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We model a single-hop mobile network under centralized control withN service
classes as a system ofN weighted cost parallel queues withM ~1# M , N! servers,
arrivals, varying binary connectivity, and Bernoulli service success at each queue+
We consider scheduling problems in this system and, under various assumptions on
arrivals and connectivity, derive conditions sufficient, but not necessary, to guar-
antee the optimality of an index policy+

1. INTRODUCTION: PROBLEM FORMULATION

Consider a system ofN mobiles communicating in discrete-time with a central net-
work controller ~e+g+, base station or satellite! that hasM channels for message
communication+At each time slot, each mobile transmits a short control pulse~mes-
sage! to the controller; the control message contains information about the type and
number of data messages the mobile wants to send to the controller+ If the control
message is received by the controller, the mobile is connected to the controller for
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that time slot+ Hence, the controller knows at each time slot the mobiles that are
connected to it, and the type and amount of information each mobile has to transmit+
Based on this information, the controller must decide how to dynamically allocate
its channels over time so that it can minimize the expected discounted weighted
flowtime associated with the transmission of messages+

We formulate an abstract problem that captures essential features of the single-
hop network described above, and analyze several variants of that problem+ The
general abstract problem can be described as follows+

Problem (P)

We consider a discrete-time model ofN queues served byM servers~M , N!+ At
each time, at most one server can serve a queue+ At each time, a queue is either
available to be served by any server~connected! or it is not~not connected!+At each
time, before the allocation of servers, the connectivity of all the queues is known for
that time+We allow for arrivals at each queue at each time, and arrivals at a given
time are assumed to occur before server allocation at that time+ The statistics of the
connectivity and arrival processes are assumed arbitrary+When a server has been
allocated to a connected queue, there is a probability, fixed for each queue, that the
service is successful+ This service success process is i+i+d+ and independent among
queues, although the success probability can be queue dependent+We wish to de-
termine a server allocation policyp which minimizes

JT
p :5 E @Cp 6F0# , (1)

whereF0 summarizes all information available at the beginning of the allocation
period+ Cp is the cost underp, given by

Cp :5 (
t51

T

b t21 (
i51

N

ci xt
i ; (2)

b is the discount factor, T is the finite horizon, ci is the holding cost of queuei ~Qi !,
by which we distinguish service class, andxt

i is the length ofQi at timet+

In Problem~P! we have assumed that the horizonT is finite+We first analyze
Problem~P! and its refinements as finite horizon problems, and then show that the
results of the analysis hold for the corresponding infinite horizon problems+

As mentioned, the model described in Problem~P! arises in the context of
single-hop mobile radio networks, which can be modeled as a bank of message
queues served by one or more communication channels+ The varying connectivity
relates to a variety of mobile communication systems, such as cellular and mobile
packet radio networks@10# , satellite communications@3# , and meteor-burst chan-
nels @4# + The cost function then reflects the penalty for keeping packets waiting
in each queue, and the queue weighting allows for a prioritization of packets for
transmission+ The same model arises in image formation systems, where service
decisions correspond to sensor allocations for specific surveillance areas for
information-gathering purposes+ The model also has independent interest as a spe-
cific problem in queueing theory+
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In @2,13# , the problem ofN queues with different holding costs and one server
with full connectivity was considered, and the simplecµ rule was shown to be op-
timal, but this result does not generalize to Problem~P!+

Our model is similar to that in@10# , but only a single server and no differentiated
service are considered in that article+ The authors of@10# prove that the Longest
Connected Queue~LCQ! policy is optimal+ The authors of@1# and@12# use similar
but more general models than@10# ,which also do not include differentiated service+
All three references determine policies that maximize throughput over an infinite
horizon+ Throughput maximization over an infinite horizon leads to a family of
scheduling policies, not all of which maximize throughput over a finite horizon+
Furthermore, throughput maximization is not the most appropriate performance cri-
terion for networks providing multiple classes of service+

In @14# , the authors determine an optimal control policy for a non-Markovian
M-serverM-queue system in the presence of a continuous-time-varying external
disturbance process, where control decisions occur only at fixed epochs and where
service at a queue might interfere with service at other queues+Optimality is defined
in a maximal throughput sense and is proved using stability arguments+

The authors of@3# study a model of satellite network connectivity which, on the
surface, seems similar to@10# + However, by focusing on the question of server pre-
emption, their model, and hence the nature of the optimal policy, is actually quite
different+ A class of optimal adaptive policies for the model of@3# is proposed in
@11# + Again, this work does not incorporate multiple service classes+

To analyze meteor-burst communications, a discrete-time Markov chain model
is proposed in@4# for the varying communications medium+ In @5# , a careful analysis
of a single-server single-queue system is performed, where the server alternates
between being “on” and “off+” In @4,5# , the goal is the analysis of detailed queue
attributes under a fixed service policy, and questions of determining an optimal
server allocation policy in a queueing network do not arise+

There are problems related to Problem~P! ~e+g+, see@9# and the references
therein!,where each ofNqueues has its own server and a controller must decide how
to route arriving packets to the set of queues+ The structure of these problems leads
to somewhat different solutions, such as in@9# where packet type is not distinguished
and the queues have finite capacity+

The model of this article can be considered a special case of a restless multi-
armed bandit, in the sense of@16# , where state transitions and rewards take on a
particular structure+ The general restless bandit problem, where the number of arms
and processors is infinite and their ratio is fixed, was investigated in@16# and@15# +
The results of@16# and@15# do not apply here, as the number of arms~queues! and
processors is finite+

The system stability0maximal throughput approach used in much of the work
just discussed implicitly assumes that all jobs are identical+ This implies that the
control problem consists entirely in keeping the server~s! busy as much as possible+
Hence, optimal policies are those which keep the queues load balanced+

This situation changes when we allow jobs to have different service classes+ For
example, for the case of a full-connectivity multiserver system with different hold-
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ing costs, it is easy to construct an example where the longest connected queue
protocol is not optimal+We can similarly construct an example demonstrating that
the index policy is not optimal for a single-server varying connectivity system with
different holding costs+ To the best of our knowledge, no results are presently avail-
able for the multiserver scheduling of parallel queues with connectivity constraints
and multiple service classes+

In this article, we investigate an instance of multiserver scheduling of parallel
queues with connectivity constraints and multiple service classes+ The main contri-
bution of the article is the determination of conditions on job~message! weighting
and job service times sufficient to guarantee the optimality of an index policy for
Problem~P!+ We show by example that the above mentioned conditions are not
necessary to ensure the optimality of the index policy+

The article is organized as follows+ In Section 2, Problem~P! is analyzed; a
condition sufficient to guarantee the optimality of an index policy is presented+ In
Section 3, various refinements to Problem~P!, including more specific assumptions
on the arrival and connectivity processes, are considered+ These refinements allow
for improved conditions which are still sufficient to guarantee optimality of the same
index policy+ Section 4 contains a brief discussion of the infinite horizon problem
and Section 5 summarizes the article+ Finally, Appendices A–F provide detailed
proofs of some technical statements in the main body of text, not included there to
improve the flow of the basic arguments+

2. ANALYSIS OF PROBLEM (P)

To proceed with the analysis, we need the following definitions and notation+

N The number of queues+

M The number of servers+

T The length of the finite time horizon+

Qi Queuei, 1 # i # N+

p 5 ~p1,p2, + + + ,pT !, an allocation policy+ We do not restrict ourselves to
Markov policies+ When a distinction between policies must be made, we
write [p and Jp+

mi The probability of service success forQi at any timet+

x t The queue length vector at timet+ xt
i refers to the length ofQi at timet+When

we need to denote the state att due to a given policy [p, we write [xt
i , i 5

1,2, + + + ,N+We further definex t
i2 :5 ~xt

1, xt
2, + + + , xt

i21, xt
i 2 1, xt

i11, + + + , xt
N!,

where ifxt
i 5 0, thenx t

i2 5 x t +

ci The cost associated with one job inQi at each timet+

b The discount factor+

ht
i The service success indicator random variable~RV! for Qi at timet+ ht is

the service success vector for all the queues at timet; that is, if Qi has a
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successful service att, thenht
i 5 1, elseht

i 5 0+ When distinguished by
policy, we write Zht

i and Dht
i +

Ft Thes-field induced by all information through timet+

Cp The cost RV associated with policyp, as defined in~2!+

By anindexpolicy,we mean any policy which attaches a fixed numeric index to each
queue and then plays theM connected and nonempty queues of highest index at each
time+The index of a queue refers to this numeric index, and not the queue’s subscript+

As stated in Problem~P!, we wish to find an allocation policyp which mini-
mizesJT

p , defined in~1! as

JT
p :5 Ep @Cp 6F0# + (3)

To achieve this, we need~1! a result that describes the effect of the initial condition
on the performance of any index policyp and~2! an expression that specifies the
difference in performance between any two policies, say Jp and [p, under the same
initial condition+ We begin with the result that describes the effect of the initial
condition on the performance of any index policyp+

