
ABSTRACT
Energy-efficient wireless communication net-

work design is an important and challenging
problem. Its difficulty lies in the fact that the
overall performance depends, in a coupled way,
on the following subsystems: antenna, power
amplifier, modulation, error control coding, and
network protocols. In addition, given an energy
constraint, improved operation of one of the
aforementioned subsystems may not yield better
overall performance. Thus, to optimize perfor-
mance one must account for the coupling among
the above subsystems and simultaneously opti-
mize their operation under an energy constraint.
In this article we present a generic integrated
design methodology that is suitable for many
kinds of mobile systems and achieves global
optimization under an energy constraint. By
pointing out some important connections among
different layers in the design procedure, we
explain why our integrated design methodology
is better than traditional design methodologies.
We present numerical results of the application
of our design methodology to a situational
awareness scenario in a mobile wireless network
with different mobility models. These results
illustrate the improvement in performance that
our integrated design methodology achieves over
traditional design methodologies, and the trade-
off between energy consumption and perfor-
mance.

INTRODUCTION

Energy-efficient wireless communication net-
work design is an important and challenging
problem. It is important because mobile units
operate on batteries with limited energy supply.
It is challenging because there are many differ-
ent issues that must be dealt with when design-
ing a low-energy wireless communication system
(e.g., amplifier design, coding, modulation
design, resource allocation, and routing strate-

gies), and these issues are coupled with one
another. Furthermore, the design and operation
of each component of a wireless communication
system present trade-offs between performance
and energy consumption. The key observation is
that constraining the energy of the nodes in a wire-
less network imposes a coupling among the design
components that cannot be ignored in performing
system optimization. Therefore, the challenge is
to exploit the coupling among the various com-
ponents of a wireless communication system and
understand the trade-off between performance
and energy consumption in each individual com-
ponent/subsystem in order to come up with an
overall integrated system design that satisfies an
energy constraint and has optimal performance
with respect to some performance metric. Tradi-
tional design methodologies that optimize each
layer separately may not be appropriate in terms
of overall system optimality. The purpose of this
article is to present a methodology for the
design, simulation, and optimization of wireless
communication networks that achieves maximum
performance under an energy constraint. The
presentation of our methodology also gives some
insight as to why traditional design methodolo-
gies may not achieve overall system optimality.
The integrated design methodology is applied to
two scenarios of mobile ad hoc networks. The
results show that significant gains are possible
with an integrated design approach over tradi-
tional designs.

Before we proceed, we illustrate through sim-
ple examples the coupling among the different
components of a wireless communication system,
and highlight the trade-off between performance
and energy consumption at individual compo-
nents of the system. To illustrate the coupling
among different components of a wireless com-
munication system, we first need to describe
some key features of the amplifier’s operation.

Consider the design and operation of an
amplifier. The amplifier boosts the power of
the intended transmitted signal so that the
antenna can radiate sufficient power for reli-
able communication. However, typical power
amplifiers have maximum efficiency in convert-
ing DC power into RF power when the amplifi-
er is driven into saturation. In this region of
operation, the amplifier voltage transfer func-
tion is nonlinear. Because of this nonlinearity,
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the amplifier generates unwanted signals (so
called intermodulation products) in the band of
the desired signal and in adjacent bands. When
the amplifier drive level is reduced significantly
(large backoff), the amplifier voltage transfer
characteristic becomes approximately linear. In
this case it does not generate intermodulation
products. However, with large backoff the
amplifier is not able to efficiently convert DC
power into RF power. Thus, there is consider-
able wasting of power at low drive levels, where-
as at high drive levels the amplifier generates
more interfering signals.

We can now illustrate the coupling among
individual components arising in the design of a
wireless system. Consider packet routing in a
wireless network that contains no base stations
(i.e., an ad hoc network). For simplicity, consid-
er a network with nodes A, B, and C, as shown
in Fig. 1. If node A wants to transmit a message
to node C, it has two options: Transmit with
power sufficient to reach node C in a single
transmission, or transmit first from A to B with
smaller power, and then from B to C. Since the
received signal power typically decays with dis-
tance as dα, for α between 2 and 4, there is sig-
nificantly smaller power loss due to propagation
in the second option because dα

AC > dα
AB + dα

BC.
However, even though node A transmits with
smaller output power, it does not necessarily
proportionally decreases the amount of power
actually consumed because of the amplifier’s
effect discussed above. Furthermore, besides the
energy required for packet transmission, there
are energy requirements for packet reception
and information decoding. The probability of
packet error that is achieved depends on the
energy allocated to the receiver. Thus the opti-
mal network protocol (direct transmission from
A to C or routing from A to B to C) depends on
the amplifier characteristics as well as the energy
needed to demodulate and decode a packet.
Consequently, there is a coupling among amplifi-
er design, coding and modulation design, decod-
ing design, and routing protocols.

To highlight the tradeoff between energy con-
sumption and system-wide performance, consid-
er the situational awareness problem in a mobile
wireless network. In this problem, the objective
of each node is to be aware of the position of
every other node during a given time period. If
energy consumption is ignored, and the overall
performance metric is the average (over all
nodes and over time) position estimation error,
this error is minimized when all nodes continu-
ously communicate their positions with one
another. Such a strategy requires significant
energy. If, on the other hand, the objective is to
minimize the average position estimation error
under an energy constraint, the nodes will have
to jointly decide when to communicate and
whom to communicate to during the given peri-
od, since a continuous communication strategy
would use all the available energy too quickly
and could lead to large average position estima-
tion error subsequent to the energy depletion of
the battery.

