational complexity of MDA.

The whole procedure followed in MDA not only exploits the modular structure
of the given system, but also may provide insight into causes of non diagnosability
and possible remedies for it through coupling of system modules with one another.
Thus MDA could be a useful tool in modular system design.

Fig. 10 Modular diagnosability verification
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Online Diagnosis

If the system GT, T = {1, . . . , I }, is modularly diagnosable, we can perform online
diagnosis by simply running the local diagnosers Gdi

, i 2 T, at each local site, cf.
Fig. 11. We know from the property of modular diagnosability that even if
the local diagnoser Gdi

contains an indeterminate cycle, the local observations
at site i will never stay forever in this cycle when the complete system GT is
functioning.

If MDA outputs that the system is not modularly diagnosable, then we can
still partially diagnose the system online as follows. Each indeterminate cycle is
associated to a fault fm 2 @f T

, m 2 {1, . . . , M}. From MDA, we know which inde-
terminate cycles of Gdi

are reachable and which are blocked. If the local diagnoser
Gdi

contains an indeterminate cycle that is Breachable’’ in the complete system
GT, then local observations may stay forever in this cycle. Therefore we mark as
Bfm inactive’’ the states of Gdi

that correspond to the reachable indeterminate
cycle associated to the fault fm. We run at each local site the modified version
of the local diagnoser Gdi

, i.e., the one with the labels Bfm inactive.’’ Then, when
a local diagnoser reaches an Bfm inactive’’ state, the local site broadcasts that there
is a potential fault fm that cannot be diagnosed with certainty.

Conclusion

We have proposed a notion of modular diagnosability that is suitable for systems
that have modular structure expressed in terms of the parallel composition of
individual automata, where each individual automaton models the behavior of
the system component at the corresponding site. If modular diagnosability holds,
then on-line fault diagnosis of the modular system is straightforward as it suffices
to run a local diagnoser at each site, where the local diagnoser is built using
only the local automaton model and ignoring the remainder of the system
model. It is guaranteed that, after sufficiently many local observable events,
any fault at a site will be diagnosed. However, the verification of modular
diagnosability requires in general the joint consideration of multiple system

Fig. 11 Online modular diagnosis
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components. We have presented an algorithm that correctly verifies if modular
diagnosability holds or not and does so by incrementally including the autom-
ata models of other system components only if they are required to draw
definitive conclusions about the diagnosability of faults within a given system
component. This property of the algorithm makes it potentially computation-
ally advantageous for large complex modular systems. Moreover, even if the
modular diagnosability property does not hold, the algorithm provides insight
into possible structural changes to the system in order to render it modularly
diagnosable.
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Appendix

For system G = (X, @, �, x0), @o � @, and fault types {F1, F2, . . . , Fm}, we recall the
following definitions originally introduced in Sampath et al. (1995).

& Diagnoser (Gd)

Gd ¼ ðQd ;@o; �d ; q0Þ ð20Þ

$ ¼ fNg [ 2$F ; where $F ¼ fF1;F2; . . . ;Fmg ð21Þ

X o ¼ fxog [ fx 2 X : x has an observable event into itg ð22Þ

�d : transition function of the diagnoser ð23Þ

qo ¼ fðxo; fNgÞg ð24Þ

Qo ¼ 2X o�$ ð25Þ

Qd : subset of Qo reachable under �d ð26Þ

& Non-deterministic automaton without unobservable events (G0)

G0 ¼ ðX o;@o; �G0 ; x0Þ; ð27Þ

where

LðG0Þ ¼ PðLÞ ¼ ft : t ¼ PðsÞ for some s 2 Lg: ð28Þ

The elements Xo, @o, and x0 are as defined above. The transition relation of
G0 is given by

�G0 � ðX o � @� X oÞ ð29Þ

and is defined as follows

ðx; �; x0Þ 2 �G0 if �ðx; sÞ ¼ x0 for some s 2 L�ðG; xÞ: ð30Þ
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