Lemma 1: Consider the model of Problem~P! and letp denote any index policy+
Let x0 be any initial queue state+ Then, for any i we have1

Ep @Cp 6x0,F0# $ Ep @Cp 6x0
i2 ,F0# a+s+ (4)

Proof: First, note that ifx0
i 5 0, we havex0 5 x0

i2 , and then the lemma is clearly
true+We henceforth assumex0

i . 0, so thatx0Þ x0
i2 , and proceed by induction onT+

First, we define the following events:

~A1! At t 51, the same queues are being served by our index policyp underx0

andx0
i2 +

~A2! At t 51, M 21 of the servers are allocated to the same queues by policy
p underx0 andx0

i2 ; theM th server is allocated toQi underx0 and toQj

underx0
i2 , whereQj is of lower index thanQi +

Becausep is an index policy, a service difference occurs att 51 only whenx0
i 51,

p allocates toQi underx0, and, underx0
i2 , p allocates toQj , a queue of lower

priority thanQi , instead of the emptyQi + Hence, events~A1! and~A2! partition the
space of possible events+

We now proceed with the induction+ Let T51+ Under~A1!, the cost difference
is

Ep @Cp 6x0,A1,F0# 2 Ep @Cp 6x0
i2 ,A1,F0# 5 ci + (5)

1 For RVsx andy, eventA, ands-field F, we defineE @y6A,x,F # to meanE @y6A ù s~x! ∨ F # +
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Under~A2!, the cost difference is

Ep @Cp 6x0,A2,F0# 2 Ep @Cp 6x0
i2 ,A2,F0#

5 ~12 mi !~12 mj !~ci ! 1 mi ~12 mj !{0

1 mi mj ~cj ! 1 ~12 mi !mj ~ci 1 cj !

$ 0 (6)

because service success is assumed i+i+d+ and independent among queues+ From~5!
and~6!, the induction basis step is established+

Now, assume~4! holds for an arbitraryT and consider the case of aT 1 1
horizon, labeling time so that the theorem is true over 2, + + + ,T11+ Then, under~A1!,
we have

Ep @Cp 6x0,A1,F0# 2 Ep @Cp 6x0
i2 ,A1,F0#

5 b~Ep @Cp 6x1,F1# 2 Ep @Cp 6x1
i2 ,F1# ! 1 ci (7)

because service success in both cases is the same+ By the induction hypothesis,

Ep @Cp 6x1,F1# 2 Ep @Cp 6x1
i2 ,F1# $ 0 a+s+ (8)

so that~7! and~8! give

Ep @Cp 6x0,A1,F0# 2 Ep @Cp 6x0
i2 ,A1,F0# $ 0 a+s+ (9)

Under~A2!, again since service is i+i+d+ and independent among queues,we find
that

Ep @Cp 6x0,A2,F0# 2 Ep @Cp 6x0
i2 ,A2,F0#

5 mi ~12 mj !{0

1 ~12 mi !~12 mj !~b~Ep @Cp 6x1,F1# 2 Ep @Cp 6x1
i2 ,F1# ! 1 ci !

1 mi mj ~b~Ep @Cp 6x1
i2 ,F1# 2 Ep @Cp 6x1

ij2 ,F1# ! 1 cj !

1 ~12 mi !mj ~b~Ep @Cp 6x1,F1# 2 Ep @Cp 6x1
ij2 ,F1# ! 1 ci 1 cj !, (10)

wherex1 is the state resulting fromx0 when no service completion is achieved att 5
1 atQi andQj + By the induction hypothesis,

Ep @Cp 6x1,F1# 2 Ep @Cp 6x1
i2 ,F1# $ 0 a+s+, (11)

Ep @Cp 6x1
i2 ,F1# 2 Ep @Cp 6x1

ij2 ,F1# $ 0 a+s+, (12)

and by applying the induction hypothesis twice in succession, we get

Ep @Cp 6x1,F1# $ Ep @Cp 6x1
i2 ,F1# $ Ep @Cp 6x1

ij2 ,F1# a+s+

so that

Ep @Cp 6x1,F1# 2 Ep @Cp 6x1
ij2 ,F1# $ 0 a+s+ (13)
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Combining~10!–~13!, we obtain

Ep @Cp 6x0,A2,F0# 2 Ep @Cp 6x0
i2 ,A2,F0# $ 0 a+s+ (14)

Because A1 and A2 are a partition of all possibilities arising from the allocation of
theM servers under the two different initial conditions~under the same index pol-
icy!, ~9! and~14! imply that

Ep @Cp 6x0,F0# $ Ep @Cp 6x0
i2 ,F0# a+s+ (15)

and the induction step is proved+ Hence the proof of Lemma 1 is complete+ n

Next, we derive an expression that specifies the difference in performance be-
tween any two policiesJp and [p under the same initial condition+ Earlier, we have
definedC [p to be the cost RV under[p andC Jp to be the cost RV underJp+We now
defineR to be the difference

R :5 C [p 2 C Jp+

We callR thereward for following Jp over [p+We then see that

JT
[p 2 JT

Jp 5 E [p @C [p 6F0# 2 E Jp @C Jp 6F0# 5 E @R6F0# +

To show Jp optimal, it suffices to prove that

E @R6F0# $ 0 (16)

for any other allocation policy[p+
To prove~16!, consider two given policies[p and Jp and assume that att51, they

both run on the same system and that bothQi andQj are connected and nonempty at
this time+Assume Jp choosesQi andnot Qj , and [p choosesQj andnot Qi at t 51, and
further assume that all other server allocations are the same for the two policies att5
1+ Recall thatht

i is the service success indicator variable at timet for Qi + We then
have

DJ :5 E @R6F0#

5 E @E @R6 Dh1
i , Zh1

j ,F0#6F0#

5 (
k50

1

(
l50

1

E @R6 Dh1
i 5 l, Zh1

j 5 k,F0#P@ Dh1
i 5 l, Zh1

j 5 k6F0#

5 ~12 mi !~12 mj !E @R6 Dh1
i 5 0, Zh1

j 5 0,F0#

1 mi mj E @R6 Dh1
i 5 1, Zh1

j 5 1,F0#

1 ~12 mi !mj E @R6 Dh1
i 5 0, Zh1

j 5 1,F0#

1 mi ~12 mj !E @R6 Dh1
i 5 1, Zh1

j 5 0,F0# , (17)
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where the last equality follows because service success is i+i+d+ and independent
among queues and independent of all arrivals and connectivities+ We use~17! to
prove the main result of this section, which is given by the following theorem+

Theorem 1: Consider the system described in Problem~P!+ Define mi ci to be the
index of Qi , i 5 1,2, + + + ,N+ If there is a labeling of the queues such that

mi ci F 12 b

12 ~12 mi !bG $ mj cj ∀ i, j : 1 # i, j # N, i , j, (18)

then, at any time t, it is optimal to serve the M nonempty connected queues of highest
index, or serve all queues if less than M are nonempty and connected+

Discussion:The essence of the result of Theorem 1 is the following: If we were
guaranteed that the system described in Problem~P! operated away from the bound-
ary all the time~i+e+, if the queues were continuously nonempty!, then it would be
optimal to always allocate theM servers to the queues with theM highest indices+
Near the boundary, server utilization~because of empty queues! becomes a critical
issue in determining an optimal server allocation strategy+ The index policy, which
allocates servers without taking into account the number of customers in the queues,
may result in server underutilization; thus, it may not be optimal near the boundary+
Consequently, if we require optimality of the index policy for Problem~P!,we must
identify conditions to ensure that the advantage gained by always allocating the
servers to the highest-index queues overcompensates potential losses resulting from
server underutilization near the boundary+ Such a condition is expressed by~18!,
which requires that the indices associated with the queues be sufficiently separated
from each other+ Such a separation results in a priority ordering of the queues suf-
ficient to guarantee the optimality of the index rule+

It is interesting to compare this result with the case in which all queues have the
same weighting+ Then ~see@10,12# !, the optimal policy is to serve the connected
queues of longest length~LCQ!+ The intuition here is that, at a given time, serving
any queue gives the same expected return as serving any other, so the optimal server
allocation is the one which optimizes the expected number of services over the
horizon+ The LCQ policy accomplishes this by minimizing the number of empty
queues, trying to avoid the situation where connected empty queues and discon-
nected nonempty queues reduce service possibility+ On the other hand, Theorem 1
demonstrates the complementary case in which queues have sufficient spacing in
weighting, so by serving the costlier queues first, any server underutilization~inef-
ficiency! is sufficiently compensated+ Between these two extremes, there is a region
of queue cost such that these two competing goals conflict, and the optimal policy
becomes quite difficult to specify+

