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We model a single-hop mobile network under centralized control Wi#ervice
classes as a systemMfveighted cost parallel queues with(1=M < N) servers
arrivals varying binary connectivityand Bernoulli service success at each queue
We consider scheduling problems in this system ander various assumptions on
arrivals and connectivifyderive conditions sufficienbut not necessaryo guar-
antee the optimality of an index policy

1. INTRODUCTION: PROBLEM FORMULATION

Consider a system & mobiles communicating in discrete-time with a central net-
work controller(e.g., base station or satellitehat hasM channels for message
communicationAt each time slateach mobile transmits a short control pulses-
sage to the controlleythe control message contains information about the type and
number of data messages the mobile wants to send to the contifofler control
message is received by the contrgli&e mobile is connected to the controller for
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that time slot Hence the controller knows at each time slot the mobiles that are
connected to jtand the type and amount of information each mobile has to transmit
Based on this informatigrihe controller must decide how to dynamically allocate
its channels over time so that it can minimize the expected discounted weighted
flowtime associated with the transmission of messages

We formulate an abstract problem that captures essential features of the single-
hop network described abavand analyze several variants of that problérhe
general abstract problem can be described as follows

Problem (P)

We consider a discrete-time modelMdfjueues served byl servergM < N). At
each time at most one server can serve a quéAteeach time a queue is either
available to be served by any seryeonnecteglor it is not(not connected At each
time, before the allocation of servetie connectivity of all the queues is known for
that time We allow for arrivals at each queue at each tirued arrivals at a given
time are assumed to occur before server allocation at that Tineestatistics of the
connectivity and arrival processes are assumed arhit@ngn a server has been
allocated to a connected quetigere is a probabilityfixed for each queuehat the
service is successfurhis service success process.igli and independent among
queuesalthough the success probability can be queue dependientvish to de-
termine a server allocation poliey which minimizes

J7 = E[C™| %], 1

whereF, summarizes all information available at the beginning of the allocation
period C™ is the cost undefr, given by

T N
C7:=>B"1Y ¢x; 2
o1

t=1

B is the discount factoi is the finite horizong; is the holding cost of queu€Q; ),
by which we distinguish service clgsmndyx; is the length ofQ; at timet.

In Problem(P) we have assumed that the horiZbis finite. We first analyze
Problem(P) and its refinements as finite horizon problerasd then show that the
results of the analysis hold for the corresponding infinite horizon problems

As mentionedthe model described in Problef®) arises in the context of
single-hop mobile radio networksvhich can be modeled as a bank of message
gueues served by one or more communication chanfilksvarying connectivity
relates to a variety of mobile communication systesugh as cellular and mobile
packet radio networkgl0], satellite communication3], and meteor-burst chan-
nels[4]. The cost function then reflects the penalty for keeping packets waiting
in each queueand the queue weighting allows for a prioritization of packets for
transmissionThe same model arises in image formation systemiere service
decisions correspond to sensor allocations for specific surveillance areas for
information-gathering purposethe model also has independent interest as a spe-
cific problem in queueing theory
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In [2,13], the problem oN queues with different holding costs and one server
with full connectivity was consideree@nd the simplep rule was shown to be op-
timal, but this result does not generalize to Problgm

Our modelis similar to thatifiL0], but only a single server and no differentiated
service are considered in that artickhe authors of10] prove that the Longest
Connected Queu@.CQ) policy is optimal The authors of1] and[12] use similar
but more general models thgh0], which also do not include differentiated service
All three references determine policies that maximize throughput over an infinite
horizon Throughput maximization over an infinite horizon leads to a family of
scheduling policiesnot all of which maximize throughput over a finite horizon
Furthermorethroughput maximization is not the most appropriate performance cri-
terion for networks providing multiple classes of service

In [14], the authors determine an optimal control policy for a non-Markovian
M-serverM-queue system in the presence of a continuous-time-varying external
disturbance proceswhere control decisions occur only at fixed epochs and where
service at a queue mightinterfere with service at other qu&ygsemality is defined
in a maximal throughput sense and is proved using stability arguments

The authors of 3] study a model of satellite network connectivity whiom the
surface seems similar t10]. However by focusing on the question of server pre-
emption their mode] and hence the nature of the optimal poliyactually quite
different A class of optimal adaptive policies for the model[81 is proposed in
[11]. Again, this work does not incorporate multiple service classes

To analyze meteor-burst communicatipasliscrete-time Markov chain model
is proposed if4] for the varying communications mediuin [5], a careful analysis
of a single-server single-queue system is performétere the server alternates
between being “on” and “off In [4,5], the goal is the analysis of detailed queue
attributes under a fixed service poljcgnd questions of determining an optimal
server allocation policy in a queueing network do not arise

There are problems related to ProbléR) (e.g., see[9] and the references
therein, where each ol queues has its own server and a controller must decide how
to route arriving packets to the set of quelHse structure of these problems leads
to somewhat different solutionsuch as ifi9] where packet type is not distinguished
and the queues have finite capacity

The model of this article can be considered a special case of a restless multi-
armed bandijtin the sense of16], where state transitions and rewards take on a
particular structureThe general restless bandit problesinere the number of arms
and processors is infinite and their ratio is fixeds investigated ifil 6] and[15].

The results of 16] and[15] do not apply hergeas the number of armgueuegand
processors is finite

The system stabiligmaximal throughput approach used in much of the work
just discussed implicitly assumes that all jobs are identithis implies that the
control problem consists entirely in keeping the sefsdosusy as much as possible
Hence optimal policies are those which keep the queues load balanced

This situation changes when we allow jobs to have different service clégses
examplefor the case of a full-connectivity multiserver system with different hold-
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ing costs it is easy to construct an example where the longest connected queue
protocol is not optimalWe can similarly construct an example demonstrating that
the index policy is not optimal for a single-server varying connectivity system with
different holding costsTo the best of our knowledgao results are presently avail-
able for the multiserver scheduling of parallel queues with connectivity constraints
and multiple service classes

In this article we investigate an instance of multiserver scheduling of parallel
queues with connectivity constraints and multiple service cla3$esmain contri-
bution of the article is the determination of conditions on {otessageweighting
and job service times sufficient to guarantee the optimality of an index policy for
Problem(P). We show by example that the above mentioned conditions are not
necessary to ensure the optimality of the index policy

The article is organized as followk Section 2 Problem(P) is analyzeda
condition sufficient to guarantee the optimality of an index policy is preseied
Section 3various refinements to Proble{R), including more specific assumptions
on the arrival and connectivity processage consideredrhese refinements allow
forimproved conditions which are still sufficient to guarantee optimality of the same
index policy Section 4 contains a brief discussion of the infinite horizon problem
and Section 5 summarizes the artidiénally, Appendices A—F provide detailed
proofs of some technical statements in the main body of tettincluded there to
improve the flow of the basic arguments

2. ANALYSIS OF PROBLEM (P)
To proceed with the analysie need the following definitions and notation

N The number of queues

M  The number of servers

T The length of the finite time horizon

Q Queud,l=i=N.

7 = (m,7,,...,77), @an allocation policyWe do not restrict ourselves to
Markov policies When a distinction between policies must be made
write 77 and .

m;  The probability of service success fQr at any timet.

X; Thequeue length vector at time| refers to the length @, attimet. When
we need to denote the statetatue to a given policyfr, we write R/, i =
1,2,...,N. We further definex;™ := (x&, X2, ..., x5 xi = Lxi ™, ..., xN),
where ifx{ = 0, thenxi™ = x;.

¢ The cost associated with one job@p at each timd.

B The discount factor

hi The service success indicator random varigdBe) for Q; at timet. h, is
the service success vector for all the queues at tintieat is if Q; has a
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successful servjce af thenh! = 1, elseh{ = 0. When distinguished by
policy, we write h{ andh;.

F  Theo-field induced by all information through tinmte
C™ The cost RV associated with poliey, as defined in(2).

By anindexpolicy, we mean any policy which attaches a fixed numeric index to each
queue and then plays tieconnected and nonempty queues of highest index at each
time. The index of a queue refers to this numeric indend not the queue’s subscript

As stated in ProbleniP), we wish to find an allocation policyr which mini-
mizesJ?, defined in(1) as

J7 = E"[C™| ). 3)

To achieve thiswe need1) a result that describes the effect of the initial condition
on the performance of any index poligyand(2) an expression that specifies the
difference in performance between any two policgsy# ands, under the same
initial condition We begin with the result that describes the effect of the initial
condition on the performance of any index poligy

LemMA 1: Consider the model of Problef®) and letz denote any index policy
Letx, be any initial queue stat@hen for any i we hae!

E7[C7|Xo, o]l = E"[C7|X5 , Fo] as. (4)

Proor: First, note that ifx) = 0, we havex, = x4, and then the lemma is clearly
true We henceforth assumg > 0, so thatxy # Xy, and proceed by induction dn
First, we define the following events

(A1) Att=1 the same queues are being served by our index peligyderx,
andxy .
(A2) Att=1 M —1 of the servers are allocated to the same queues by policy

m underxo andxg ; theMth server is allocated tQ; underx, and toQ,
underxg , whereQ; is of lower index thar@;.