Traditional design methodologies for wire-
less communication systems that attempt to
optimize each layer separately may achieve

global system optimality only by coincidence.
However, through an understanding of the
interactions and coupling among the functions
at the different layers, it is possible to design a
wireless communication system in a manner
that truly integrates the functions of all layers.
Therefore, we propose a methodology that
decomposes the system into coupled layers and
exploits the interactions among them to come
up with an energy-efficient design. The goal of
the decomposition, besides better understand-
ing of the design procedure for global system
optimality, is to obtain a computationally
tractable approach to quantifying system per-
formance with respect to different optimization
criteria. Tackling such a problem can be a
formidable task. We are not aware of any previ-
ous design and optimization attempts that
encompass all  the layers. Most previous
research [1–6] on low-energy ad hoc mobile
wireless networks focuses on the optimization
at the component/subsystem level. We hope
our work will provide some guidelines for fur-
ther research in global system optimization.

The remainder of the article is organized as
follows. We first present a methodology for sys-
tem design that incorporates the effect of the dif-
ferent layers on system performance. This
methodology is fairly general and can be applied
to many different applications besides the situa-
tional awareness scenario we consider later in this
article. We next describe the component models
for the amplifier, propagation, coding, modula-
tion, and network protocols for the system under
investigation. After that we explain how global
optimization works together with each system
layer and present optimization results for the situ-
ational awareness application. We conclude the
article with a summary and discussion about
potential applications.

SYSTEM DESIGN METHODOLOGY

We first describe the system decomposition and
optimization, both of which form the constituent
parts of our design methodology. We then com-
ment on the decomposition and optimization.
We consider a wireless network consisting of
mobile nodes that need to communicate with
one another in order to take some action or to
share information, such as their respective posi-
tions. The overall goal is to characterize and
optimize some performance metric under an
energy constraint.

As pointed out in the first section, in order to
develop a systematic and computationally
tractable design methodology, we divide the
problem into interacting design layers as shown
in Fig. 2. The system decomposition consists of

� Figure 1. Three nodes in a network.
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three layers: the device layer, the processing
layer, and the network layer. Each layer interacts
with layers above or below it in a well-defined
manner (described below). The device layer and
processing layer each perform local optimization
in a manner that will be explained in more detail
later in this section. In addition, there is a global
optimization of an application-dependent perfor-
mance measure that encompasses all layers.

At the device layer, we consider physical
components at each node, including the antenna,
amplifier characteristics, and circuit. At the pro-
cessing layer, we consider the signal processing
operations, including the modulation, coding,
demodulation, and decoding algorithms. At the
network layer, we consider the collective opera-
tion of all mobile units, including the routing
protocol, information distribution issues, com-
munication environment, mobility modeling, and
overall performance measure.

The systemwide objective is to optimize a
performance metric that reflects the collective
operation of the mobile units under an energy
constraint. This is achieved by simultaneously
optimizing over a number of parameters that
characterize the objective. Some of these param-
eters also describe the coupling among the dif-
ferent layers; thus, they necessitate the
development of an integrated design methodolo-
gy. The integrated design methodology we pro-
pose is described by the following steps:
• Step 1: Identify the direct interactions (key

coupling parameters) among layers; indirect
interactions will “trickle through” the model.
For example:

–The packet error probability, provided by the
processing layer, is a key coupling parameter
that directly affects network layer perfor-
mance.
–Certain receiver parameters, such as the
numbers of bits of quantization for the equal-
izer input data, the equalizer coefficients, and
the decoder, affect network layer decisions
indirectly through packet error probability.

For instance, hard decision decoding (1-bit

quantization) requires roughly 2 dB larger trans-
mitted power to maintain the same level of pack-
et error probability but decreases the amount of
receiver energy necessary to process a packet.
• Step 2: At each layer consider a local perfor-

mance measure that captures the contribution
of that layer to the systemwide (global) per-
formance criterion. Such a performance mea-
sure is a function of three types of parameters:
–Those that directly affect only the local per-
formance criterion of the individual layer
–Those that are controllable and directly affect
the performance of multiple layers
–Those that are uncontrollable and directly
affect the performance of multiple layers

Fix the parameters of the second and third types,
and optimize the local performance criterion
with respect to the parameters of the first.

For example, at the processing layer, the
packet error probability is a possible local per-
formance criterion. It is a function of the three
types of parameters described above. The first
type parameters include the receiver parameters
mentioned in step 1. The second type parame-
ters include the energy constraints for transmit-
ting and receiving a packet. The third type
parameters include the distances between each
pair of nodes in the wireless network. We fix the
parameters of the second and third types, and
optimize the packet error probability with
respect to the first type parameters.
• Step 3: Using the results of step 2, construct a

model of each individual layer that is a func-
tion of only the parameters of the second and
third types. Optimize the global performance
criterion with respect to the parameters of the
second type under an energy constraint.
For instance, consider the situational aware-

ness problem where the systemwide (global) per-
formance criterion is the position estimation
error of the network nodes averaged over the
third type parameters from different layers (e.g.,
the distance between each pair of nodes). Opti-
mize, under a constraint on the energy available
to each node, the position estimation error with
respect to the second type parameters (e.g., the
energy for transmitting and receiving a packet)
from the network and device layers.