Proof ~Theorem 1!: Assume that the queues have been labeled such that~18! is
satisfied+ConsiderM additional queues in the system,numberedN11,N12, + + + ,N1
M, each withcN1i 5 mN1i 5 0+ Condition ~18! is still satisfied with these extra
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queues+ AssumeQN1i , i 5 1,2, + + + ,M are always connected and nonempty+ In this
new system, the servers are never idle+

We prove the theorem by induction onT+ ForT51, J1
p 5 E @(i51

N ci x1
i 6F0# + Let

[p and Jp be two server allocation strategies with the following characteristics: [p and
Jp allocateM 21 of the servers to the same queues; theM th server is allocated toQi

by policy Jp and toQj by policy [p, wherei , j+Without any loss of generality, we
assume thati , N+ Then,

E @R6F0# 5 mi ci 2 mj cj $ 0 (19)

because of~18! and the fact that~1 2 b!0@1 2 ~1 2 mi !b# # 1+ Repetition of the
argument leading to~19! shows that the assertion of the theorem is true forT 5 1+

To proceed with the induction, we assume that the assertion of the theorem is
true when the horizon isT and prove that the index policy described in the statement
of the theorem is optimal when the horizon isT11+ Consider policies[p and Jp with
the following features:

~F1! At t 5 1, [p and Jp allocateM 2 1 of the servers to the same queues; the
M th server is allocated toQi by policy Jp and toQj by policy [p, where
i , j+ Without any loss of generality, we assume thati , N+

~F2! From timet 5 2 on, policies Jp and [p follow the optimal allocation policy
for theT-horizon problem+

We define

Q1 :5 $the set of queues with indices larger than that ofQj %, (20)

Q2 :5 $The set of queues with indices equal to or less than that ofQj %, (21)

t1 :5 Ht, Zht
i 5 1, Dht

i 5 0, 2 # t # T

T 1 1, if there is not,2 # t # T, such that Zht
i 5 1, Dht

i 5 0,
(22)

u 5 $t: t $ 2, Jp and Jp allocate service toQi at t differently% (23)

Qkt
:5 Queue served byJp at timest [ u with the following characteristic:

the server allocated to it att [ u by Jp is allocated toQi by [p (24)

Dhu 5 $ Dht
kt : t [ u% wherekt . i ∀t [ u+ (25)

We denote by Dhu 5 0 the event$ Dht
kt 5 0 for all t [ u%+

Furthermore, we define

ts :5 Hmin$t $ 2: there is a service success atQi under [p%

T 1 1 if there is no service success atQi under [p,
(26)
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t2 :5 5
min$t $ 2: there is a service success atQi under [p6Qi

is always served under[p%

T 1 1 if there is no service success atQi under [p,
given thatQi is always served underJp+

(27)

The setsQ1 andQ2 form a partition of the set of queues+
The stopping timet1 is the time “ [p catches up toJp in Qi +” Along sample paths

wheret1 # T, t1 is well defined for the following reasons: ~i! policies [p and Jp follow
the index rule~described in the statement of the theorem! after t 5 1, therefore the
two policies have the same service success inQi aftert 51 and up until timet1; ~ii !
both policies serveQi in exactly the same way aftert1+

By definition, u is the set of stopping times aftert 5 1 and up to and including
t1 where the two policies[p and Jp allocate toQi differently+ For t [ u, [p servesQi

and Jp servesQkt
, kt . i, because both[p and Jp follow the index rule aftert $ 2+ By

definition, Dhu is the set of random variables denoting the service success underJp for
the server allocated toQi under [p+

It is immediate from~22!, ~26!, and~27! that

t1 $ ts a+s+, (28)

ts $ t2 a+s+ (29)

Using the characteristics of policies[p and Jp, the above definitions, and~28! and
~29!, we proceed to complete the induction step by determining a lower bound on
E @R6F0# at t 51+ To accomplish this, we examine separately each of the four terms
appearing in the right-hand side of~17!+We prove that

E @R6 Dh1
i 5 Zh1

j 5 0,F0# 5 0 a+s+, (30)

E @R6 Dh1
i 5 Zh1

j 5 1,F0# $ ci

12 b21E @bt1 6 Dh1
i 5 1,F0#

12 b
2 cj

12 bT

12 b
a+s+, (31)

E @R6 Dh1
i 5 1, Zh1

j 5 0,F0# $ ci

12 b21E @bt1 6 Dh1
i 5 1,F0#

12 b
a+s+, (32)

E @R6 Dh1
i 5 0, Zh1

j 5 1,F0# $ 2cj

12 bT

12 b
a+s+ (33)

Combining~17! and~30!–~33!, we obtain

DJ 5 E @R6F0# $ ci mi F 12 b21E @bt1 6 Dh1
i 5 1,F0#

12 b
G2 cj mj

12 bT

12 b
a+s+ (34)

Because of~28! and~29!,

E @bt1 6 Dh1
i 5 1,F0# # E @bts 6 Dh1

i 5 1, F0# # E @bt2 6 Dh1
i 5 1,F0# 5 E @bt2 # + (35)

The last inequality in~35! is true because service success atQi under [p is indepen-
dent of the eventDh1

i 5 1 as well as the initial information stateF0, because service
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success is i+i+d+ and independent among queues+We can computeE @bt2 # by noting
that

E @bt2 # 5 (
s52

T

P~t2 5 s!bs 1 P~t2 5 T 1 1!bT11

5 (
s52

T

~12 mi !
s22mi bs 1S12 (

s52

T

~12 mi !
s22miDbT11

5 bSmi b 1 ~12 mi !
T~12 b!bT

12 ~12 mi !b D+ (36)

Combining~34!–~36!, we obtain

DJ $ ci mi F 12 ~12 mi !
TbT

12 ~12 mi !b G2 cj mj

12 bT

12 b

$ ci mi F 12 bT

12 ~12 mi !bG2 cj mj

12 bT

12 b
(37)

and because of~18!,

DJ $ 0+ (38)

Consequently, policy Jp is superior to [p for the~T11!-horizon problem+ Repetition
of the argument leading to~38! shows that, under~18!, the index policy described in
the statement of the theorem is optimal for the~T 1 1!-horizon problem+

To complete the proof of the induction step, we must prove~30!–~33!+ The
proofs of these equations are located in Appendices A–D+ With ~30!–~33!, the in-
duction step is complete and the theorem is proved+ n

Remark: The interchange argument used to prove the optimality of thecm rule in
@2# cannot be applied to the case of either multiserver or that of varying connectivity,
because it is not possible to guarantee that such an interchange time occurs+

We present two examples to illustrate the role of Condition~18!+ The first ex-
ample shows that if Condition~18! is not satisfied, the index policy is not, in general,
optimal+ The second example shows that Condition~18! is not necessary to guaran-
tee the optimality of the index policy+

Example 1:Let T5 2,N5 2,M 51,m15 m251, x0
15 x0

25 1, c1 . c25 0+9c1, and
b 5 0+5+ Assume there are no arrivals, and connectivity is i+i+d+ with q1 51 andq2 5
0+5+ Then,

c1m1 5 c1 . c2m2 5 c2 (39)

and

c1m1

12 b

12 ~12 m1!b
5 0+5c1 , 0+9c1 5 c2+ (40)

MULTICHANNEL ALLOCATION IN MOBILE NETWORKS 269



From~39! and~40!, we conclude thatQ1 has the higher index, but Condition~18! of
Theorem 1 is not satisfied+

Denote by Jp the index policy~i+e+, the policy that gives priority toQ1 when both
queues are connected and nonempty!, and by [p, the policy that gives priority toQ2

when both queues are connected and nonempty+ Then, Jp is nonoptimal, because in
the case where both queues are initially connected,

E Jp @C Jp 6x0# 5 c2 1 ~12 q2!bc2 5 1+25c2 5 1+125c1,

E [p @C [p 6x0# 5 c1 1 ~12 q1!bc1 5 c1+

Example 2:Consider the same situation as in Example 1 with the one difference:
c2 5 0+7c1+ Then, ~39! is valid and Condition~18! of Theorem 1 is not satisfied
because

c1m1

12 b

12 ~12 m1!b
5 0+5c1 , 0+7c1 5 c2 5 c2m2+ (41)

Nevertheless, the index policy Jp is optimal because

E Jp @C Jp 6x0# 5 c2 1 ~12 q2!bc2 5 1+25c2 5 0+875c1,

E [p @C [p 6x0# 5 c1 1 ~12 q1!bc1 5 c1+

The result of Theorem 1 can be graphically described for a system consisting of
two queues~N52! and one server~M 51!+The graphical description is based on the
following summary of the result of Theorem 1 for this case+When both queues are
connected at a given time,

if c1m1F 12 b

12 b 1 m1bG $ c2m2 serveQ1

assssssdssssssg
0#{#1

(42)

if c2m2F 12 b

12 b 1 m2 bG $ c1m1 serveQ2

assssssdssssssg
0#{#1

(43)