Becauser is an index policya service difference occurstat 1 only whenx) = 1,
m allocates toQ; underx,, and underxy, 7 allocates toQ;, a queue of lower
priority thanQ;, instead of the empt);. Hence eventgAl) and(A2) partition the
space of possible events

We now proceed with the inductiohet T = 1. Under(Al), the cost difference
is

Eﬂ—[CTr|XO’A15f0] - EW[CW ‘Xi(;’Al’%] = Ci' (5)

1 For RVsx andy, eventA, ando-field 7, we defineE[y|A, x, F]to meanE[y|A N o(x) OF].
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Under(A2), the cost difference is
E™[C™|X0,A2, ] — E™[C™|x5 ,A2, 5]
=1-m)(L-m)(c)+m@—m)-0
+ mm(c) + (A—m)m(c + ¢)
=0 (6)

because service success is assumetl and independent among queLiesom (5)
and(6), the induction basis step is established

Now, assume(4) holds for an arbitraryl and consider the case ofTa+ 1
horizon labeling time so that the theorem is true over. 2 T+ 1. Then under(Al),
we have

EW[C7|XO’A1’%] - E#[CW |Xi07’A1’JTO]

= B(E"[C7|xy, Al —E7[C7|x{, Al +¢ (7)
because service success in both cases is the. &nike induction hypothesis
E7[C™|xy, ] —E7[C7|xy ,A]=0 as (8)

so that(7) and(8) give
E7[C7|x0,AL, %] — ET[C7|X; ,ALF] =0 as. 9)

Under(A2), again since service idid. and independent among quepws find
that

E"[C™|x0,A2,%] — ET[C™ |X5 ,A2,%]
=m((1l-m)-0
+ @ -m)(L—m)(BET[CT|x, ;] - E7[CT[XT, Al +c)
+mm(BET[CT|Xy, FH]-E7[C7[x] ", A]) +¢)
+ (1—-m)m(B(ET[C™|x, /] - ET[CT|x], Al +c+¢),  (10)

wherex, is the state resulting fromy when no service completion is achieved &t
1 atQ; andQ;. By the induction hypothesis

E"[C™|Xy, /] —E™[C™|X[,F/]=0 as, (11)
E7[C™|xi, A/]-E7[C7|x) ,A]=0 as, (12)
and by applying the induction hypothesis twice in successi@nget
E™[C™|xy, Al = E"[C7|Xi, A]=E7[C"|x]",A] as
so that

E"[C7|x, F] - E7[C7|x]",A]=0 as (13)
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Combining(10)—(13), we obtain
E” [Crr |XO’A2’]:0] —E7 [Cﬂ' |Xi07’A29~7:O] =0 as (14)

Because Al and A2 are a partition of all possibilities arising from the allocation of
theM servers under the two different initial conditioasder the same index pol-
icy), (9) and(14) imply that

E"[C7|xo, Fol = ET[CT[XG, o] as. (15)
and the induction step is provedence the proof of Lemma 1 is complete B

Next we derive an expression that specifies the difference in performance be-
tween any two policies and# under the same initial conditiokarlier, we have
definedC7 to be the cost RV undet andC7 to be the cost RV undet. We now
defineR to be the difference

R:=C" - C".
We callR therewardfor following 7 over7. We then see that
M - =E7[C7|F] - ET[C"| K] =E[R|F].
To showsr optimal it suffices to prove that
E[R|F]=0 (16)

for any other allocation policyr.

To prove(16), consider two given policies and# and assume that & 1, they
both run on the same system and that i@thndQ; are connected and nonempty at
this time Assume7 choose®); andnot Q, and7 choose®); andnot Q att =1, and
further assume that all other server allocations are the same for the two policies at
1. Recall thath! is the service success indicator variable at tinier Q;. We then
have

Ad:= E[R| %]
= E[E[RI|AL, R, 7] F]
1 1 . N _ )
= > S E[RIAL =1, h{ =k FIP[A} =1, h] = k| K]
k=01=0
=(1-m)(1-m)E[R|A{=0,h]=0, 7]
+mmE[RIA} =1 Al =1 7]
+(1—-m)mE[R|R; =0, h] =1, %]

+m(1-m)E[RIAi =1 h{=0, %], (17)
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where the last equality follows because service successdsand independent
among queues and independent of all arrivals and connectiwllesuse(17) to
prove the main result of this sectiorhich is given by the following theorem

THEOREM 1: Consider the system described in Probl@®. Define mc; to be the
index of Q,i =1,2,...,N. If there is a labeling of the queues such that

1 —

m; C; 1B =mg OiLj: 1=i,j=N,i <], (18)
1-(1-m)p

then at any time titis optimal to seve the M nonempty connected queues of highest

index or sewe all queues if less than M are nonempty and connected

Discussion: The essence of the result of Theorem 1 is the followihgve were
guaranteed that the system described in Pro§@roperated away from the bound-
ary all the time(i.e., if the queues were continuously nonemptyen it would be
optimal to always allocate thd servers to the queues with the highest indices
Near the boundargerver utilizationbecause of empty queydsecomes a critical
issue in determining an optimal server allocation strat&fg index policywhich
allocates servers without taking into account the number of customers in the gqueues
may result in server underutilizatiptius it may not be optimal near the boundary
Consequentlyif we require optimality of the index policy for Proble(®), we must
identify conditions to ensure that the advantage gained by always allocating the
servers to the highest-index queues overcompensates potential losses resulting from
server underutilization near the bounda®ych a condition is expressed Lig8),
which requires that the indices associated with the queues be sufficiently separated
from each otherSuch a separation results in a priority ordering of the queues suf-
ficient to guarantee the optimality of the index rule

Itis interesting to compare this result with the case in which all queues have the
same weightingThen (see[10,12]), the optimal policy is to serve the connected
queues of longest length CQ). The intuition here is thagt a given timeserving
any queue gives the same expected return as serving anysiillee optimal server
allocation is the one which optimizes the expected number of services over the
horizon The LCQ policy accomplishes this by minimizing the number of empty
queuestrying to avoid the situation where connected empty queues and discon-
nected nonempty queues reduce service possiliitythe other handrheorem 1
demonstrates the complementary case in which queues have sufficient spacing in
weighting so by serving the costlier queues firahy server underutilizatiofinef-
ficiency) is sufficiently compensate@8etween these two extremélere is a region
of queue cost such that these two competing goals copdiiet the optimal policy
becomes quite difficult to specify

Proor (Theorem }: Assume that the queues have been labeled such1Bpis
satisfied ConsideM additional queues inthe systenumberedN+1,N+2,...,N+
M, each withcy,; = my.; = 0. Condition (18) is still satisfied with these extra
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queuesAssumeQy.i, i =1,2,...,M are always connected and nonempiythis
new systemthe servers are never idle

We prove the theorem by induction @nForT=1,J7 = E[S, ¢ xi| % ]. Let
7 and7 be two server allocation strategies with the following characteristiend
7 allocateM — 1 of the servers to the same quetteg Mth server is allocated 1@,
by policy 7 and toQ; by policy 7, wherei < j. Without any loss of generalityve
assume that<< N. Then

E[R|F]=mc—mc=0 (19)

because 0f18) and the fact thatl — 8)/[1 — (1 — m;)B] = 1. Repetition of the
argument leading t619) shows that the assertion of the theorem is truelferl.

To proceed with the inductigrwve assume that the assertion of the theorem is
true when the horizon i§and prove that the index policy described in the statement
of the theorem is optimal when the horizorTis- 1. Consider policiesr and# with
the following features

(F1) Att=1, 7 and# allocateM — 1 of the servers to the same queutbe
Mth server is allocated tQ; by policy 7 and toQ; by policy 7, where
i < j. Without any loss of generalityve assume that<< N.

(F2) Fromtimet = 2 on, policies7 and follow the optimal allocation policy
for the T-horizon problem

We define
" := {the set of queues with indices larger than thaQgf (20)
Q™ := {The set of queues with indices equal to or less than the} of (21)
t, hi=1Lhi=02=<t=T
Ty = . . A o (22)
T+1, ifthereisnot,2=t=T, suchthah; =1 h{=0,
u = {t: t = 2, # and# allocate service tq), att differently} (23)
Qx, := Queue served by at timest € u with the following characteristic (24)
the server allocated to it &= u by 7 is allocated tdQ; by 7
h, = {hf:t € u} wherek,>i Ot € u. (25)
We denote by, = 0 the eventh = 0 for all t € u}.
Furthermorewe define
min{t = 2: there is a service success@tunders} 5
. 6
Ts T+ 1 ifthereis no service success@tunderr, (26)
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min{t = 2: there is a service success@tunders|Q
is always served undet}

T+ 1 ifthereis no service success@tunders,
given thatQ; is always served undet.

Ty =

(27)

The setQ™ andQ™~ form a partition of the set of queues

The stopping time is the time “r catches up tar in Q;.” Along sample paths
wherer; =T, 7, is well defined for the following reasong) policiess and# follow
the index rule(described in the statement of the theoyexftert = 1, therefore the
two policies have the same service succes3 iaftert = 1 and up until timer; (ii)
both policies serv€); in exactly the same way aftes.