The following comments are in accordance
with each of the steps described in the integrated
design methodology:
• In step 2 the local optimization should be con-

sistent with the global optimization. The effect
of the local optimization is to “filter” out the
parameters of the first type.

• In steps 2 and 3 the local and global optimization
may have to be simulation-based because com-
plete analytical expressions for the performance
criteria of these steps may not be available.

• In step 3 the model constructed for each indi-
vidual layer may be based on table lookups.
The global performance criterion is only a
function of the parameters of the second
type, and the corresponding global optimiza-
tion captures the complex interactions among
layers.
We illustrate our modeling philosophy and

integrated design methodology within the con-
text of a situational awareness example present-
ed in the next section.

� Figure 2. Layered design/optimization.
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A DESIGN EXAMPLE: MODELS FOR
SYSTEM DECOMPOSITION

We apply our integrated design methodology to a
particular network design problem, namely, the
situational awareness problem in wireless mobile
networks. In the situational awareness problem a
number of mobile nodes desire to keep track of
the location of each other over some time dura-
tion. The nodes operate with batteries and thus
have a finite energy constraint. The transmission
of information by a node requires a certain
amount of energy as does the processing of any
received signal. The goal of the design is to min-
imize the mean absolute error of the position
estimates. There is a plethora of parameters that
could be considered for optimization. We focus
on a small set of parameters to illustrate the
design and simulation methodology. In addition,
we describe the system decomposition and justify
our choice of the coupling parameters among
different layers. We present the system optimiza-
tion in a later section. We proceed to describe
each layer in a bottom-up manner.

THE DEVICE LAYER
We present the model for the device layer and the
coupling parameters between the device and pro-
cessing layers. We justify why the coupling param-
eters we choose are appropriate for the wireless
communication systems under investigation. While
not all the components of a transmitter and a
receiver have been considered in the model of this
article, we have chosen a few parameters that have
an important effect on the coupling among differ-
ent layers and illustrate the trade-off between per-
formance and energy consumption.

At the device layer, we assume each node has
an omnidirectional dipole antenna and a small
power amplifier. Because the power amplifier is
a major source of energy consumption and our
global objective is to achieve high-precision situ-

ational awareness (i.e., low estimation errors) for
every node under an energy constraint, it is
important to understand the role of the amplifi-
er power added efficiency in the overall opti-
mization problem. Let Pin denote the input
power, Prf the radiated power, and Pdc the con-
sumed DC power. The power added efficiency is
defined as

(1)

The characteristics of the power amplifier
[7] shown in Fig. 3 are tabulated for use at the
processing layer. From Fig. 3 we see that the
input-output relation of the power amplifier is
fairly linear when the input power is small;
however, the amplifier operates at a very low
efficiency. When the input power is large, the
amplifier operates at higher efficiency, but with
large input-output nonlinearity. This nonlineari-
ty generates in-band and out-of-band signals
called intermodulation signals, which adversely
affect the performance of the processing layer,
which in turn indirectly affects the design of the
network layer protocols. In the current litera-
ture [2, 6] on energy-efficient routing protocols,
the transmitted energy (power) is usually cho-
sen as the routing metric. Unfortunately, this
does not correspond to the actual consumed
energy with most amplifiers. Within the context
of our problem, to capture the operation of the
amplifier and the coupling among the device
layer and other higher layers, we consider the
following parameters associated with an ampli-
fier’s operation: the total consumed power Ptot,
the output power Pout, and the AM-to-AM volt-
age characteristics [7]. We note here that the
intermodulation interference also depends on
the modulation scheme chosen and consider a
nonconstant modulation scheme. For such a
modulation scheme, we characterize the rela-

Power added efficiency =
−P P

P
rf in

dc
.

� Figure 3. Characteristics of the power amplifier: a) radiated and DC power; b) power added efficiency.
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tion between the average amplifier output
power and the energy constraint Ect for trans-
mitting a packet by

Pout = g1(Ect). (2)

This relation is tabulated for use by higher
layers. In certain situations it is possible that the
actual consumed energy at the transmitter, Eta,
is less than the constraint on the consumed ener-
gy at the transmitter. In this case we define a
function Eta = g2(Ect) that maps the energy con-
straint to the actual energy.

THE PROCESSING LAYER
We describe the model used at the processing
layer, discuss the coupling between the device
and processing layers, and between the process-
ing and network layers. More details about the
specific design choices can be found in [8]. Our
goal is not to model every part of this system but
to understand the coupling between layers and
the trade-off between performance (global and
local) and energy. We first describe the basic
block diagram of the processing layer, and dis-
cuss the performance-energy trade-offs of sever-
al elements in the block diagram. Finally, we

describe precisely the optimization at the pro-
cessing layer, and the coupling between the pro-
cessing and network layers.

The basic block diagram of the processing
layer is shown in Fig. 4. A block of information
is presented to the channel encoder. The chan-
nel encoder adds redundancy to protect against
channel errors. The output of the channel
encoder is interleaved, modulated, and spread in
bandwidth. The resulting signal is amplified by a
power amplifier (PA) and transmitted. At the
receiver the inverse operations are needed to
accurately recover the block of information.
While each of these operation described con-
sumes power in order to process the data or sig-
nal, we focus on the energy being consumed by
the power amplifier, demodulator, and channel
decoder. We focus on these elements since gen-
erally they consume much more energy than
other elements in the system. The performance-
energy trade-off of the amplifier was discussed
previously. Thus, we focus on the performance-
energy trade-off of the demodulator and
decoder.