If we considerc2m2 fixed and imagine varyingc1m1, then, because of~42! and~43!,
the space of possible values ofc1m1 is divided into three regions~shown in Fig+ 1!:
~1! ServeQ1 when both queues are connected; ~2! serveQ2 when both queues are
connected; ~3! optimal policy is unspecified+ The third region exists because~42!
and~43! do not cover all possibilities+ The intuition developed from this simple case
extends naturally to the general case+

Note that asb r 0, the region in Figure 1 where the optimal policy is not
specified becomes empty+ This is the situation where future cost has no effect on
current decisions, and so the best policy minimizes cost at the current time step only+
For this case, the optimal policy is a greedy algorithm~i+e+, thecmrule!+
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3. REFINEMENTS OF PROBLEM (P)

Condition~18!, which is sufficient to ensure the optimality of the index policy for
Problem~P!, was derived under no assumptions on the arrival and connectivity
processes+ The result of Theorem 1 can be strengthened under explicit assumptions
on the aforementioned processes+ In this section we examine several instances of
Problem~P! that arise under various assumptions on the arrival and connectivity
processes+We show that Condition~18! can be improved when more information is
given about the arrival and0or connectivity processes+ As a reminder, the assump-
tion of i+i+d+ service holds throughout this section of the article+

3.1. Bernoulli Connectivity, Arbitrary Arrivals

We assume i+i+d+ queue connectivity, independent of the service success process, but
leave arrivals arbitrary+We do not require independence of the connectivity between
queues, only i+i+d+ for any given queue, and independence of service success for all
queues+We prove the following variant of Theorem 1+

Theorem 2: Consider the system described in Problem~P!+ Further assume i+i+d+
queue connectivity, with probability of connection qi at Qi at each time+ If there is
a labeling of the queues such that

mi ci F 12 b

12 ~12 qi mi !bG $ mj cj ∀ i, j : 1 # i, j # N, i , j, (44)

then at any time t it is optimal to serve the M connected queues of highest index, or
serve all queues if less than M are connected+

Figure 1. Optimal policy when both queues connected+
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Proof: We assume~44! is satisfied and proceed by induction+We show first that for
T 5 1, the result of Theorem 2 is true under~44! and then that the induction step
holds+ First, note that

12 b

12 ~12 qi mi !b
# 1+

So if ~44! is satisfied, then necessarilymi ci $ mj cj + Then, for T51, the proof of the
result of the theorem is the same as in Theorem 1+

We proceed with the induction step+ First, note that the arguments leading to
~34! do not depend on the specific form of~18!; hence, the same arguments are valid
here as well+ So, ~34! is true+ Define

t3 5 min$t $ 2: there is a service success at Qi under [p6Qi

is always served when connected under[p%+
(45)

Just as fort1, we definet3 5 T11 whenevert3 . T+ As earlier, we know thatt1 $
ts a+s+, wherets is defined by~26!+ We also have thatts $ t3 a+s+, which follows
directly from their definitions+ Furthermore, by its definition, the independence of
service success, and the i+i+d+ nature of connectivity atQi , t3 is independent of other
system processes+We thus obtain

E @bt1 6 Dh1
i 5 1,F0# # E @bts 6 Dh1

i 5 1,F0# # E @bt3 6 Dh1
i 5 1,F0# 5 E @bt3 # + (46)

Next, we compute the right-hand side of~46!:

E @bt3 # 5 (
s52

T

P~t3 5 s!bs 1 P~t3 5 T 1 1!bT11

5 (
s52

T

~12 qi mi !
s22qi mi bs 1S12 (

s52

T

~12 qi mi !
s22qi miDbT11

5 qi mi b2
12 ~~12 qi mi !b!T21

12 ~12 qi mi !b
1 b2~~12 qi mi !b!T21

5 bSqi mi b 1 ~12 qi mi !
T~12 b!bT

12 ~12 qi mi !b D+ (47)

Because of~46! and~47!,

12 b21E @bt1 6 Dh1
i 5 1,F0#

12 b
$

12 b21E @bt3 #

12 b
using~46!

5 S12
qi mi b 1 ~12 qi mi !

T~12 b!bT

12 ~12 qi mi !b D~12 b!21

5
12 ~12 qi mi !

TbT

12 ~12 qi mi !b
+ (48)
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Combining~34! and~48!,

DJ $ ci mi F 12 ~12 qi mi !
TbT

12 ~12 qi mi !b G2 cj mj

12 bT

12 b

$ ci mi F 12 bT

12 ~12 qi mi !bG2 cj mj

12 bT

12 b
sinceqi mi $ 0+

Inequality~44! then impliesDJ $ 0, and the induction step is completed by argu-
ments identical to those following~38! in the proof of Theorem 1+ n

Under the additional assumption of i+i+d+ connectivity,Theorem 2 provides an im-
proved sufficiency condition over Theorem 1+ For fixedqi mi , just as earlier, b r 0
means a reversion of thecmrule+ The difference between the problem considered in
this section and Problem~P! is that in the “sufficiency factor”~12b!0@12~12mi !b# ,
describing the separation of indices in~18!,mi is replaced byqi mi +Therefore, the rate
at whichQi can be served is reduced by both connectivity and service probability,

12 b

12 ~12 qi mi !b
$

12 b

12 ~12 mi !b
,

and this leads to a condition that is weaker~i+e+, better! than~18! and is sufficient to
guarantee the optimality of the index policy+

3.2. Arbitrary Connectivity, Bernoulli Arrivals

In contrast to Section 3+1, here we assume Bernoulli arrivals and arbitrary connec-
tivity+ The arrivals do not need to be independent among queues+ We prove the
following variant of Theorem 1+

Theorem 3: Consider the system described in Problem~P!+ Further assume Ber-
noulli arrivals, with probability of single arrival ai at Qi at each time~the connec-
tivity is assumed arbitrary!+ If there is a labeling of the queues such that

mi ci F 12 b

12 ~12 mi ~12 ai !!bG $ mj cj ∀ i, j : 1 # i, j # N, i , j, (49)

then at any time t, it is optimal to serve the M connected queues of highest index, or
serve all queues if less than M are connected+

Proof: We begin with~34! because the arguments leading to it are as in the proof of
Theorem 1+ Assume~49! is satisfied and note that

12 b

12 ~12 mi ~12 ai !!b
# 1+
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Then, necessarily∀ i, j,mi ci $ mj cj + Then, for T 5 1, the assertion of the theorem
can be established in the same way as in Theorem 1+

To prove the induction step, we begin with~34! and define the stopping times:

t3 5 min$t $ 2: there is a service successandno arrival atQi under [p% , (50)

t4 5 min$t $ 2: there is a service successandno arrival atQi

under [p6Qi is always served under[p%+ (51)

Just as earlier, we definet3 5 T 1 1 whenevert3 . T, and similarly fort4+ It is
immediate thatt1 $ t3 a+s+ @t1 is defined by~22!# , as a minimum requirement for
t15 t is thatQi be empty for Jp and service is possible att+ If an arrival just occurred,
the queue cannot be empty+Also from the definitions, it is immediate thatt3 $ t4 a+s+
Moreover, by its definition, the independence of service success, and the i+i+d+ nature
of arrivals atQi , t4 is independent of other system processes+ Hence, we obtain

E @bt1 6 Dh1
i 5 1,F0# # E @bt3 6 Dh1

i 5 1,F0# # E @bt4 6 Dh1
i 5 1,F0# 5 E @bt4 # + (52)

Letting Sai 512 ai , the probability of no arrival,we obtain for the right-hand side of
~52!,

E @bt4 # 5 (
s52

T

P~t4 5 s!bs 1 P~t4 5 T 1 1!bT11

5 (
s52

T

~12 Sai mi !
s22 Sai mi bs 1S12 (

s52

T

~12 Sai mi !
s22 Sai miDbT11

5 Sai mi b2
12 ~~12 Sai mi !b!T21

12 ~12 Sai mi !b
1 b2~~12 Sai mi !b!T21

5 bS Sai mi b 1 ~12 Sai mi !
T~12 b!bT

12 ~12 Sai mi !b D+ (53)

Because of~52! and~53!,

12 b21E @bt1 6 Dh1
i 5 1,F0#

12 b
$

12 b21E @bt4 #

12 b

5 S12
Sai mi b 1 ~12 Sai mi !

T~12 b!bT

12 ~12 Sai mi !b D~12 b!21

5
12 ~12 Sai mi !