By definition, u is the set of stopping times after 1 and up to and including
7, Where the two policieg and# allocate toQ; differently. Fort € u, 7 servesQ,
andr serveQy, ki > i, because botl and7 follow the index rule aftet = 2. By
definition, h is the set of random variables denoting the service success firider
the server allocated tQ; undersr.

It is immediate from(22), (26), and(27) that

=17, as, (28)
Ts=T, as (29)

Using the characteristics of policiesand 7, the above definitionsand(28) and

(29), we proceed to complete the induction step by determining a lower bound on
E[R| %] att = 1. To accomplish thiswe examine separately each of the four terms
appearing in the right-hand side @f7). We prove that

E[RIAi =h!=0,%]=0 as, (30)
L 1-BE[B™|h]=1 F 1-p87
EIRI = il =1.7] = o Tl 2B s
_ p-1 TR —
E[R|R =1 hi= 0.7-“0]>c P E[lﬁ_;hl L %ol as, (32)
. . -B7
E[RIR; =0,h/=1R]=—¢ 15 as. (33)
Combining(17) and(30)—(33), we obtain
1-p (B[R =1 ] 1-p7
AJ:E[R|-7:O]ZCimi|: 1—,31 ° }_ j M, 1-8 as. (34)

Because 0f28) and(29),
E[B™|hi =1 R]=E[B=|hi=1 FK]=E[B=[hi=1F%]=E[B=]. (35)

The last inequality in35) is true because service succesQatinders is indepen-
dent of the evenl; = 1 as well as the initial information staig, because service
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success isii.d. and independent among queLid& can comput&[ 372] by noting
that

T
E[B2]= 2 P(r,=9)B°+ P(r,=T+1)B""*
s=2

> (1—m)s?m; B+ <1— > - mi)s_zmi>IBT+l

B mB+(1-m)"(1-pB)B"
i ( 1- (- m)p ) %)
Combining(34)—(36), we obtain
_ _ N\NTPT _ QT
AJECimi[M]_ ijl '8
1-(1-m)p 1-8
_ Rl A R oy 2
_Cim{l—(l—mi)ﬂ} cgm 1-3 (37)
and because dfl8),
AJ=0. (38)

Consequentlypolicy 77 is superior tar for the(T + 1)-horizon problemRepetition
of the argument leading {88) shows thatunder(18), the index policy described in
the statement of the theorem is optimal for {fie+ 1)-horizon problem

To complete the proof of the induction stepe must prove(30)—(33). The
proofs of these equations are located in Appendices.AMEh (30)—(33), the in-
duction step is complete and the theorem is proved u

Remark: The interchange argument used to prove the optimality ottheule in
[2] cannot be applied to the case of either multiserver or that of varying connectivity
because it is not possible to guarantee that such an interchange time occurs

We present two examples to illustrate the role of Conditit®). The first ex-
ample shows that if Conditiof18) is not satisfiedthe index policy is nqtin general
optimal The second example shows that Conditi®8) is not necessary to guaran-
tee the optimality of the index policy

Example l:LetT=2,N=2,M=1m;=m,=1 x}=x8=1,¢, > c,=0.9¢c,, and
B = 0.5. Assume there are no arrivalnd connectivity is.i.d. with g, =1 andg, =
0.5. Then

cimp = C; > C,m, = C, (39)
and

1 —_
7k 0.5¢, < 0.9¢; = C,. (40)
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From(39) and(40), we conclude tha®, has the higher indexout Condition(18) of
Theorem 1 is not satisfied

Denote by the index policy(i.e., the policy that gives priority t®, when both
queues are connected and nonemnd byar, the policy that gives priority t@,
when both queues are connected and noneriipign 7 is nonoptimalbecause in
the case where both queues are initially connected

Eﬁ [Cﬁ- |X0] = C2 + (1 - qz)ﬁCZ = 125C2 = 1.12&:1,
E7[C7[xo] = ¢, + (1—q,)Bc, = cy.
Example 2: Consider the same situation as in Example 1 with the one difference
¢, = 0.7c;. Then (39) is valid and Condition18) of Theorem 1 is not satisfied
because
1-8
1-(1-m)B

Neverthelesghe index policy# is optimal because

Ci My = 0501 < O7C1 =C,=CoMmy. (41)

Eﬁ[cﬁ |X0] = Cy + (1 - qz)ﬁCZ = 1.2502 = 0.87&:1,
E7[C7[Xo] = ¢+ (1— q1)BC = Cy.

The result of Theorem 1 can be graphically described for a system consisting of
two queuesN = 2) and one serveiM = 1). The graphical description is based on the
following summary of the result of Theorem 1 for this cad#en both queues are
connected at a given time

1 —

if c,my ﬁ =c,my serveQ, 42)
L l .

—

0=-=1

1 —

if c,m, ﬁ =cm serveQ, 43)
L 2 .

-

0=-=1

If we considerc, m, fixed and imagine varying; m;, then because of42) and(43),
the space of possible values@imn, is divided into three regionshown in Fig 1):
(1) ServeQ,; when both queues are connecté?) serveQ, when both queues are
connected(3) optimal policy is unspecifiedThe third region exists becaué42)
and(43) do not cover all possibilitieS he intuition developed from this simple case
extends naturally to the general case

Note that a8 — 0, the region in Figure 1 where the optimal policy is not
specified becomes emptyhis is the situation where future cost has no effect on
current decisionsand so the best policy minimizes cost at the current time step only
For this casgthe optimal policy is a greedy algorith(ne., thecmrule).
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Serve Q1 L BtmB
CoMma [ 1— ,8 L :|
S~—_— ———
Region of 2!
CaMmo
Policy Uncertainty
_1-B
M2 T8 1 myf
Serve Q2 P
c1my

Ficure 1. Optimal policy when both queues connected

3. REFINEMENTS OF PROBLEM (P)

Condition(18), which is sufficient to ensure the optimality of the index policy for
Problem(P), was derived under no assumptions on the arrival and connectivity
processesThe result of Theorem 1 can be strengthened under explicit assumptions
on the aforementioned processksthis section we examine several instances of
Problem(P) that arise under various assumptions on the arrival and connectivity
processedNe show that Conditioil8) can be improved when more information is
given about the arrival an@r connectivity processeAs a reminderthe assump-

tion of i.i.d. service holds throughout this section of the article

3.1. Bernoulli Connectivity, Arbitrary Arrivals

We assumeii.d. queue connectivityndependent of the service success prodass
leave arrivals arbitraryVe do not require independence of the connectivity between
queuesonly i.i.d. for any given queueand independence of service success for all
gueuesWe prove the following variant of Theorem 1

THEOREM 2: Consider the system described in Problé®). Further assume.ii.d.
queue conneatity, with probability of connection;cat Q at each timelf there is
a labeling of the queues such that

1-p . . o
| ————— [ =mc 1= = <
m'c'[l—(l—qimi)ﬁ} m; g Oi,j: 1=i,j=N,i <j, (44)

then at any time t it is optimal to se& the M connected queues of highest inadex
sewe all queues if less than M are connected
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Proor: We assumé44) is satisfied and proceed by inductidile show first that for
T = 1, the result of Theorem 2 is true und@4) and then that the induction step
holds First, note that

]-_—B<1
1-Q-gm)B

Soif (44) is satisfiedthen necessarilg; ¢; = m;¢;. Then for T =1, the proof of the
result of the theorem is the same as in Theorem 1

We proceed with the induction stepirst, note that the arguments leading to
(34) do not depend on the specific form(@); hencethe same arguments are valid
here as wellSq, (34) is true Define

73 = min{t = 2: there is a service success gtu@der#|Q;

is always served when connected unéér (45)

Just as forry, we definers = T + 1 whenevet; > T. As earlier we know thatr; =
Ts a.S., Wherers is defined by(26). We also have thats = 75 a.s., which follows
directly from their definitionsFurthermoreby its definition the independence of
service succesand the ii.d. nature of connectivity &p;, 73 is independent of other
system processe@/e thus obtain

E[B|hy =1 FK]=E[B=hi=1 FK]=E[B=|hi=1 FK]=E[B™]. (46)
Next, we compute the right-hand side @¥6):

.
E[B]= > P(r3=9)B5+P(r3=T+1)p""*

s=2
T T

= 2 (1—qgm)s?%qmps+ (1_ Z (1—qgm)® ?g; mi>,3T+1
s=2 s=2

,1-((A—gm)p)™

=amp 1-(1—qm)p +B%((1—agm)p)t
gmpB+@1-—qgm)'(1-8)B"
= . 47
B( 1-1-qgm)B > 47
Because 0f46) and(47),
Ll V[ O el Vi RN
1-p 1-p
o, ampB+Q-gm)TA-p)B"\
- <1 1-1-qgm)B >(1 2
(1 m)\TRT
_1-(A-am)'B (48)

1-1-qm)B
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Combining(34) and(48),

AJ= 1-(1—qm)'B" B 1-87

—am 1-1-qgm)B am 1-8
S ey A DRy A ~o
=cm, = 1—qm)3 c m -3 sinceq, m, = 0.