In the system we consider the modulation is
binary phase shift keying with raised-cosine puls-
es. In order to demodulate the signal, filtering of
the received signal is necessary. Typically, this
filtering is done digitally with an oversampled
signal. The architecture of the filter is a finite-
impulse response filter implemented with a
tapped delay line. The taps are multiplied by
coefficients and then summed. The amount of
power consumed while doing this operation
depends on the number of bits used to represent
the signals and the coefficients in the multiplica-
tion. As the number of bits used increases, the
performance becomes closer to the ideal case of
analog operation while consuming more energy.
We let NE denote the number of bits used in the
filter for data bits and quantization bits, and
optimize the performance over NE.

The error control coding technique we con-
sider is convolutional encoding with maximum
likelihood (Viterbi) decoding. Error control cod-
ing can significantly reduce the required trans-
mitted energy needed for reliable
communication at the expense of decreased
bandwidth efficiency and energy needed for
decoding. In attempting to recover the transmit-
ted data from the demodulator output, the chan-
nel decoder must perform certain correlations
and do comparisons. The performance of the
decoder (like the demodulator) depends on the
number of bits used to represent the signal at
the output of the demodulator (ND). The larger
number of bits used, the better the performance.
However, the more bits used in the representa-
tion, the more energy consumed by the decoder.
We optimize the performance over ND.

To calculate the energy needed to process
(demodulate and decode) signals we model the
individual digital circuits used in the algorithm.
We assume complementary metal oxide semi-
conductor (CMOS) circuits in which the main
contribution to energy is attributed to the charg-
ing and discharging of parasitic capacitors that
occur during logical transitions [9]. Circuit mod-
els for the critical parts of the demodulator and
decoder have been developed and energy con-

� Figure 4. A processing layer block diagram.
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sumption calculated as a function of the number
of levels of quantization. We let Era denote the
energy consumed by the receiver in order to pro-
cess a packet. This is a function of the number
of bits of quantization used by the demodulator,
NE, and the decoder ND [10, 11]:

Era = g(ND, NE).

The performance measure that couples the
processing layer with the network layer is the
packet error probability, Pe. In general, for any
choice of coding and demodulation schemes, Pe
depends on the energy constraint Ect for the
transmitter to send a packet, the energy con-
straint Ecr for the receiver to process a packet,
the received signal-to-noise ratio (SNR), SNR,
the number NE bits of quantization for equalizer
data input and equalizer coefficients, and the
number ND bits of quantization for decoding.
The parameters NE and ND affect only the per-
formance of the processing layer. Consequently,
in accordance with our methodology:
• For given Ect, Ecr, and SNR, we locally opti-

mize Pe and BER with respect to NE and ND

(3)

• We generate parameterized version of Pe with
respect to Ect, Ecr, and SNR, and build a per-
formance table for these parameterized ver-
sions of Pe. In addition, because of the integer
constraint on quantization levels in the
demodulator and decoder, the actual energy
consumed by the receiver, Era may be less
than the constraint on energy Ecr. Let N*

E
(SNR, Ect, Ecr) and N*

D (SNR, Ect, Ecr) be the
optimum number of quantization levels in the
demodulator and decoder, respectively. Thus,
the actual energy consumed in the receiver is
a function of the constraint on the energy and
SNR,

Era = g(N*
E, N*

D) = g4 (SNR, Ect, Ecr). (4)

The network layer (and global optimization) uti-
lizes the table of Pe as a function of Ect, Ecr, and
SNR for calculating its global performance.

Figure 5 shows the locally optimized packet
error rate as a function of the transmitter energy
constraint and receiver processing energy con-
straint. The surfaces are, from top down, SNR =
1 dB, 2 dB, 3 dB, and 4 dB.

In summary, at the processing layer a table is
generated from simulation that contains the per-
formance as a function of the energy allowed at
the transmitter, the energy allowed at the receiv-
er, and the SNR at the receiver. This table is
then used at the network layer to determine the
overall performance of the system.

NETWORK LAYER
We describe the model for the network layer
and the parameters of the network protocols
that affect global performance. We explain
why these parameters are appropriate for the
wireless communication systems under investi-
gation.

We consider a network of nine nodes. All
nodes move according to a specific mobility
model. In the situational awareness problem,
each node attempts to keep track of the posi-
tions of all the other nodes. This is accom-
plished by communication and estimation. All
nodes share their respective position informa-
tion according to a specific communication pro-
tocol. In the rest of this section we present the
mobility models, propagation models, communi-
cation protocols, and estimation schemes used
by the nodes. We refer the reader to [8] for fur-
ther technical details regarding these various
models.

Mobility Models — We describe two mobility mod-
els that we use in the various optimization prob-
lems we consider. In both mobility models, each
node in the network moves to a new location at
the end of every Tm s. In the examples consid-
ered in this article Tm = 1.

In mobility model 1, we consider a region of
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� Figure 6. Mobility models.
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size 6 km × 6 km and a group of nine nodes ini-
tially deployed in an area as shown in Fig. 6a.
All nodes travel toward the same destination
which is located at G = (6000, 6000) m. Each
node travels at average speed v, where v = 1m/s
(not drawn to scale in Fig. 6a). At each step,
each node’s motion is subject to a random dis-
turbance in x and y coordinates.