TbT

12 ~12 Sai mi !b
+ (54)
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Combining~34! and~54!, we find that

DJ $ ci mi F 12 ~12 Sai mi !
TbT

12 ~12 Sai mi !b G2 cj mj

12 bT

12 b

$ ci mi F 12 bT

12 ~12 Sai mi !bG2 cj mj

12 bT

12 b
since Sai mi $ 0+

Condition~49! then impliesDJ $ 0, and the rest of the induction step follows as in
Theorem 1+ n

3.3. Bernoulli Connectivity and Arrivals

In this section, we assume both Bernoulli queues connectivity and Bernoulli arriv-
als+ Then,we get the following condition sufficient to guarantee the optimality of an
index policy+

Theorem 4: Consider the system described in the statement of Problem~P!+ Fur-
ther assume Bernoulli queue connectivity,with probability of connection qi at Qi at
each time, and Bernoulli arrivals, with probability of one arrival ai + If there is a
labeling of the queues such that

mi ci F 12 b

12 ~12 qi mi ~12 ai !!bG $ mj cj ∀ i, j : 1 # i, j # N, i , j, (55)

then, at any time t, it is optimal to serve the M connected queues of highest index, or
serve all queues if less than M are connected+

Proof: We assume~55! is satisfied and note that

12 b

12 ~12 qi mi ~12 ai !!b
# 1+

Then, ci mi $ cj mj , ∀ i, j, i , j, and forT51, the proof of Theorem 4 is the same as
that of Theorem 1+

To establish the induction step, we note that the arguments leading to~34! are
the same as in Theorem 1 and define the stopping time

t5 5 min$t $ 2: there is a service successandno arrival atQi under
[p6Qi is always served when connected under[p%

and lett5 5 T11 whenevert5 . T+ From the definitions, it follows thatt1 $ t5 a+s+
Note that for i+i+d+ arrivals and connectivity, the system is a Markov chain, and soF0

information is summarized inx0; from its definition, t5 is independent of the initial
state and service success att 5 1+ Consequently,

E @bt1 6 Dh1
i 5 1,x0# # E @bt3 6 Dh1

i 5 1,x0# # E @bt5 6 Dh1
i 5 1,x0# 5 E @bt5 # + (56)
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Letting Sai 512 ai , the probability of no arrival,we obtain for the right-hand side of
~56!,

E @bt5 # 5 (
s52

T

P~t5 5 s!bs 1 P~t5 5 T 1 1!bT11

5 (
s52

T

~12 Sai qi mi !
s22 Sai qi mi bs 1S12 (

s52

T

~12 Sai qi mi !
s22qi miDbT11

5 Sai qi mi b2
12 ~~12 Sai qi mi !b!T21

12 ~12 Sai qi mi !b
1 b2~~12 Sai qi mi !b!T21

5 bS Sai qi mi b 1 ~12 Sai qi mi !
T~12 b!bT

12 ~12 Sai qi mi !b D+ (57)

Because of~56! and~57! and the Markovian property of the system,

12 b21E @bt1 6 Dh1
i 5 1,F0#

12 b
5

12 b21E @bt1 6 Dh1
i 5 1,x0#

12 b
(58)

$
12 b21E @bt5 #

12 b

5 S12
Sai qi mi b 1 ~12 Sai qi mi !

T~12 b!bT

12 ~12 Sai qi mi !b D
3 ~12 b!21

5
12 ~12 Sai qi mi !

TbT

12 ~12 Sai qi mi !b
+ (59)

Combining~34! and~58!, we find

DJ $ ci mi F 12 ~12 Sai qi mi !
TbT

12 ~12 Sai qi mi !b G2 cj mj

12 bT

12 b

$ ci mi F 12 bT

12 ~12 Sai qi mi !bG2 cj mj

12 bT

12 b
since Sai qi mi $ 0+

Condition~55! then impliesDJ $ 0, and the rest of the induction step is the same as
in Theorem 1+ n

We can improve the result of Theorem 4 by performing a more careful analysis
of a first hitting time bound fort1+ The resulting sufficient condition is more relaxed
than~55!, but the expression describing the condition is more complicated and less
intuitive+
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Theorem 5: Consider the system described in Problem~P!+ Further assume i+i+d+
queue connectivity, with probability of connection qi at Qi at each time, and i+i+d+
Bernoulli arrivals, with probability of one arrival ai + Letting Ndi 5 1 2 di , define

ui 5 ai ~12 qi mi !,

si 5 qi ai mi 1 ~12 ai !~12 qi mi !,

di 5 qi mi ~12 ai !,

and for any finite dimension L, define the L3 L matrix Ai as

Ai 5 1
si ui 0 0 I 0 0

di si ui 0 I 0 0

0 di si ui I 0 0

J J J J J J J

0 0 I di si ui 0

0 0 I 0 di si ui

0 0 I 0 0 di Ndi

2 +
If there is a labeling of the queues such that

mi ci @12 bdi ~1 0!~I 2 bAi !
21~1 0!' # $ mj cj ∀ i, j : 1 # i, j # N, i , j,

(60)

then, at any time t, it is optimal to serve the M connected queues of highest index, or
serve all queues if less than M are connected+

Further, the“sufficiency factor”

SF~Ai ! :5 @12 bdi ~1 0!~I 2 bAi !
21~1 0!' #

is monotonic in the size of Ai ; that is,

dim~Ai
1! . dim~Ai

2! n SF~Ai
1! $ SF~Ai

2!+ (61)

Proof: The proof of Theorem 5 is given in Appendix E+

3.4. Non-i.i.d. Connectivity and Arrivals

In this section, we drop the i+i+d+ assumption on arrivals and connectivity+ Under
certain statistical assumptions on the arrival and connectivity processes, which are
stated precisely in the following theorem, we derive a condition sufficient to guar-
antee the optimality of the index policy described in Section 2+ We show that this
condition improves~18!+ Our results are summarized in the following theorem+
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Theorem 6: Consider the system of Problem~P!+ LetFt be thes-field summariz-
ing controller knowledge at the end of time t+

Suppose for each Qi that there existri ,hi [ R such that

0 , hi # 2ln b, (62)

1 # ri , ehi, (63)

and2

E @ehi ~x t
i2x t11

i ! ;x t
i . 06Ft # # ri (64)

if Qi is served at t+ Then, if there is a labeling of the queues such that

mi ci F12 e2hi
12 b

12 bri
G $ mj cj ∀ i, j : 1 # i, j # N, i , j, (65)

the index policy is optimal+
Suppose that in addition to~62!–~64!, at most one arrival can occur at each

queue at each time+ Then, if there is a labeling of the queues such that

mi ci ~12 b! (
h50

`

e2hhi F 1

12 be2hhi
2

e2hi

12 be2hhi ri
G $ mj cj

∀ i, j : 1 # i, j # N, i , j, (66)

the index policy is optimal+
Finally, over the parameter range of~62! and~63!, each term of the summation

in the left-hand side of~66! is positive+

Proof: The proof is given in Appendix F+ n

The following observations are in order+

1+ Conditions~62!–~64! are similar to but not the same as Eq+ ~2+1!, Eq+ ~2+2!,
and Condition~D1!, respectively, in @7# +Condition~62! as well as Condition
~D1! in @7# provide conditions on the drift of a process$xt , t $ 0%; they differ
in their requirements on the direction of the drift bound+

2+ In general, it is difficult to explicitly specify thehi andri which satisfy~64!
and give the optimal condition in~65! and~66!, although they can be deter-
mined numerically+

3+ As an example, from ~65! we can achieve the condition of~18! whenhi 5
2ln b andri 510b 2 ~10mi !@12 ~12 mi !b# + This gives ari $1 only when
mi $ b~12 b!0~12 b 2 b2!+ To ensuremi # 1, this is only valid whenb #
1
2
_ + It is also possible to show that we can do better than~18! under certain
parameter conditions+

2For RV x, eventA, ands-field F, we defineE @x;A6F # to meanE @xI$A%6F # , whereI is the indicator
function+
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4+ Each term of the summation in~66! is positive+ This means that any finite
summation also gives a sufficient condition, and adding terms only improves
the condition+

5+ Inequality~64! may be a difficult condition to check+ Instead,we can require
that

E @ehi ~x t
i2x t11

i ! 6x t
i . 0,Ft # # ri , (67)

which is easier to check and implies~64!+ However, there may be cases
where~64! is satisfied and~67! is not+

We summarize the results in Table 1+ From the table, and from previous deri-
vations, we observe that always

~E1! # H~E2!

~E3!J # ~E4! # ~E5!,

and under certain conditions~E1! # ~E6!+ The “sufficiency factors” that appear in
the table indicate how much the indices of different queues must be separated from
one another to guarantee that the index policy is optimal+ The above inequalities are
intuitively pleasing because they show that as the statistical description of the sys-

Table 1. Summary of Results

Assumptions Sufficiency Factor

Arbitrary arrivals,
arbitrary connectivity

12 b

12 b 1 mi b
~E1!