Inequality (44) then impliesAJ = 0, and the induction step is completed by argu-
ments identical to those followin@8) in the proof of Theorem.1 u

Under the additional assumption afd. connectivityTheorem 2 provides anim-
proved sufficiency condition over TheoremHor fixedg; m;, just as earlier3 — 0
means a reversion of tleenrule. The difference between the problem considered in
this section and Proble(®) is thatin the “sufficiency factor1— 8)/[1— (1—m,) 8],
describing the separation of indicegi8), m; is replaced by; m;. Thereforethe rate
at whichQ; can be served is reduced by both connectivity and service probability

1-8 _ 1-8
1-Q-gm)B 1-1-m)p’

and this leads to a condition that is weakieg., bette) than(18) and is sufficient to
guarantee the optimality of the index policy

3.2. Arbitrary Connectivity, Bernoulli Arrivals

In contrast to Section.3, here we assume Bernoulli arrivals and arbitrary connec-
tivity. The arrivals do not need to be independent among quétesrove the
following variant of Theorem 1

THEOREM 3: Consider the system described in Probl@®. Further assume Ber
noulli arrivals, with probability of single arrval a; at Q, at each timgthe connee
tivity is assumed arbitrary If there is a labeling of the queues such that

1-p
1-1-m@Q-4a))B

m; G; EmJC] DI’J:]-SI’JSN’I<J5 (49)

then at any time, it is optimal to seve the M connected queues of highest inaex
sewe all queues if less than M are connected

Proor: We begin with(34) because the arguments leading to it are as in the proof of
Theorem 1Assume(49) is satisfied and note that

1-8 1
1-Q-m@-a)B
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Then necessarilydi, j, m;¢c; = m;¢;. Then for T = 1, the assertion of the theorem
can be established in the same way as in Theorem 1
To prove the induction stepve begin with(34) and define the stopping times

73 = Min{t = 2: there is a service succeasdno arrival atQ, under#}, (50)

7, = min{t = 2: there is a service succeasdno arrival atQ,

under7|Q is always served under}. (51)

Just as earliewe definer; = T + 1 wheneverr; > T, and similarly forr,. It is
immediate that, = 73 a.s. [ 7, is defined by(22)], as a minimum requirement for
7, = tis thatQ; be empty forF and service is possible atf an arrival just occurred
the queue cannot be emp&yso from the definitionsitisimmediate that; = 7, as.
Moreover by its definition the independence of service successl the ii.d. nature
of arrivals atQ;, 74 is independent of other system processtence we obtain

E[B7|hi =1 FK]=E[B=|hi=1 K] =E[p=hi =1 F]=E[B=]. (52)
Lettinga, =1 — a;, the probability of no arrivalwe obtain for the right-hand side of
(52),

.
E[B#]= X P(rs=9)B°+P(r,=T+1)B"""
s=2
T T
=>(1-am)2amps+ (1_ > (1-am)s 2 mi>,3T+1
=2 s=2

1-(1-am)p)™t

=am p? +B*((L—am)p)t

1-(1-am)p
_(amp+(Q-am)T(1-p)BT
_B< 1-(1-amp ) 53)
Because of52) and(53),
1- B 'E[B|hi =1 F] _ 1-B'E[B™]
1-8 - 1-8
(, amB+(I-am)TA-B)B"\ ,
_<1 1-(1—-am)B >(1 2
_ _ 5. N\NTPT
_1-QAQ-am)'B (54)

1-(1-am)B ’
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Combining(34) and(54), we find that

1_ 1_ E_li mi 3T 1_ T
AJ=c¢my ( - ) B —cjmj—'B
1-1-am)B 1-p
_ 1-p87 1-87 =0
=cm|——|—-cm incea; m; = 0.
G m 1-(l—am)p G m 1-5 sincea; m;
Condition(49) then impliesAJ = 0, and the rest of the induction step follows as in
Theorem 1 [ |

3.3. Bernoulli Connectivity and Arrivals

In this sectionwe assume both Bernoulli queues connectivity and Bernoulli arriv-
als Then we get the following condition sufficient to guarantee the optimality of an
index policy

THEOREM 4: Consider the system described in the statement of ProdRenfrur-
ther assume Bernoulli queue conneitif, with probability of connection;qt Q at
each timeand Bernoulli arrvals, with probability of one arrval a;. If there is a
labeling of the queues such that

m. C 1_B
1-(1-gm@-a)B

then at any time tit is optimal to seve the M connected queues of highest inaex
sewe all queues if less than M are connected

=mg  Oij:1=i,j=N,i<j, (55)

Proor: We assumé5b) is satisfied and note that

1-8 _
1-1-gm@-a)B

Then ¢m; = ¢gm, Oi, ], i <j, and forT = 1, the proof of Theorem 4 is the same as
that of Theorem 1

To establish the induction stewe note that the arguments leading 84) are
the same as in Theorem 1 and define the stopping time

75 = min{t = 2: there is a service succeasdno arrival atQ; under
7| Q; is always served when connected undgr

and letrs = T + 1 whenevetrs > T. From the definitiongit follows thatr, = 75 a.s.
Note that for ii.d. arrivals and connectivifyhe system is a Markov chagiand sa%,
information is summarized iry; from its definition 75 is independent of the initial
state and service succesg at1. Consequently

E[B™|hi = Lxo] =E[B7|hi=1Lxo] =E[B™[hi =1x,]=E[B™]. (56)
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Lettinga; =1 — a;, the probability of no arrivalwe obtain for the right-hand side of
(56),

.
E[B™] = Z P(rs=s)B°+ P(rs=T +1)B""*

s=2

T T
=>@—-aqgm)s2aqgmps+ <1 - > (1-aqgm)s g mi)BT+l

s=2 =2

1-(1-aqgm)p)*
1-(1-aqm)pB

= & g;m B2 +B%((1—aqgm)p)Tt

3 0 m —aam)T(1— T
_ <a.q.m.B+(l aam) (1-5)B > 57)
1-(1-aqgm)p
Because of56) and(57) and the Markovian property of the system
1-BE[B7[Ri=1LFK] _1- B *E[B™[Ai=1X] 58)
1-p 1-p8
_1-pE[B™]
= -3

1— aqmpB+@d-aqgm)(1-p8)8T
1-(1-aqm)s

X(1-p)*t
1-(1-aqgm)'BT

- 1-1-aqm)B (59)

Combining(34) and(58), we find

AJ= 1-(1-aqm)'BT _ 1-p87
—am 1-(1-aqm)B am 1-5
> 1_BT — —1_BT i 3 =0
>cm - A-aamp Gm, =g sincea; g m; = 0.

Condition(55) then impliesAJ = 0, and the rest of the induction step is the same as
in Theorem 1 u

We can improve the result of Theorem 4 by performing a more careful analysis
of afirst hitting time bound fot,. The resulting sufficient condition is more relaxed
than(55), but the expression describing the condition is more complicated and less
intuitive.



MULTICHANNEL ALLOCATION IN MOBILE NETWORKS 277

THEOREM 5: Consider the system described in Probl@Py. Further assume.i.d.
gueue conneatity, with probability of connection;cat Q at each timegand ii.d.
Bernoulli arrivals, with probability of one armal a;. Lettingd, = 1 — d;, define

u=ald—qgm),
s=gam+1-a)l—qgm),
d=agm(-—a),

and for any finite dimension,ldefine the LX L matrix A as

s 4 0 0O : 0 O

d s y 0 : 0 O

0O & s uy * 0 O
A =

0 s u O

0O 0 ¢ 0 d s vy

0O 0 : 0 0 d d

If there is a labeling of the queues such that
mc[l-Bd@ 0)(I—pA)™* 1 0']=mg OiLj:1=i,j=N,i <],
(60)

then at any time tit is optimal to seve the M connected queues of highest index
sene all queues if less than M are connected
Further, the“sufficiency factar

SHA) :=[1-Bd(1 0 -A)*1 0]
is monotonic in the size of;Athat is
dim(Al) > dim(A?) = SFA!) = SF(A?). (61)

Proor: The proof of Theorem 5 is given in Appendix E

3.4. Non-i.i.d. Connectivity and Arrivals

In this sectionwe drop the i.d. assumption on arrivals and connectivitgnder
certain statistical assumptions on the arrival and connectivity progeskieh are
stated precisely in the following theoreme derive a condition sufficient to guar-
antee the optimality of the index policy described in SectioW/g show that this
condition improveg18). Our results are summarized in the following theorem
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THEOREM 6: Consider the system of Probldi). Let % be theo-field summariz
ing controller knowledge at the end of time t
Suppose for each;@hat there exisp;,n; € R such that

0<m =-Ing, (62)
1=p <em (63)

and?
E[en2;x{ > 0| £] = p, (64)

if Q; is sewed att Then if there is a labeling of the queues such that

mici[l—e‘"i A ]Zm,-cj OiLj:1=i,j =N, i <], (65)

1-Bpi

the index policy is optimal
Suppose that in addition t®2)—(64), at most one arual can occur at each
gueue at each tim&hen if there is a labeling of the queues such that

e
1-pe™ 1-pe"p,
Oij: 1=i,j=Ni <], (66)

= m; G

mci(1— ) i e " [
h=0

the index policy is optimal
Finally, over the parameter range ¢62) and(63), each term of the summation
in the lefthand side of(66) is positve.