In mobility model 2, all nodes are initially
deployed in a region of size 1332 × 1332 m and
move within this region as shown in Fig. 6b. The
mobility of each node is characterized by a two-
state discrete-time Markov chain as shown in
Fig. 7, where the two states are labeled stay and
move. In each of these states, each node’s motion
is subject to random disturbance in the x and y
coordinates, where the disturbance is parameter-
ized by a scaling factor of 1 m in the stay state
and 10 m in the move state.

Propagation Model — The transmitted signal from
each node experiences propagation loss and fad-
ing. In the results that follow, we assume a two-
path propagation model. Table 1 shows the
variables and their typical values needed to
explain the model.

The two-path propagation model consists of a
direct path and a path reflected off the ground
with 180˚ phase change at the reflection point
from the transmitter to the receiver. The cumu-
lative effect of both paths determines an attenu-
ation A between received power and transmitted
power, which is given by [12]

(5)

where the approximation is valid when d >>
max{ht, hr}. The two-path propagation model
characterizes the large-scale propagation loss of
many fading channels reasonably well, which is
why we adopt it in our network layer simulation.

Communication Protocols — We now describe the
medium access control (MAC) strategy as well
as the routing protocols. We consider two com-
munication protocols: a single-hop transmission

protocol (which may be considered a single-hop
routing protocol) and a multihop routing proto-
col. For both communication protocols, the
omnidirectionality of the antenna at each node
makes the potential connections among nodes
point-to-multipoint, that is, if a node sends out a
packet, the electromagnetic wave will propagate
in all directions and may be received by many
other nodes. Therefore, in the design of wireless
communication protocols, communication occurs
in a broadcast medium, which is very different
from traditional wired networks, where the con-
nections are mostly point-to-point. This omnidi-
rectionality property of the antenna can be
exploited in the situational awareness scenario
under consideration.

Single-Hop Transmission Protocol — In the single-hop
transmission protocol, each node transmits its
position information packets every T s, where T
is a design parameter. The MAC is time-division
multiple access (TDMA), where each node is
assigned a transmission slot of duration T/N,
where N = 9 in our case, as shown in Fig. 8. The
slot duration is much larger than a packet dura-
tion. In a given slot, each packet transmission is
followed, with probability q, by a retransmission,
and so forth, until the slot ends. The retransmis-
sion probability q is considered a design parame-
ter.1 Since each node operates on a battery with
limited capacity, we constrain the energy used
for each packet transmission or retransmission
to be upper bounded by Ect, which we consider a
design parameter. The position information
packets may be received by many other nodes,
each of which consumes a certain amount of
energy to process the packets. Again, due to the
limited capacity of the battery, we constrain the
energy used to process the incoming packets to
be upper bounded by Ecr, which we consider a
design parameter. When a node receives a pack-
et, it does not send back any acknowledgment,
nor does it forward the packet it receives to
other nodes. As a consequence, every packet in
the single-hop transmission protocol travels only
one hop.

In summary, we choose T, q, Ect, and Ecr as
the design parameters at the network layer that
affect global performance.

Mutlihop Routing Protocol — In the multihop rout-
ing protocol, there are mainly two issues:
• Setting up a routing path
• Transmitting position information packets
For routing, we adapt the Open Shortest Path
First (OSPF) protocol [13, 14], which is a link
state routing protocol, to our situational aware-
ness scenario and take advantage of the omnidi-
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1 This simple retransmis-
sion strategy was chosen
because more complex
automatic repeat request
(ARQ) schemes are not
well suited to the broad-
cast environment under
consideration.

� Table 1. Variables used in wireless system modeling.

Variable Meaning Value Unit

λc Carrier wavelength 10 m

ht Height of transmitter antenna 1 m

hr Height of receiver antenna 1 m

Gt Gain of transmitter antenna 1 –

G r Gain of receiver antenna 1 –

d Propagation distance (0, 9000) m

Pt Transmitted power [10–7, 1] W

Pr Received power (Eq. 5) W
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rectionality of the antenna. The objective of our
routing algorithm is to determine the first-hop
nodes a node should reach, and the power this
node should use to reach these first-hop nodes
when it transmits position information packets
originated by itself or forwards position infor-
mation packets received from other nodes. Each
node uses a fixed power to update the link state
of the network every Tr s, which is chosen as a
design parameter. Based on the link state infor-
mation of the network, the routing algorithm
calculates the required transmission power for
the position information packets. Let dmax be
the largest distance among the distances
between a node and any of its first-hop nodes.
Since the antenna is omnidirectional and the
source node knows its farthest first-hop node, it
can use this knowledge by choosing the radiated
power for position information packets to be
Cd4

max, where C is chosen as a design parameter.
For transmitting position information packets,
each node transmits position information pack-
ets every Tp s using power Cd4

max, where Tp is
chosen as a design parameter. In order to
receive either a routing protocol packet or a
position information packet, a node consumes
energy Ecr to process it. A packet is decoded
incorrectly with a probability that depends on C,
Ecr, and SNR.

In summary, we choose Tr, Tp, C, and Ecr as
the design parameters at the network layer that
affect global performance.