Arbitrary arrivals,
i+i+d+ connectivity

12 b

12 b 1 qi mi b
~E2!

i+i+d+ arrivals,
arbitrary connectivity

12 b

12 b 1 mi ~12 ai !b
~E3!

i+i+d+ arrivals,
i+i+d+ connectivity

12 b

12 b 1 qi mi ~12 ai !b
6 ~E4!

i+i+d+ arrivals,
i+i+d+ connectivity

@12 bdi ~1 0!~I 2 bAi !
21~1 0!' # ~E5!

Non-i+i+d+ arrivals,
non-i+i+d+ connectivity

12 e2hi
12 b

12 bri

~12 b! (
h50

`

e2hhi F 1

12 be2hhi
2

e2hi

1 2 be2hhi ri
G ~E6!
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tem becomes more detailed, the sufficient conditions for the optimality of the index
policy improve; that is, the additional statistical information about the system is
used to reduce the separation among the queues’ indices while the optimality of the
index policy is maintained+

Comment:Note that the number of serversM never enters explicitly in the argu-
ments of the proofs in Sections 2 and 3+ Therefore, we believe that even when the
number of servers is a random function of time, the conditions sufficient to guaran-
tee the optimality of thecmrule for the channel allocation problem described in this
article are the same as those shown in Table 1+

4. INFINITE HORIZON

The index policy described in Section 2 is optimal for all finite-horizon problems
under the conditions of Theorems 1–6+ Because the conditions of these theorems do
not depend on the horizonT, one can prove by a simple contradiction argument that
the same index policy is optimal for the corresponding infinite horizon problems
under the same conditions+

5. CONCLUSION

We have shown that there are conditions on system parameters which guarantee the
optimality of an index policy for theN-queueM-server system with arrivals and
varying connectivity+ These conditions depend on the statistical assumptions made
for the problem, as well as the value of key system parameters, such as arrival rate,
connection probability, and service probability+ The interest in this problem arises
from its applicability to several important systems, including mobile communica-
tion networks under centralized control and image formation systems+
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APPENDIX A

Proof of (30): When Dh1
i 5 Zh1

j 5 0, the cost due toJp and [p is the same along any sample path
realization+ Hence,

E @R6 Dh1
i 5 Zh1

j 5 0,F0# 5 0 a+s+ n

APPENDIX B

Proof of (31): In this situation,we have Ix1
i 5 [x1

i 21, and [x1
j 5 Ix1

j 21+ By definition, over 2#
t # t1, policy Jp servesQkt

instead ofQi at t [ u, andkt . i ~note thatQkt
may be one of the

queues numberedN 1 1, N 1 2, + + + ,N 1 M !+ Direct application of Lemma 1 implies the
following inequality, valid for any Ix t andt, although we will be interested int [ u:

E Jp @C Jp 6 Dh1
i 5 Zh1

j 5 1, Ix t ,t1,F0# $ E Jp @C Jp 6 Dh1
i 5 Zh1

j 5 1, Ix t
kt2 ,t1,F0# a+s+ (68)

Therefore,

E Jp @C Jp 6 Dh1
i 5 Zh1

j 5 1, Dht
kt 5 0,t1,F0# $ E Jp @C Jp 6 Dh1

i 5 Zh1
j 5 1, Dht

kt 5 1,t1,F0# a+s+ (69)

Hence, using~69!, we obtain∀t [ u,

E Jp @C Jp 6 Dh1
i 5 Zh1

j 5 1,t1,F0#

5 E Jp @C Jp 6 Dh1
i 5 Zh1

j 5 1, Dht
kt 5 0,t1,F0#P~ Dht

kt 5 06 Dh1
i 5 Zh1

j 5 1,t1,F0!

1 E Jp @C Jp 6 Dh1
i 5 Zh1

j 5 1, Dht
kt 5 1,t1,F0#P~ Dht

kt 5 16 Dh1
i 5 Zh1

j 5 1,t1,F0! (70)

# E Jp @C Jp 6 Dh1
i 5 Zh1

j 5 1, Dht
kt 5 0,t1,F0#P~ Dht

kt 5 06 Dh1
i 5 Zh1

j 5 1,t1,F0!

1 E Jp @C Jp 6 Dh1
i 5 Zh1

j 5 1, Dht
kt 5 0,t1,F0#P~ Dht

kt 5 16 Dh1
i 5 Zh1

j 5 1,t1,F0! (71)

5 E Jp @C Jp 6 Dh1
i 5 Zh1

j 5 1, Dht
kt 5 0,t1,F0#; (72)
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that is, a failed service inQkt
at anyt can only be detrimental to policyJp, no matter what the

queue lengths are or what other service occurs at this time+We can apply the argument leading
to ~72! at eacht [ u to obtain

E Jp @C Jp 6 Dh1
i 5 Zh1

j 5 1,t1,F0# # E Jp @C Jp 6 Dh1
i 5 Zh1

j 5 1, Dhu 5 0,t1,F0# a+s+ (73)

Next, we claim that~73! leads, for all t1, to

E @R6 Dh1
i 5 Zh1

j 5 1,t1,F0# $ E @R6 Dh1
i 5 Zh1

j 5 1, Dhu 5 0,t1,F0# a+s+, (74)

E @R6 Dh1
i 5 Zh1

j 5 1, Dhu 5 0,t1,F0# $ ci

12 bt121

12 b
2 cj

12 bT

12 b
a+s+ (75)

From~75!, we conclude that

E @R6 Dh1
i 5 Zh1

j 5 1,F0# 5 E @E @R6 Dh1
i 5 Zh1

j 5 1,t1,F0#6 Dh1
i 5 Zh1

j 5 1,F0#

$ EFci

12 bt121

12 b
2 cj

12 bT

12 b * Dh1
i 5 Zh1

j 5 1,F0G
5 ci

12 b21E @bt1 6 Dh1
i 5 Zh1

j 5 1,F0#

12 b
2 cj

12 bT

12 b
+ (76)

Furthermore, because the index policy described in the statement of Theorem 1 is used after
time t 51 andQj is of lower priority thanQi , t1 is independent of the eventZh1

j 5 1+ This fact
and~76! give

E @R6 Dh1
i 5 Zh1

j 5 1,F0# $ ci

12 b21E @bt1 6 Dh1
i 5 1,F0#

12 b
2 cj

12 bT

12 b
,

which establishes~31!+
It remains to prove~74! and~75! to complete the proof of~31!+ n

Proof of (74): Note that fort [ u, Jp’s service success atQkt
~kt . i !, defined by~24!, has

no effect on the cost due to[p+ This fact, together with~73!, gives

E @R6 Dh1
i 5 Zh1

j 5 1,t1,F0#

5 E [p @C [p 6 Dh1
i 5 Zh1

j 5 1,t1,F0# 2 E Jp @C Jp 6 Dh1
i 5 Zh1

j 5 1,t1,F0#

5 E [p @C [p 6 Dh1
i 5 Zh1

j 5 1, Dhu 5 0,t1,F0# 2 E Jp @C Jp 6 Dh1
i 5 Zh1

j 5 1,t1,F0#

$ E [p @C [p 6 Dh1
i 5 Zh1

j 5 1, Dhu 5 0,t1,F0# 2 E Jp @C Jp 6 Dh1
i 5 Zh1

j 5 1, Dhu 5 0,t1,F0#

using~73!

5 E @R6 Dh1
i 5 Zh1

j 5 1, Dhu 5 0,t1,F0# a+s+,

which is precisely the desired inequality+ n
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Proof of (75): Define

DJ1 :5 E @difference in total cost between[p and Jp in Q1 6 Dh1
i 5 Zh1

j 5 1, Dhu 5 0,t1,F0# ,

DJ2 :5 E @difference in total cost between[p and Jp in Q2 6 Dh1
i 5 Zh1

j 5 1, Dhu 5 0,t1,F0#

and note that

DJ1 1 DJ2 5 E @R6 Dh1
i 5 Zh1

j 5 1, Dhu 5 0,t1,F0# + (77)

We proceed to computeDJ1 and lower boundDJ2+We begin withDJ1+After t51 and up until
t1, [p, and Jp have the same service success inQ1 along Dhu 5 0, even thoughIxi 5 [xi 21 in this
time span+At t1, [p successfully servesQi and Jp does not complete service at someQk, k . i+
Along the set of eventsDh1

i 5 Zh1
i 5 1 and Dhu 5 0, the queue lengths inQ1 are the same for both

policies aftert1; that is,

Ixt
l 5 [xt

l ∀t $ t1, ∀ l , j+ (78)

Consequently,

DJ1 5 (
t51

t121

ci b t21 5 ci

12 bt121

12 b
+ (79)

Next, we lower boundDJ2+We write

DJ2 5 DJ1
2 1 DJ21

2 , (80)

where

DJ1
2 5 E @difference in cost between[p and Jp in Q2 due to service at

t 5 16 Dh1
i 5 Zh1

i 5 1, Dhu 5 0,t1,F0# ,

DJ21
2 5 E @difference in cost between[p and Jp in Q2 due to service at times

t 5 2,3, + + + ,T 6 Dh1
i 5 Zh1

i 5 1, Dhu 5 0,t1,F0# +

Then, by the specification of the policies[p and Jp, it follows that

DJ1
2 5 2(

t51

T

cj b
t21 5 2cj

12 bT

12 b
+ (81)