Proor: The proof is given in Appendix.F ]
The following observations are in order

1. Conditions(62)—(64) are similar to but not the same as.Eg1), Eq. (2.2),
and Condition(D1), respectivelyin [7]. Condition(62) as well as Condition
(D1)in[7] provide conditions on the drift of a procelss, t = 0}; they differ
in their requirements on the direction of the drift bound

2. In generalit is difficult to explicitly specify then; andp; which satisfy(64)
and give the optimal condition if65) and(66), although they can be deter-
mined numerically

3. As an examplgfrom (65) we can achieve the condition ¢I8) wheny; =
—InBandp; =1/8 — (1/m;)[1— (1L— m;)B]. This gives g; =1 only when
m; = B(1— B)/(1— B — B?). To ensuran; < 1, this is only valid wherB =
1. Itis also possible to show that we can do better ttE8) under certain
parameter conditions

2For RV x, eventA, ando-field 7, we defineE [x; Al F ] to meanE [xl 4| F ], wherel is the indicator
function
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4. Each term of the summation {i66) is positive This means that any finite
summation also gives a sufficient conditj@md adding terms only improves
the condition

5. Inequality(64) may be a difficult condition to checkisteadwe can require
that

E[en42)|xi > 0, K] = p;, (67)

which is easier to check and impli€¢84). However there may be cases
where(64) is satisfied and67) is not

We summarize the results in TableArom the tableand from previous deri-
vations we observe that always

(E2)
El =
(ED (EJ
and under certain conditioi&1) = (E6). The “sufficiency factors” that appear in
the table indicate how much the indices of different queues must be separated from
one another to guarantee that the index policy is optifitad above inequalities are
intuitively pleasing because they show that as the statistical description of the sys-

} = (E4) = (EYH),

TaBLE 1. Summary of Results

Assumptions Sufficiency Factor

Arbitrary arrivals 1-8 (E1)
arbitrary connectivity 1-B8+mpB

Arbitrary arrivals 1-8 (E2)
i.i.d. connectivity 1-B+gmpB

i.i.d. arrivals 1-5 (E3)
arbitrary connectivity 1-B8+m(l—a)B

iid arrivals B 6 (E4)
i.i.d. connectivity 1-B+agm((1l-a)B

i.i.d. arrivals [1-pBd@ 0 —-BA)1L 0] (E5)
i.i.d. connectivity

Non-ii.d. arrivals 1—en P
non-ii.d. connectivity 1- Bp

(E6)

1-p) S em™ L.
B h=0 1-B8e ™M 1—pBe Mip,
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tem becomes more detaildte sufficient conditions for the optimality of the index
policy improve that is the additional statistical information about the system is
used to reduce the separation among the queues’indices while the optimality of the
index policy is maintained

Comment: Note that the number of servelkd never enters explicitly in the argu-
ments of the proofs in Sections 2 andT®erefore we believe that even when the
number of servers is a random function of tirttee conditions sufficient to guaran-
tee the optimality of themrule for the channel allocation problem described in this
article are the same as those shown in Table 1

4. INFINITE HORIZON

The index policy described in Section 2 is optimal for all finite-horizon problems
under the conditions of Theorems 1-B®cause the conditions of these theorems do
not depend on the horizah) one can prove by a simple contradiction argument that
the same index policy is optimal for the corresponding infinite horizon problems
under the same conditions

5. CONCLUSION

We have shown that there are conditions on system parameters which guarantee the
optimality of an index policy for théN-queueM-server system with arrivals and
varying connectivityThese conditions depend on the statistical assumptions made
for the problemas well as the value of key system parametsush as arrival rate
connection probabilityand service probabilityThe interest in this problem arises

from its applicability to several important systenrscluding mobile communica-

tion networks under centralized control and image formation systems

Acknowledgments

The authors are grateful to an anonymous reviewer whose excellent suggestions have improved this
article

References

1. Bambos N. & Michailidis, G. (1995. On the stationary dynamics of parallel queues with random
server connectivitieProceedings of the 34th Conference on Decision & Conppl 3638—-3643

2. Buyukkog C., Varaiya P, & Walrand J (1985. Thecprule revisited Advances in Applied Prob-
ability 17: 237-238

3. Car;, M. & Hajek, B. (1993. Scheduling with asynchronous service opportunities with applications
to multiple satellite system$EEE Transactions on Automatic ContrAC-38(12): 1820-1833

4. ChandramouliY., Neuts M., & RamaswamiV. (1989. A queueing model for meteor burst packet
communication system#EEE Transactions on CommunicatioB9©M-37(10): 1024-1030

5. FedergruepA. & Green L. (1986. Queueing systems with service interruptio@perations Re-
search34(5): 752-768

6. Fristedf B. & Gray, L. (1997). A modern approach to probability theorBoston Birkhauser

7. Hajek B. (1982. Hitting-time and occupation-time bounds implied by drift analysis with applica-
tions Advances in Applied Probability4: 502-525



MULTICHANNEL ALLOCATION IN MOBILE NETWORKS 281

8. Kumar, PR. & Varaiya, P. (1986. Stochastic systems: estimation, identification, and adaptive con-
trol. Englewood Cliffs NJ: Prentice-Hall
9. SparaggisP, Towsley D., & CassandrasC. (1993. Extremal properties of the shortgkingest
non-full queue policies in finite-capacity systems with state-dependent service Jatesal of
Applied Probability30: 233—-236
10. TassiulasL. & EphremidesA. (1993. Dynamic server allocation to parallel queues with randomly
varying connectivitylEEE Transactions on Information Theoff-39(2): 466—478
11 TassiulasL. & PapavassilioyS. (1995. Optimal anticipative scheduling with asynchronous trans-
mission opportunitiedEEE Transactions on Automatic ContralC-40(12): 2052-2062
12. TassiulasL. (1997). Scheduling and performance limits of networks with constantly changing to-
pology IEEE Transactions on Information Theolf+43(3): 1067-1073
13 Walrand J (1988. Queueing network€nglewood Cliffs NJ: Prentice-Hall
14. WassermanK. & Olsen T.L. On mutually interfering parallel servers subject to external distur-
bancesOperations Researcln press
15. WeberR. & Weiss G. (1990. On an index policy for restless bandideurnal of Applied Probability
27: 637-648
16. Whittle, P. (1988. Restless banditsactivity allocation in a changing worldlournal of Applied
Probability 25A: 287-298

APPENDIX A

~ ~

ProOF OF (30): Whenhi = h! = 0, the cost due t& and# is the same along any sample path
realization Hence

E[RIAL=h!=0,%]=0 as |

APPENDIX B

ProOF OF (31): Inthis situatiopwe havex} = 8} — 1, andg{ = %{ — 1. By definition, over 2=

t = 7, policy 7 servesQy instead ofQ; att € u, andk; > i (note thatQ,, may be one of the
qgueues numbereN + 1, N + 2,...,N + M). Direct application of Lemma 1 implies the
following inequality valid for anyX; andt, although we will be interested inc u:

E7[C7|h} = Al = L%, 71, H] =E7[CT|Ri = h{ =L x} 7, R] as. (68)
E7[C7|Al =hi =1 hl=0m, R]=E7[C7|hi=h{=Lht=1m, %] as (69)

Hence using(69), we obtain(t € u,

5ol
%[Cff|ﬁil =1 A= 0,7, H]P(AE = 0[R} = hi = 1,7y, %)
E7[C7|hL=h!=1 Rk =17, FH]P(Ak = 1|Ai = hi = 1,7, Fo) (70)
ﬁtkt = 0,71, F]P(Rf = 0 Ry = Al = L7, %)
E7[C7|Ri = h! =1 Ak = 0,7y, FH]P(Ak = 1|R} = hi = 1,71, ) (71)
= 0,7y, Fol; (72)

Bl
—
(@]
€N
=y
fleed
Il
o
[heydi
Il
Jﬂ
o
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that is a failed service irfQ, at anyt can only be detrimental to policy, no matter what the
queue lengths are or what other service occurs at this Weean apply the argument leading
to (72) at eacht € u to obtain

i=hl=1r,RK]=E7[C7|Ri=h]=1 A, =0, %] as (73)

=y

E7[C7|

Next, we claim that(73) leads for all 71, to

E[R|A} = hi =17, K] =E[RIAL =] =1 R, = 0,7, %] as, (74)
e 1-gnt 1-p7
E[RIhi=hi=1h,=0,7, K]=¢ -5 -G 1-p as. (75)

From(75), we conclude that

E[R|A} = h] =1, 7] = E[E[R|h = h] =17, KA = hl =1 7]