Estimation Schemes — We consider two estimation
schemes corresponding to the two mobility mod-
els we described earlier. In both estimation
schemes, a node, say node i, updates its estimate
ŵ(i,j)

k of node j’s position w(j)
k at time kTe, where k

= 1, 2, …. In the examples considered in this
article Te = 2.

For mobility model 1, the estimates are based
on the following strategy. Node i knows the
mobility model for all the other nodes. Since
according to the mobility model the nodes move
toward the goal in a straight line subject to
noise, the new estimate is the extrapolation
toward the goal of the position contained in the
packet that was last received correctly, by an
amount proportional to the product of velocity
and time.

For mobility model 2, we use the following
estimation scheme. Node i’s estimate of node j’s
position at time kTe is the position of node j
contained in the last correctly received packet by
node i. Let τ denote the time of that reception.
Since the mean of the increment of node j’s
position at any time is zero, if node i does not
correctly receive any packet between time τ and
kTe, the estimate of node j’s position at time kTe
is node j’s position at time τ.

PERFORMANCE METRIC

For the purpose of optimization, we use mean
absolute error as the performance metric. For
both estimation schemes, the estimation error of
node j’s position made by node i at time kTe is
defined as

e(i,j)
k = w(j)

k – ŵ(i,j)
k , (6)

where w(j)
k is the actual position of node j at time

kTe. The performance metric J(i) at node i is
defined to be

(7)

where KTe is the time horizon under considera-
tion. In the above equation, the expectation is with
respect to the mobility, the noise in the receiver,
and the randomness in retransmission (in the case
of single-hop transmission protocol only).

The overall network performance measure is
given by the average of the position estimation
error contributed by all the nodes in the network:

(8)

The goal is to minimize J over the parameters
that affect global performance subject to a con-
straint on the energy used by each node. Let
E(i) denote the energy used by node i over the
time horizon KTe. The constraint on energy is

(9)

Based on the discussion in earlier sections, we
have the following objectives: For the single-hop
transmission protocol the goal is to determine
the design parameters

(10)

and the corresponding performance J* = J(T*,
q*, E*ct, E*cr). For the multihop routing protocol
the goal is to determine the design parameters

(11)

and the corresponding performance J* = J(T*r,
T*p, C*, E*cr).
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DESIGN EXAMPLE: GLOBAL OPTIMIZATION
We illustrate how our methodology, described
earlier, applies to a wireless system in the situa-
tional awareness scenario. We consider a single-
hop transmission protocol and mobility model 1.
Similar procedures apply to the other settings.
The parameters that describe the coupling
among the layers and must be shared by the dif-
ferent layers in the setting under consideration
are shown in Fig. 9.

The integrated design methodology of an ear-
lier section is applied in an iterative fashion. At
each iteration the optimization is, in part, simu-
lation-based because we do not have precise
analytical expressions for the local and global
optimization criteria we employ. The optimiza-
tion program attempts to find the global mini-
mum of the objective function J in Eq. 8. The
global optimization and simulation modules per-
form the following steps in attempting to find
the globally optimal solution:
• Step 1: The optimizer module determines the

(new) parameters [T, q, Ect, Ecr] for which the
network performance is to be evaluated.

• Step 2: The network simulator module approx-
imates the objective function in Eq. 8 for the
given [T, q, Ect, Ecr] using Monte Carlo simu-
lation techniques. It returns the average posi-
tion estimation error to the optimizer module.

• Step 3: Steps 1 and 2 are repeated until a ter-
minating condition is reached.
The optimizer module used in step 1 is a type

of simulated annealing algorithm. The method of
simulated annealing is a technique that has
attracted significant attention since it is suitable
for optimization problems with a large number
of parameters, especially ones where a desired
global extremum is hidden among many local
extrema. The simulated annealing algorithm
used in our integrated design is called Hide-and-
Seek and was developed by Romeijn and Smith
[15]. The steps of the Hide-and-Seek algorithm
are given in [8].

We have implemented the network simulator
module in OPNET, a widely used network devel-
opment and analysis tool [16]. Our network sim-
ulator module has the following steps that

involve the interactions among the three layers
for the above global optimization of step 2:
• Step 2.1: Given the parameters SNR, Ect, and

Ecr selected by the optimizer module, the
device layer determines the amplifier output
power Pout, the actual consumed energy Eta
for transmitting a packet, and the actual con-
sumed energy Era for receiving a packet:

Pout = g1(Ect), (12)

Eta = g2(Ect), (13)

Era = g4(SNR, Ect, Ecr). (14)

The function g1 captures the result of the
local optimization of the amplifier model at
the device layer, which is parameterized in
terms of Ect, as explained earlier. The result-
ing Pout is used at the network layer (see
step 2.2 below). We assume that the energy
used by the transmitter is always all of Ect,
and therefore g2(Ect)  = Ect.  Due to the
quantization at the demodulator and the
decoder at  the receiver,  the actual  con-
sumed energy Era may be smaller than the
energy constraint Ect; their relation is deter-
mined by the function g4 that is well defined
and known.

• Step 2.2: For each transmission scheduled at
the network layer and for each receiver, the
network layer determines the SNR at the out-
put of the receiving antenna as follows. The
transmitted power Pt is the product of the
amplifier output power and transmitting
antenna efficiency

Pt = Poutηt. (15)

The power received at the output of the receiv-
ing antenna is

Pr = ηrAPt, (16)

where ηr is the receiving antenna efficiency
and A is the channel attenuation given by Eq.
5. The SNR is

(17)

where Ts is the symbol duration and N0 is the
power spectral density of the thermal noise at
the receiver. The remaining variables in the
above equations are defined in Table 1.