We claim that

DJ21
2 $ 0+ (82)

Equation~82! follows from the following fact+

Fact 1: At eacht . 1, with each queue inQ2 served by [p, we can pair off a unique queue in
Q2 of the same or higher index served byJp+

The above fact is true for the following reason+ BecauseQ1 and Q2 partition the set of
queues, the two policies always serveQ2 with the samenumberof servers, except fort 5 1
andt [ u+ At t 51, this is not true by the definition ofJp and [p, and for anyt [ u,Qkt

, defined
by ~24!,might be inQ2+However, because we restrict to sample paths whereQkt

service att [
u fails, the number of potentially successful servers inQ2 is the same for both policies at each

MULTICHANNEL ALLOCATION IN MOBILE NETWORKS 283



time aftert 51+ Note that Jp starts with one more job inQj at t 5 2, becauseZh1
j 51 and Dh1

j 5
0; therefore, it is not guaranteed that these servers are always serving the same queues inQ2+
However, because the index policy is being followed by both policies and with the same
number of potentially successful servers inQ2, service differences can occur only at queues
empty for one policy and not the other+

We claim that any queue empty inQ2 for Jp is necessarily also empty for[p+ This is
because att 5 2, [p starts out with equal or shorter length thanJp for each queue inQ2+Hence,
from t 5 2 on, if Jp serves a queue, [p does also, unless it is already empty+ If it is empty, then
[p serves a queue of lower index with this server, keeping [p’s queues always shorter than or

equal to those ofJp in Q2+
We have thus established two points:

~P1! Service difference can occur only at queues inQ2 empty for one policy and not the
other+

~P2! A queue inQ2 empty for Jp is also empty for [p+

Together, these points imply that all service differences inQ2 occur when Jp serves a queue
empty for [p+ Policy [p must then be serving a queue thatJp is not serving~it might be one of
the added queues of zero cost!, but because both policies follow the same index policy, this
queuemustbe of lower index than that served byJp+ This proves Fact 1+

From Fact 1, it clearly follows that

DJ2
2 $ 0

because Jp has a higher expected service benefit inQ2 at each timet . 1+ Hence, ~82! is
proved+

Because of~80!–~82!, we obtain

DJ2 $ 2cj

12 bT

12 b
+ (83)

The inequality in~75! follows from ~79! and~83!+ The proof of~31! is now complete+ n

APPENDIX C

Proof of (32): In this situation, we have Ix1
i 5 [x1

i 2 1 and [x1
j 5 Ix1

j + Similar to~74! and~75!,
we claim that

E @R6 Dh1
i 5 1, Zh1

j 5 0,t1,F0# $ E @R6 Dh1
i 5 1, Zh1

j 5 0, Dhu 5 0,t1,F0# a+s+, (84)

E @R6 Dh1
i 5 1, Zh1

j 5 0, Dhu 5 0,t1,F0# 5 ci

12 bt121

12 b
a+s+ (85)

The arguments leading to~74! can be repeated precisely to give~84!+
To provide~85!, we write

E @R6 Dh1
i 5 1, Zh1

i 5 0, Dhu 5 0,t1,F0# 5 DJ1 1 DJ2, (86)
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where

DJ1 :5 E @difference in total cost between[p and Jp in Q1 6 Dh1
i 5 1, Zh1

j 5 0, Dhu 5 0,t1,F0# ,

DJ2 :5 E @difference in total cost between[p and Jp in Q2 6 Dh1
i 5 1, Zh1

j 5 0, Dhu 5 0,t1,F0# +

For the computation ofDJ1,we note that aftert51, service inQ1 is independent of the events
in Q2, because aftert 51, both Jp and [p follow the same index policy+ Hence, the analysis of
Q1 is the same as in the proof of~31!, and the same arguments leading to~79! give

DJ1 5 (
t51

t121

ci b t21 5 ci

12 bt121

12 b
+ (87)

For the computation ofDJ2, we note that queue lengths ofQ2 are the same for both[p and Jp
aftert 51, Dhu 5 0, and policies [p and Jp allocate the servers in the same queues inQ2 aftert1+
Hence,

DJ2 5 0+ (88)

Equation~85! follows from ~86!–~88!+ The proof of~32! is now complete+ n

APPENDIX D

Proof of (33): In this situation, we have Ix1
i 5 [x1

i and [x1
j 5 Ix1

j 2 1+ Here, queue length and
service inQ1 are identical for both policies; hence, t1 never occurs~i+e+, t1 5 T11!+ There-
fore, u 5 $T 1 1% and

E @R6 Dh1
i 5 0, Zh1

j 5 1,t1,F0# 5 E @R6 Dh1
i 5 0, Zh1

j 5 1, Dhu 5 0,t1,F0# a+s+ (89)

We further claim

E @R6 Dh1
i 5 0, Zh1

j 5 1, Dhu 5 0,t1,F0# $ 2cj

12 bT

12 b
+ (90)

To show~90!, we write

E @R6 Dh1
i 5 0, Zh1

i 5 1, Dhu 5 0,t1,F0# 5 DJ1 1 DJ2, (91)

where

DJ1 :5 E @difference in total cost between[p and Jp in Q1 6 Dh1
i 5 0, Zh1

j 5 1, Dhu 5 0,t1,F0# ,

DJ2 :5 E @difference in total cost between[p and Jp in Q2 6 Dh1
i 5 0, Zh1

j 5 1, Dhu 5 0,t1,F0# +
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Service inQ1 is identical for [p and Jp, so

DJ1 5 0+ (92)

The analysis ofQ2 is identical to that in the proof of~31!, and the arguments leading to~83!
give

DJ2 $ 2cj

12 bT

12 b
+ (93)

The combination of~89!–~93! proves~33!+ n

APPENDIX E

Proof of Theorem 5: First, we derive preliminary results needed in the proof of the
theorem+

As mentioned in the description of Problem~P!, by our definition an arrival at a queue
occurs before service allocation at that time+ Then, under the assumption thatQi is served at
each time it is connected, we note that the queue length processxt

i is a birth–death process
with the following transition probabilities:

ui 5 ai ~12 qi mi !,

si 5 qi ai mi 1 ~12 ai !~12 qi mi !, (94)

di 5 qi mi ~12 ai !,

whereui is the probability of increment, di of decrement, andsi of no change+We will derive
some properties of such a process, and then use them to get a better bound ont1+ For nota-
tional simplicity, we will drop thei subscript in much of the following+

Consider two types of birth–death queues withu, s, andd: one infinite state~D`! and the
other finite~DL! with L states+Letxt be queue length for either type+ForD`, the transition prob-
abilitiesu, s, andddefined in~94! are valid at all states exceptxt 50,whose transitions we will
not have to define for the following results+The transition probabilities forDL are the same ex-
cept for statext 5L,where we haveP~xt115L216xt 5L!5dandP~xt115L6xt 5L!512d+

Let t` be the first hitting time of state 0 forD`, definingt`5 T11 if this event never
occurs+ Similarly, definetL as the corresponding hitting time forDL+ The following lemma
states that for a birth–death chain with either finite or infinite state-space, the first hitting time
of state 0 increases stochastically as the chain’s initial state increases+

Lemma 2:

P~tL . k6x0 5 n 1 1! $ P~tL . k6x0 5 n! ∀k, n, (95)

P~t` . k6x0 5 n 1 1! $ P~t` . k6x0 5 n! ∀k, n+ (96)

286 C. Lott and D. Teneketzis



Proof: We will prove~95!; ~96! follows in exactly the same way+
It is clear from monotonicity that

P~tL . k 2 16x0 5 n! $ P~tL . k6x0 5 n! ∀k, n+ (97)

Assume we start in staten11+ Let t6 be the first hitting time of staten+ If staten is never hit,
then by definition, t6 5 T 1 1+ Note thatt6 is a stopping time+

If t6 . k, then

P~tL . k6x0 5 n 1 1, t6 . k! 5 P~tL . k6x0 5 n, t6 . k! 5 1 ∀k, n+ (98)

If t6 # k, we have

P~tL . k6x0 5 n 1 1, t6 # k,t6! 5 P~tL . k6x0 5 n 1 1, xt6
5 n, t6 # k,t6!