1-g7t  1-8T|. .
zE[ci -5 - -5 h'l—h{—J,]-'o]
_n-1 R — R — —_ QT
—¢ 1-B'E[B|hi=h1 =1 F] g 1-p . (76)
1-p8 1-p

Furthermorgbecause the index policy described in the statement of Theorem 1 is used after
timet = 1 andQ; is of lower priority thanQ;, 7, is independent of the eveht = 1. This fact
and(76) give

1-BE[B|hi=1 %] 1-87

E[RIA{=h{=1F]=¢ .y 6T g
which establishe&31).
It remains to prové74) and(75) to complete the proof of31). n

ProoF oF (74): Note that fort € u, #’s service success &, (k; > i), defined by(24), has
no effect on the cost due t. This fact together with(73), gives

E[RIAL = h{ =17y, K]
= E7[C7|R}l = hi =17, K] — E7[C7|A} = hi = L7y, R)]

=E7[C7|A=h]=1 A, = 0,7, K] — E7[CT|Ri = h{ =17, F]

hi=1
=E7[C7|Ri=h{=1R, =0, FK] - E7[C7|Ri = hi{=1 A, = 0,7\, K]

using(73)

which is precisely the desired inequality u
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Proor orF (75): Define
AJ* := E[difference in total cost betweehand# in Q*|hl = hi =1, A, = 0,7, K],
1

AJ~ := E[difference in total cost betweehand# in Q~ |l = h)

and note that
AJ*+AJ” =E[RIRi=hl=1 A, = 0,7, K] (77)

We proceed to computel * and lower bound J . We begin withA J*. Aftert=1 and up until
1, 7, and# have the same service succes®ihalongh, = 0, even thouglx’ = %' — 1 in this
time spanAt 74, 7 successfully serve®; and7 does not complete service at so@g k> i.
Along the set of events} = hi = 1 andh, = 0, the queue lengths i®* are the same for both
policies afterry; that i

%! = R Ot=ry, O <. (78)
Consequently
AT = E‘,l Bt l=g ﬂ (79)
t=1 1-8
Next we lower boundAJ . We write
A = AJ] + A, (80)
where
A = E[differqnce in cost betweef and7 in Q due to service at
t=1fhi=hi=1h, = 0,7, %],
AJ;,. = E[difference in cost betweef and# in Q ~ due to service at times
t=2,3,...,T|hi=hi=1 h,=0,7,, R].
Then by the specification of the policieg and, it follows that
T _ NnT
A = lecjﬂt—l =—q 11 *BB . (81)
We claim that
AJ;. = 0. (82)

Equation(82) follows from the following fact

Fact 1: Ateacht > 1, with each queue i@~ served by, we can pair off a unique queue in
Q™ of the same or higher index served #y

The above fact is true for the following reasd®ecauseQ* and Q™ partition the set of
queuesthe two policies always serv@~ with the samenumberof serversexcept fort = 1
andt € u. At t=1, this is not true by the definition af and, and for anyt € u, Q,, defined
by (24), might be inQ . However because we restrict to sample paths wi@eservice at €

u fails, the number of potentially successful serverQinis the same for both policies at each
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time aftert = 1. Note that7 starts with one more job i), att = 2, becauseﬁ{ =1 andﬁ{ =
0; thereforeit is not guaranteed that these servers are always serving the same qu@ues in
However because the index policy is being followed by both policies and with the same
number of potentially successful servergdn, service differences can occur only at queues
empty for one policy and not the other

We claim that any queue empty @~ for 7 is necessarily also empty far. This is
because dt= 2,7 starts out with equal or shorter length thafor each queue i@ . Hence
fromt =2 on if 77 serves a queuér does alspunless it is already emptif it is empty then
7 serves a queue of lower index with this senkerepings’s queues always shorter than or
equal to those off in Q™.

We have thus established two points

(P1) Service difference can occur only at queue®inempty for one policy and not the
other

(P2 AqueueinQ~ empty for7 is also empty fori.

Togetheythese points imply that all service differencesidn occur wheni serves a queue
empty for#. Policy 7- must then be serving a queue thais not servingit might be one of
the added queues of zero cp$tut because both policies follow the same index policis
gueuemustbe of lower index than that served By This proves Fact.1

From Fact 1it clearly follows that

AJ; =0

becauser has a higher expected service benefiQn at each timg > 1. Hence (82) is
proved
Because 0f80)—(82), we obtain

1_ T
AJ” = —¢ P

i m (83)

The inequality in(75) follows from (79) and(83). The proof of(31) is now complete B

APPENDIX C

PrOOF OF (32): In this situationwe havex = % — 1 and&! = %!. Similar to(74) and(75),
we claim that

E[R|A =1 hl=0,m, /] =E[R|A{=1,h/=0,h,=0,m, %] as, (84)

1 _ Bflfl
1-8
The arguments leading {@4) can be repeated precisely to gil3).

To provide(85), we write

E[RIAL =1 A =0,R, =0, R]=¢ as. (85)

E[RIA} =1, hi =0, h, = 0,7y, /] = AJ* + AT, (86)
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where

AJ* := E[difference in total cost betweehand# in Q*|hi =1, h! = 0, A, = 0,7y, K],

AJ~ := E[difference in total cost betweehand# in Q |hl = 1, h! = 0, A, = 0,71, o ].

For the computation afJ ¥, we note that after= 1, service inQ™* is independent of the events
in Q, because aftdr=1, both# and# follow the same index policyHence the analysis of
Q™ is the same as in the proof (81), and the same arguments leading6) give

-1 1_B7171

J+: : t*l:i — 87
A t:E:LCB C 1-3 (87)

For the computation afJ ~, we note that queue lengths@Qf™ are the same for both and#
aftert =1, h, = 0, and policiesr and# allocate the servers in the same queuddirafterr,.
Hence

AJ-=0. (88)
Equation(85) follows from (86)—(88). The proof of(32) is now complete n
APPENDIX D

ProoF oF (33): In this situationwe havexi = %i and%! = %) — 1. Here queue length and
service inQ™* are identical for both policiesience 7, never occurgi.e., 7, = T+ 1). There-
fore, u ={T + 1} and

E[R|R; =0,h{ =17, /] =E[R|A{=0,hl=1 h, =07, %] as (89)
We further claim
. N 3 - 87
E[RIR}=0,hi=1h,= 0,7, R]= —¢ 1-g (90)
To show(90), we write
E[R|Ri =0, hi =1 h,= 0,7y, Fo] =AJ" +AJ", (91)

where
AJ* := E[difference in total cost betweehand# in Q*|hi = 0, Al =1, A, = 0,7, K],

AJ~ := E[difference in total cost betweehand# in Q~|hi = 0, Al =1, A, = 0,7, K ].
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Service inQ™ is identical for# and#, so
AJT =0. (92)

The analysis 0f ~ is identical to that in the proof df31), and the arguments leading (&3)
give

1- BT
A =g ) (93)
1-p
The combination 0f89)—(93) proves(33). n
APPENDIX E

Proor or THEOREM 5: First, we derive preliminary results needed in the proof of the
theorem

As mentioned in the description of Probldi), by our definition an arrival at a queue
occurs before service allocation at that tifilben under the assumption th& is served at
each time it is connecteave note that the queue length proceéss a birth—death process
with the following transition probabilities

U =a(1—gm),
s=gam+(1—a)d—qgm), (94)
d=qgm(l—a),

wherey; is the probability of increment; of decrementands; of no changeWe will derive
some properties of such a proceasd then use them to get a better bound-priFor nota-
tional simplicity we will drop thei subscript in much of the following

Consider two types of birth—death queues witg, andd: one infinite statéD.,) and the
other finite(D, ) with L statesLetx; be queue length for either tygeorD,,, the transition prob-
abilitiesu, s, andd defined in(94) are valid at all states except= 0, whose transitions we will
not have to define for the following resuliEhe transition probabilities fdD, are the same ex-
cept for state, = L, where we hav@ (%1 =L —1|x,=L)=dandP(x; 1 =L|x=L)=1—d.