• Step 2.3: For each transmission scheduled at
the network layer and for each receiver, the
processing layer determines the packet error
rate Pe using SNR obtained from the network
layer (step 2.2) and using Ect and Ecr obtained
from the optimizer module. Pe is obtained at
the processing layer from Ect, Ecr, and SNR by
solving an optimization problem with respect
to the parameters NE and ND as described in
a previous section. For the sake of computa-
tional efficiency, this optimization at the pro-
cessing layer is done offline and its results are
summarized using the function g3 whose argu-
ments are Ect, Ecr, and SNR:

Pe = g3(SNR, Ect, Ecr). (18)

Therefore, the network simulator module
implements this step by table lookup. For a
given Pe, the network layer flips a biased coin

SNR
P T

N
r s= ⋅

0
,

� Figure 9. Coupling of different layers.
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to determine if each packet is correctly
received.

• Step 2.4: Each node uses the estimation model
described earlier to update its estimates of the
position of the other nodes. The network simu-
lator module accumulates the position estima-
tion errors of all nodes in the network. When
the simulation terminates, the network layer
averages the accumulated value over all nodes
and over time. Thirty network simulation runs
are produced and their average is the approxi-
mation of the objective function in Eq. 8 that
is returned to the optimizer module.
In Step 3, the termination condition that we

chose for our experiments was to stop after 200
iterations of Steps 1 and 2.

It is critical to understand that the simulation
and optimization effort has been carefully divid-
ed into a device layer simulation, a processing
layer simulation, and a network layer simulation.
More importantly, the interactions between lay-
ers have been identified and incorporated into
the performance evaluation.

PERFORMANCE RESULTS

We present numerical results for two situational
awareness scenarios that highlight our integrated
design methodology and compare its performance
to that of traditional design methodologies. In
particular, within the context of mobility model 1,
we use our design methodology to compare the
performance of a single-hop transmission proto-
col with that of a multihop routing protocol. Fur-
thermore, within the context of mobility model 2
and single-hop transmission, we compare our
design methodology with traditional design
methodologies and illustrate the improvement in
performance achieved by our approach.

INTEGRATED DESIGN FOR MOBILITY MODEL 1
First we consider mobility model 1 where the
nodes are initially located in either a 1 km × 1
km or 2 km × 2 km area and move toward a sin-

gle goal. We evaluate and optimize the objective
function given in Eq. 8 by Monte Carlo simula-
tion using the steps described earlier. The result-
ing performance is shown in Fig. 10. As can be
seen in Fig. 10, the single-hop transmission pro-
tocol does better than the multihop routing pro-
tocol when the nodes are initially dropped in a 1
km × 1 km area. When the nodes are dropped in
a 2 km × 2 km area, the multihop routing proto-
col does almost the same as the single-hop trans-
mission protocol. We expect that the multihop
routing protocol outperforms the single-hop
transmission protocol for larger drop areas when
the battery capacities are large.

Many factors come into play to explain why
single-hop transmission does better than multi-
hop routing in the case of the smaller drop area.
Among these, we mention propagation, amplifi-
er efficiency, and routing overhead. We briefly
discuss each of these factors.

Propagation: Propagation loss becomes much
less significant at small distance due to our prop-
agation model, where the signal strength
degrades proportionally to the fourth power of
the propagation distance. In particular, if the
distance between a pair of nodes is increased
from 1 to 2 km, the signal attenuation will be
increased by a factor of 16. Thus, as the dis-
tances between nodes becomes larger, the effect
of propagation loss on performance grows dra-
matically.

Amplifier: For small distances between nodes
it is possible for the transmitter to reach all
nodes in the network. Transmitting to nodes
very close does not save much energy compared
to transmitting to the farthest node since the
amplifier will be operating in the region of low
efficiency. Thus, the energy consumed does not
decrease proportionally to the decrease in
desired output energy, as discussed in the exam-
ple in the first section. So by routing messages
through very close nodes, the amount of energy
saved does not increase proportionally to the
decrease in power loss from transmission.

� Figure 10. Performance comparison of different algorithms with different drop areas: a) 1 km × 1 km; b) 2 km × 2 km.
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Routing overhead: In multihop routing a cer-
tain amount of energy is needed to update rout-
ing tables, which is not needed in single-hop
transmission.

In summary, all these effects play a role in
determining the overall system performance
shown in Fig. 10. While we have made these con-
clusions for a very specific set of parameters and
models, we believe that when the nodes are close
to each other single-hop transmission is generally
more efficient than multihop routing. What
changes is the threshold (in terms of distance)
where one strategy is better than the other.

Finally, it is of interest to understand where
energy is being consumed in these systems.
Within the context of the single-hop transmis-
sion protocol, about 25 percent of the total con-
sumed energy is used for transmitting packets in
both cases of drop areas (1 km × 1 km and 2 km
× 2 km), and the other 75 percent is used for
receiving packets. Within the context of the mul-
tihop routing protocol, about 20 percent of the
total consumed energy is used for transmitting
both position information packets and routing
protocol packets when the drop area is 1 km × 1
km; this percentage changes to about 30 percent
when the drop area is 2 km × 2 km. When the
multihop routing protocol is in use, depending
on the different energy constraints, about 60–80
percent of the total consumed energy is spent on
transmitting and receiving packets that are only
used for updating routing tables. The remaining
energy is used for transmitting and receiving
position information packets.