Let 7., be the first hitting time of state 0 fd.,, definingr,, = T + 1 if this event never
occurs Similarly, definer_as the corresponding hitting time fBy . The following lemma
states that for a birth—death chain with either finite or infinite state-splaedrst hitting time
of state 0 increases stochastically as the chain’s initial state increases

LEMMA 2:
P(r. > k|Xg=n+1) = P(r_ > Kk|X,=n) 0k, n, (95)

P(7, > Kk|Xg=n+1) = P(7, > Kk|X,=n) Ok, n. (96)
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Proor: We will prove (95); (96) follows in exactly the same way
Itis clear from monotonicity that

P(r. > k—=1|Xo=n) = P(7. > K|Xo=n) Ok, n. (97)

Assume we start in state+ 1. Let 7 be the first hitting time of state. If staten is never hit
then by definition 7 = T + 1. Note thatrg is a stopping time
If 76 >k, then

P(r.>Kk|Xo=n+1L 7>k =P(r. >Kk|Xg=n, 76> k) =1 Ok, n. (98)
If 76 =k, we have
P(r. > K[Xo=n+1 176 =K76) = P(1. > K|Xo=n+1 X, =N, 76 = K,75)
=P(r. > k—7¢|X=n, 76 = k,76)
= P(r. > Kk|Xo=n, 76 = k) as, (99)

where the second equality follows from the Strong Markov Property and the final inequality
follows by repeated application ¢87) for any value ofre.
From(98) and(99), we thus have

P(r. > Kk|Xo=n+1) = E[P(7. > Kk|xo=n+174)]
= E[P(7_ > k|Xo = n,7¢)]
= P(1. > K|Xo=n) Ok, n (100)
and the proof is complete n

The following lemma states that for birth—death Markov chains with fixed initial state

the first hitting time of state 0 stochastically increases as the cardinality of the chain’s state-
space increases

LEmMMA 3:
P(r. > Kk|Xg=n) = P(7_ 41 > K|Xo=n) = P(7, > k|Xq = n) Okl=n=L.
(101)

Proor: We will prove the first inequality iN101); the proof of the second inequality is
virtually identical For notational simplicitydefing for D, 1,

WX = P(7 41 > K|Xo=n).
From this definition and the queue layoute then have
W =swit+uwkTt k=1, (102)

Wy =dwft+ (1—d)wlt, k=L+1, (103)
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wk=1 0=k=n—-11=n=L+1

WK = uwWTt + swt+dwktl, n=2,k=n.

Similarly for D, define
WK := P(7_ > K|Xo=n)
and
MY = skt + uwk™t, k=1,
=dWf<i+ (1 -d)Ww?t, k=L,

Mk=1 0=k=n-11=n=L,

WK = URKTE + skt + dwk=}, n=2,k=n.

We claim the following
Cram 1: Fix m= 0. Assume
WKk=wk, 1=n=L0=k=n—-1+m

Then

WE=wk, 1=n=L0=k=n—-1+m+1

Proor or CLAaM 1: We consider two cases

(104)

(105)

(106)
(107)
(108)

(109)

(110)

(111)

Case 1:1=n=L — 1. We proceed by induction om keepingm fixed. Assumption(110)

implies
Wi=wf, 0=k=m,
and
Ms=wk, O=sk=m+1
Hence

Wi ML = g + uig
= sw" + uwgy'

= witrmeL

So the claim is true fon = 1. Now, assume that fon = 2,

~(n—1)—1+m+1 (n—1)—1+m+1
Wh-1 = Wn—g

(112)

(113)
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is true Because = 2 andk=n—1+ m+ 1= n, to prove the induction step we can 369):
Wi = g (TP T gt m gyt P

= uwTP T b s T 4 g™ by (110)

= uw{TP T s 4 g Y T ™ py (119

= o LmEL (114)
Hence by induction

Wit = Wi I=n=L -1, (115)

and so Case 1 of Claim 1 is proved

Case 2: n=L.Becaus&k=L—1+m+1=L,wecanusé¢l08 andthe factthat+ d=s+
u to write

wll:fl+m+1 — dv’vll__:il.+m + (1_ d)wll__—1+m
=dw-—1TM+ (1-d)Ws ™ by (110
sdw 1"+ (1—-d)wt ™ by Case 1
= Sswt M 4 uwE T 4wttt since 1-d=s+ U
= sw M+ uw ™+ dwiZi™  using Lemma 2
— W|I_‘71+m+l
So Case 2 of Claim 1 is provednd the entire claim is proved u

By (104) and(108), we knowwX =Wk=1,1=n=L, 0= k= n— 1. The conclusion of
the lemma follows by induction and Claim 1 n

Lemmas 4 and 5 that follow complete the set of preliminary results needed for the proof
of Theorem 5

LemMA 4: For any substochastic matrix A arfi= 8 < 1, 22o(BA)t = (I — BA) ™! exists

Lemma 4 is a simple well-known result for the case whds a stochastic matrite.g.,

see[8, p. 43] for reference A nearly identical argument holds whenis substochastias
above

LEMMA 5: ForO=p8 <1,

T-2

1 0)[(13! —ATh) i(BA)‘ -> At](l 0'’=0 OT (116)
t=0 t=0
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Proor: Consider thg8-dependent terrand noting thaB andC below are bott=0,
1 0 [(Bl —ATH Y (BA)‘](l 0y
t=0

=1 0)[[;'2‘6('3A)t](1 0 - 0)[AT‘1ZO(BA)t](1 0y

\ J \ J
Y Y

B C

=1 0 E(,BA)‘](l 0 - 0)[(BA)T12(BA)‘](1 0y

~a o i(ﬁA)t—(ﬁA)”i(ﬂA)t](l o

[T-2

-1 0 E(BA)‘](l oy

[T-2
=(1 0 EA‘](l 0)’ (117)
| t=0
Equation(117) then directly implieg116). u

Proor oF THEOREM 5: The arguments leading t84) are identical to those used in the proof
of Theorem 1We assumé60) is satisfied and proceed by induction
First, note that because of Lemma 4

1-pd@ 0@ -BA 1 0 =1-pd(1 0)20(/%)‘(1 0=1

\ J
Y

where the inequality follows becauBe= 0, as every matrix term ifBA)' is non-negativelt.
Sq when(60) is satisfied then necessarilym; ¢; = m;¢;, and forT = 1, the theorem can be
proved in exactly the same way as Theorem 1

To proceed with the induction steponsiderr; as defined in22) and define

i =t=2 suchthah =1 andf! = 0 under the conditiom} = 1.

Note that by the definition ofy, it follows that! _, =0, %! _, = 1. Hencer; =, as. by the
definitions ofr; andry.
Define

7., =min{t=2: hi =1 hi = 0|Q served each time it is nonempty
and connected under bothand7, x) = 1}.
Note that the two policies sen@ the same untifr servesQ; andxi = 0 and&{ = 1. If both

policies always serv&; each time it is nonempty and connectéien this time when the
policies serve; differently only occurs earliethat is we haver,, = 71 as.
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Next we show the connection to the previous redulthat we claim?,, can be stochas-
tically bounded using Lemma 8lote thatD,, models the queue length @ under the con-
dition of 7..; that is Q, is served whenever it is connected and nonentpst is interpreting
X; as the queue length &f,,, we can give an equivalent definition féy,:

Foo = Min{t = 2: X, = 0| %o = 1}.
Similarly for D, with x, referring to queue length B, we define

7L =min{t = 2: X, = 0| X, = 1}.

We definer,, = T + 1 and7_ = T + 1 if the event never occurs within the time horizén
By settingn = 1 in Lemma 3we have

P(7, > k) = P(7 .1 > k) = P(7. > k) Ok, L,
which means that
Too Tt TLi1 St 7L OL. (118)
The inequalities i118), together withr; =,s77 =457, give
T ZasTi ZasTo ZstTL41 Zet 7L OL. (119)
Combining(119 with the fact that 0= 8 < 1, we obtain
E[B7|R} = 1,x0] = E[Bt1] = E[B™] O finite L, (120)

whereL is the number of states in the finite chdp.
Let X, be the state atof Markov chainD, ,; (we choosd. + 1 to allow states,1..,L
along with Q. Definep; := (p(1)p:(2) --- p(L))’, where

p(i):=P(X =i,%#0,1=s=1t).
Then?
p.=A""p.. (121)

To find an expression foi,_ 1, we setp;=(1 0---0):=(1 0).
Using(121), we note that for & 2,

P(flya=t)=d(l Op-1=di(1 0A 21 0. (122)

SNote that state 0 of the chaiie., queue emptyis not represented ip, or in A.
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We use(122), Lemma 4 and Lemma 5 to compute[ g7+ ]:
E[Br] = 2 P(fLa1=t)B ' + P(fLy =T+

— B4 S (1 OA L O)p" +3T+1<1— 431 0A 1 0)'>

t=1 t=1
T-1 T-2
=pd(1 0 [ > (BA)‘}Al(l 0 + ,8”1<1— d(1 0 [ > A‘](l 0)'>
=pdi(1 0 [Zl(BAY - ZT(BA)t]Al(l 0y
+ /3T+1<1 d(1 0)[2 A‘](l 0)’)
t=0

= B, 0)[(1—BT)E(,8A)‘+BT20(BA)t— > (BA)t}(l oy

t=T-1

T-2

_BT+1di(l 0)|:E At:|(1 O)r +BT+1
= p*di(1 0)[(1—BT)EO(BA)‘](1 0+

+pT (1 0) [(,BI —ATY ;O(BAV - ZOA‘](l 0).

(123)
B
By Lemma 5B =0 for 0= 8 < 1; sq by (123, we have
E[B™:]=pB%di(1 0) [(1 -B") ZD(BA)‘}(l 0) +BT*
=BpT+(1-pNB%di(1 0 —BAHL 0. (124)

Combining(120 and(124) and using the Markovian property of the systeme obtain
1-B'E[B™[hi =1 F)] _ 1-B'E[B™ AL =1X,]
1-8 1-p
_ 1-BE[B]
= -3
1-8T-(1-8Npd1 00 -pA*1 O
1-8
_a- BH(1L—pBdi(1l 0 —pA™1 0))
1-p8 '

(125)
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Combining(34) and(125), we get

L 1-87 1-87
Ad=cm[1-6d1 00 -AT1 0] 1-3 —gm 1-3

T

=[cm@-pd@ 01 -BA L 0)—cm] m (126)

Condition(60) then impliesAJ = 0, and the rest of the induction step follows as previously
Finally, (61) follows directly from(120) and the computation performed ({©25. B

APPENDIX F

We begin with the following preliminary resuFor notational simplicitywe drop the sub-
script and lefo andn be the parameters satisfyig3) and(64) for someQ;.

LeEmMa 6: Consider the stopping time; defined by(45). Then under(62)—(64),
P(rs>t|FR)=1—-ple ™ (127)
Proor: Let x; denote queue length J; at timet, and define
M, := p e ™, (128)

Then

M
E[ lJrl;xt >0
M

ﬁ] =p 'E[en)ix > 0| R]=1, (129)
t
where the last inequality follows froit64). Hence

E[Mu15x > 0| A]=M, as. (130)

becausé\l, is F-measurable
LetaOb:= min(a, b) and consider the stopped procéks,,. For this processve have

E[Mt+1Dr3‘~E] = E[Mt+1ur3§7'3 >t R+ E[Mt+1Dr3;T3 =t|A]

= M, L=t + Mior, L=y

= My, as, (131)

where the inequality i1132) follows from (130) and the fact thatrs > t} € . Furthermore

E[IMr, |l = E[Mg, ] =1 < o0 (132)

because =1, andn, x= 0.
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BecauseM, is F-adapted ands is an{;} stopping time M-, is also adapted td.
Sa from (131) and(132), it follows that M., is an %-supermartingateconsequently6,
Chap 24],

M, = E[ M, | Fo

= E[p~Te mun 1y > t| Fo] + E[pT (T Mum 1y < t] Ko

= p 'P(rs=t| F), (133)
where the last inequality follows from

E[p e ™o ry > t| Fy] >0
and
E[p~ e minirs < t| ] = E[p s =] o)
= p P =1| %)

because; = timpliesp =™ = p~'asp = 1, and als@ " = 1 asx,, = 0 by the definition
of r3[cf. (45)]. As M, := e~ we conclude fron{133) that

P(rs=t|R) =ple ™ =ple” Oxo=1. (134)
Therefore
P(rs>t|FR)=1—ple ™ ]
Based on Lemma 6 we proceed to prove Theorem 6

ProOF oF THEOREM 6: The arguments leading t84) are the same as in TheoreniThere-
fore, from (34), we have

_n-1 Rl = _ pT
AJ:E[R%]ZQm{l BELB |} Lfo]]_cjmjl B

as.
1-5
_ QpT _ p-1 TRl =
:1 B <cimi[l pELR lrl L%]]cjmj) as. (135)
1-8 1-8

Furthermorefrom the definition ofr; andrs [cf. (22) and(45), respectively, we obtain
E[B|hi =1 R]=E[B|hi=1FK]=E[B=|hi=1 F]=E[B™|F] (136)

and
T-1
E[B™|Fl=1-(1-8) ZOB‘P(TsNIFO)- (137)
Because 0f127), (137) gives

E[B~|Fl=1-(1-p) :ioﬁtu—ptew)

— RT _ T
1-p7  1-(Bp) ] 138)

_1_(1_3)[ 1-8 % 18



MULTICHANNEL ALLOCATION IN MOBILE NETWORKS 295

From(136) and(138), it follows that

1-pE[BIRL=1%K] _1-p7 w[l—ﬂ}[l—wmf]
1-p7 Tl 1-pp ]l 1-5

1-p
1-8p

Combining(135) with (139 and the fact thap < 1/8, we obtain

=1—e"

as. (139)

AJ—E[R\f]>1_BT(cm[1 e Pl _cm) as (140)
B TN 1*/3;3]*j J

We useg(140) to prove by induction the optimality of the index policy under Conditig5).
ForT =1, following the proof of Theorem we obtain

E[RLFO] =Cm _Cj mj, (141)
and because % p =1/8, n > 0, we have

1-8
1-pp

0o<e” <1 (142)

Condition(65) together with(142) show that

Thereforethe index policy is optimal when the horizonTis= 1.
For the induction stepthe arguments of Theorem 1 leading(8), together with the
arguments leading t42) and Condition(65), give

AJ=E[R|F]>0. (144)

Consequentlythe index policy described in Section 2 is optimal for any finite horizon under
(62—(65).

We proceed to prove the optimality of the index policy for any finite horizon problem
under(62)—(64), (66), and the assumption that at most one arrival can occur at each queue at
each instant of timeTo accomplish thiswe determine an upper bound on the right-hand side
of (136) and combine this bound witt135) to prove the optimality of the index policy under
Condition(66). To upper-bound the right-hand side(df36), we first note that by the defini-
tion of 73 we havefor anyx{ = 1,

E[B™|Fo,x0] = E[B™| K] as. (145)

Therefore

T-1
E[BT3|-7:0]:E[BT3‘-7'—()»X(i):1]:1_(1_,3)%B[P(73>t|-7'—o,xti):1) as.  (146)
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We lower-boundP(r3 > t| 7, x = 1) and this leads to an upper bound BhS™| % ]. To
lower-boundP (75 > t| 5, xh = 1), we note by the first inequality in(133), that

Mo(X5) = E[M,| Fo, xo = 1]
= E[p e oy > t| Fy, xb = 1] + E[ p~ e Py ry < t| Ry, xh = 1].
(147)

Using the fact that at most one arrival can occur at each queue at each instant, @frtime
xb = 1, we note that

e ™ =e Y gs Ot (148)
Because 0f1498), (147) gives
e = My(xh) = p e " VP(ry > t| Fo, xh=1) + p P(rs = t| Fp, xb = 1) (149)
and becausB(rs = t|Fo, xb = 1) =1 — P(73 > t| Fo, xb = 1), (149 gives

i 1-e7p!
P(T3 > t|.7:0,X0:l) = m
=(1-eph) X (e ) (150)
h=0

which is the desired lower bound f&X(75 > t| 7, x5 = 1).
Combining(146) and(150), we obtain

T-1 -
E[B=|FR]l=1-(1-p8) E Bi(1—epY) hE (e 7(t+D)h
t=0 =

=1-@-p) T e™ 3 [(ge ™) -~ (spe ™))

= 1- (e ™)’ 1- (Bpe"”)T]
=1-—(1— —hn — e
1-(1 ,B)Zoe [ 1= e e oo | (151)
which provides the desired upper bound on the right-hand sidE36.
The combination 0f136) and(151) results in
1-BE[B™[R = 1, F)
1-p87
oo _ _ —hn\T _ _ —hn\T
EEGM[ 1-p 1-(pe™T . 1-B 1-(ppe ﬂ)]
h=0 1_,3e7h7' l_BT 1—,Bpefh" 1_BT
i 1—(Be™T[ 1- 1- 1—(Bpe ™)T
_ S em i (B T) [ b _ e b (Bp,h )T]
h=o 1-8 1-pe™ 1-pBpe™™ 1—(pe™™)
| — -
=1 =1
i 1 e
=(1- e“’i[ - ]
-8 Eo 1-Be™™ 1-pBpe ™ (152)

J

Y

Gy



MULTICHANNEL ALLOCATION IN MOBILE NETWORKS 297

The inequality in(135) together with(152) gives
AJ = E[R| 5]

T

- 1-8 _ = —hn - e’
= 1-5 <Cimi(1 B)Zoe |:1_Beh77 1—Bpe ™

We usg153) together with Conditio66) to prove the optimality of the index rule by induction
ForT = 1, we havefollowing the proof of Theorem,1

}—c,-m,-) as. (153)

AJ=E[R|F]=cm —qgm. (154)
Because; = T+ 1 as., we have

1-B'E[B|hi=1F]
1-387

=1 (155)

so that by(152), we have

1-p3 e[ L ]< 1 (156)
h=0 1-pe™ 1-Bpe ™| 7
Because 0f156) and Condition(66), (154) gives
AJ=0; (157)

therefore the index policy is optimal when the horizonTs= 1.
For the induction stephe arguments of Theorem 1 leading(8#), together with the
arguments leading t@.53) and Condition(66), give

AJ = E[R|%]=0. (158)

Consequentlythe index policy described in Section 2 is optimal for any finite horizon under
(62)—(64), (66), and the assumption that at most one arrival can occur at each queue at each
instant of time

To prove that each term in the sum appearing on the left-hand si@é)aé positive we
first note thatbecause 0f63),

1—-Bpe ™M=1-pBere ™, (159)
Consequentlybecause) > 0,

e e 1 1
T = i T = T Oh=0. (160)
1-Bpe ™ 1—pBe’e™™ e?"—Be ™Mp 1—Be "p

This completes the proof |

Remark: When only theh = 0 term is included in Conditiof66), it becomes equivalent to
Condition (65). Hence each subsequent term in the summation of Condit&#) further
improves the sufficient condition beyond that of Conditi{65).