MERITS OF INTEGRATED DESIGN
To determine the merits of the integrated design
(ID) methodology, we compare its performance
with two different traditional designs applied to
the single-hop transmission protocol. In the first
design, called AD-1, the optimization of the pro-
cessing layer is done independent of the opti-
mization at the network layer, but the network
layer uses the results of the optimization at the
processing layer. We can view this as a one-way

coupling between the processing and network
layers. In the second design, called AD-2, the
two layers are designed totally independently.

Alternative Design 1 — In alternative design 1
(AD-1), we partially decouple the optimization
by imposing a constraint on the packet error
probability for the transmission between the two
most distant nodes. Let SNRf be the SNR
between the two most distant nodes. In our sce-
narios, this is when the nodes are at the two
diagonally opposite corners of the region under
consideration. We first consider the following
optimization problem at the processing layer:

(19)

The goal in this first step is to minimize the total
energy (transmitter and receiver) needed for the
longest possible transmission distance in order to
maintain a packet error probability of 0.01. The
next step is to optimize the performance metric
given by Eq. 8 over the network parameters using
the results of the optimization at the processing
layer. Specifically, the goal is to determine

(20)

In order to compare AD-1 with the integrat-
ed design approach, recall Eq. 10 for the inte-
grated design, which we restate here for
convenience:

(21)

Comparing Eq. 21 with Eqs. 20 and 19 reveals
that
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� Figure 11. Performance comparison of different design methodologies: a) normal scale; b) log scale in battery capacity.
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J(T*, q*, E*ct, E*cr) ≤ J(
~
T, ~q, ^Ect, 

^Ecr); (22)

thus, the performance of the integrated design is
at least as good as AD-1.

Alternative Design 2 — In AD-2, we completely
decouple the optimization at the network and
processing layers. In AD-2, we proceed as fol-
lows:
• We optimize Ect and Ecr as in AD-1.
• We select the parameter values To = 60s and

qo = 0.01 at the network layer, without doing
any optimization.

Design AD-2 is consistent with many traditional
design methodologies where network layer
parameters are selected based on engineering
and application considerations, without any
explicit optimization that would account for the
processing and device layers. Therefore, the per-
formance of AD-2 is J(To, qo, Ect, Ecr), and it is
clear that

J(T*, q*, E*ct, E*cr)

≤ J(
~
T, ~q, ^Ect, 

^Ecr) ≤ J(To, qo, ^Ect, 
^Ecr).

(22)

Numerical Results — The position error for designs
AD-1, AD-2, and ID are shown in Fig. 11, with-
in the context of mobility model 2. These results
show a degradation in performance when AD-1
is used compared to ID. In particular, we see
from Fig. 11b that there is a degradation of
about 2 dB in energy when the average position
estimation error is about 60 m. The performance
of AD-2 is also shown in Fig. 11. The degrada-
tion in performance of AD-2 compared to ID is
quite significant. This is evident when we plot
the energy in dB units (with a reference of 1 J)
in Fig. 11b. In particular, about 12 dB more
energy is required to obtain the same average
position estimation error when the average posi-
tion estimation error is about 60 m.

By comparing the plots for the different
designs, it is clear that at relatively high position
estimation error (on the order of 60 m) it is crit-
ical to take into account the battery capacity
when optimizing the network protocol design.
That is, doing the optimization of the network
protocol parameters T, q and letting these
depend on the battery capacity in the global
optimization results in significant gain over fixed
network protocol parameters. For low battery
capacity, low duty cycle should be used in trans-
mitting position information packets.

On the other hand, the optimization of the
physical layer subject to a constraint on error
probability that is independent of battery capaci-
ty, is close to the optimal design. However, this
may not always be the case in other scenarios or
if a different error probability constraint is cho-
sen. On the other hand, the optimal design does
not require significantly more computation than
the one-way coupling design, AD-1. Essentially,
AD-1 and AD-2 perform some type of intuitive
guessing of design parameters independent of
battery capacity, while the ID approach opti-
mizes the parameters dependent on battery
capacity.

We caution that the above observations
about the performance differences of different
designs are for the specific scenario we consid-

ered. Clearly, the performance gain achieved
with the integrated approach compared to other
approaches will vary from scenario to scenario.
More simulation experiments, for a range of
scenarios, mobility models, and channel models,
are needed to quantify more completely the
benefits of an integrated design and optimiza-
tion strategy.

CONCLUSION

We propose an integrated design methodology
and applied it to the optimization of the situa-
tional awareness problem in ad hoc mobile wire-
less networks. We give evidence of why the
integrated design methodology outperforms
other design methodologies that do not account
for or exploit coupling among layers. This evi-
dence is supported by simulation experiments.
Since the optimization and simulation at the
processing and device layer are done offline, the
complexity and scalability of integrated design
are almost the same as those of network layer
design. Therefore, integrated design can be
applied to any network layer design as long as
such network layer design is feasible. In future
research, it would be of interest to classify other
cases where an integrated design approach leads
to large performance gains over traditional
approaches.
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In future research, it
would be of interest
to classify other
cases where an
integrated design
approach leads to
large performance
gains over traditional
approaches.