5 P~tL . k 2 t66x0 5 n, t6 # k,t6!

$ P~tL . k6x0 5 n, t6 # k! a+s+, (99)

where the second equality follows from the Strong Markov Property and the final inequality
follows by repeated application of~97! for any value oft6+

From~98! and~99!, we thus have

P~tL . k6x0 5 n 1 1! 5 E @P~tL . k6x0 5 n 1 1,t6!#

$ E @P~tL . k6x0 5 n,t6!#

5 P~tL . k6x0 5 n! ∀k, n (100)

and the proof is complete+ n

The following lemma states that for birth–death Markov chains with fixed initial state,
the first hitting time of state 0 stochastically increases as the cardinality of the chain’s state-
space increases+

Lemma 3:

P~tL . k6x0 5 n! # P~tL11 . k6x0 5 n! # P~t` . k6x0 5 n! ∀k,1 # n # L+

(101)

Proof: We will prove the first inequality in~101!; the proof of the second inequality is
virtually identical+ For notational simplicity, define, for DL11,

wn
k :5 P~tL11 . k6x0 5 n!+

From this definition and the queue layout, we then have

w1
k 5 sw1

k21 1 uw2
k21, k $ 1, (102)

wL11
k 5 dwL

k21 1 ~12 d!wL11
k21, k $ L 1 1, (103)
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wn
k 5 1, 0 # k # n 2 1, 1 # n # L 1 1, (104)

wn
k 5 uwn11

k21 1 swn
k21 1 dwn21

k21, n $ 2, k $ n+ (105)

Similarly for DL, define

[wn
k :5 P~tL . k6x0 5 n!

and

[w1
k 5 s [w1

k21 1 u [w2
k21, k $ 1, (106)

[wL
k 5 d [wL21

k21 1 ~12 d! [wL
k21, k $ L, (107)

[wn
k 5 1, 0 # k # n 2 1, 1 # n # L, (108)

[wn
k 5 u [wn11

k21 1 s [wn
k21 1 d [wn21

k21, n $ 2, k $ n+ (109)

We claim the following:

Claim 1: Fix m $ 0+ Assume

[wn
k # wn

k, 1 # n # L, 0 # k # n 2 1 1 m+ (110)

Then

[wn
k # wn

k, 1 # n # L, 0 # k # n 2 1 1 m1 1+ (111)

Proof of Claim 1: We consider two cases+

Case 1: 1 # n # L 2 1+We proceed by induction onn, keepingm fixed+ Assumption~110!
implies

[w1
k # w1

k, 0 # k # m,

and

[w2
k # w2

k, 0 # k # m1 1+

Hence,

[w1
1211m11 5 s [w1

m 1 u [w2
m

# sw1
m 1 uw2

m

5 w1
1211m11+ (112)

So the claim is true forn 5 1+ Now, assume that forn $ 2,

[wn21
~n21!211m11

# wn21
~n21!211m11 (113)
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is true+Becausen$ 2 andk5n211m11$ n, to prove the induction step we can use~109!:

[wn
n211m11 5 u [wn11

~n11!211m21 1 s [wn
n211m 1 d [wn21

~n21!211m11

# uwn11
~n11!211m21 1 swn

n211m 1 d [wn21
~n21!211m11 by ~110!

# uwn11
~n11!211m21 1 swn

n211m 1 dwn21
~n21!211m11 by ~113!

5 wn
n211m11+ (114)

Hence, by induction,

[wn
n211m11 # wn

n211m11, 1 # n # L 2 1, (115)

and so Case 1 of Claim 1 is proved+

Case 2: n5 L+ Becausek5 L 211 m11$ L,we can use~108! and the fact that 12 d5 s1
u to write

[wL
L211m11 5 d [wL21

L211m 1 ~12 d! [wL
L211m

# dwL21
L211m 1 ~12 d! [wL

L211m by ~110!

# dwL21
L211m 1 ~12 d!wL

L211m by Case 1

5 swL
L211m 1 uwL

L211m 1 dwL21
L211m since 12 d 5 s1 u

# swL
L211m 1 uwL11

L211m 1 dwL21
L211m using Lemma 2

5 wL
L211m11

So Case 2 of Claim 1 is proved, and the entire claim is proved+ n

By ~104! and~108!, we knowwn
k 5 [wn

k 5 1, 1# n # L, 0 # k # n21+ The conclusion of
the lemma follows by induction and Claim 1+ n

Lemmas 4 and 5 that follow complete the set of preliminary results needed for the proof
of Theorem 5+

Lemma 4: For any substochastic matrix A and0 # b , 1, (t50
` ~bA! t 5 ~I 2 bA!21 exists+

Lemma 4 is a simple well-known result for the case whenA is a stochastic matrix~e+g+,
see@8, p+ 43# for reference!+ A nearly identical argument holds whenA is substochastic, as
above+

Lemma 5: For 0 # b , 1,

~1 0!F~bI 2 AT21! (
t50

`

~bA! t 2 (
t50

T22

AtG~1 0!' # 0 ∀T+ (116)
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Proof: Consider theb-dependent term, and noting thatB andC below are both$0,

~1 0!F~bI 2 AT21! (
t50

`

~bA! tG~1 0!'

5 ~1 0!FbI (
t50

`

~bA! tG~1 0!' 2 ~1 0!FAT21 (
t50

`

~bA! tG~1 0!'

asssssssssssdssssssssssg assssssssssssdsssssssssssg
B C

# ~1 0!F(
t50

`

~bA! tG~1 0!' 2 ~1 0!F~bA!T21 (
t50

`

~bA! tG~1 0!'

5 ~1 0!F(
t50

`

~bA! t 2 ~bA!T21 (
t50

`

~bA! tG~1 0!'

5 ~1 0!F(
t50

T22

~bA! tG~1 0!'

# ~1 0!F(
t50

T22

AtG~1 0!' (117)

Equation~117! then directly implies~116!+ n

Proof of Theorem 5: The arguments leading to~34! are identical to those used in the proof
of Theorem 1+We assume~60! is satisfied and proceed by induction+

First, note that because of Lemma 4,

12 bdi ~1 0!~I 2 bA!21~1 0!' 5 12 bdi ~1 0! (
t50

`

~bA! t~1 0!' # 1,

assssssssdssssssssg
B

where the inequality follows becauseB$ 0, as every matrix term in~bA! t is non-negative∀t+
So, when~60! is satisfied, then, necessarily, mi ci $ mj cj , and forT 5 1, the theorem can be
proved in exactly the same way as Theorem 1+

To proceed with the induction step, considert1 as defined in~22! and define

t1
* 5 t $ 2 such that Zht

i 5 1 and Dht
i 5 0 under the conditionx0

i 5 1+

Note that by the definition oft1, it follows that Ixt121
i 5 0, [xt121

i 5 1+Hence, t1
*# t1 a+s+ by the

definitions oft1 andt1
*+

Define

[t` 5 min$t $ 2: Zht
i 5 1, Dht

i 5 06Qi served each time it is nonempty
and connected under bothJp and [p, x0

i 5 1%+

Note that the two policies serveQi the same until [p servesQi and Ixt
i 5 0 and [xt

i 5 1+ If both
policies always serveQi each time it is nonempty and connected, then this time when the
policies serveQi differently only occurs earlier; that is, we have It`# t1

* a+s+
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Next, we show the connection to the previous result, in that we claim [t` can be stochas-
tically bounded using Lemma 3+ Note thatD` models the queue length ofQi under the con-
dition of [t`; that is,Qi is served whenever it is connected and nonempty; that is, interpreting
xt as the queue length ofD`, we can give an equivalent definition for[t`:

[t` 5 min$t $ 2: xt 5 06x0 5 1%+

Similarly for DL, with xt referring to queue length inDL, we define

[tL 5 min$t $ 2: xt 5 06x0 5 1%+

We define [t`5 T 1 1 and [tL 5 T 1 1 if the event never occurs within the time horizonT+
By settingn 5 1 in Lemma 3, we have

P~ [t` . k! $ P~ [tL11 . k! $ P~ [tL . k! ∀k, L,

which means that

[t` $st [tL11 $st [tL ∀L+ (118)

The inequalities in~118!, together witht1 $ast1
* $as [t`, give

t1 $ast1
* $as [t` $st [tL11 $st [tL ∀L+ (119)

Combining~119! with the fact that 0# b , 1, we obtain

E @bt1 6 Dh1
i 5 1,x0# # E @b [tL11 # # E @b [tL # ∀ finite L, (120)

whereL is the number of states in the finite chainDL+
Let [xt be the state att of Markov chainDL11 ~we chooseL 1 1 to allow states 1, + + + , L

along with 0!+ Definept :5 ~ pt~1!pt~2! {{{ pt~L!!', where

pt ~i ! :5 P~ [xt 5 i, [xs Þ 0, 1 # s# t!+

Then,3

pt 5 At21p1+ (121)

To find an expression for[tL11, we setp1 5 ~1 0 {{{ 0!' :5 ~1 0!'+
Using~121!, we note that for t$ 2,

P~ [tL11 5 t! 5 di ~1 0!pt21 5 di ~1 0!At22~1 0!'+ (122)

3Note that state 0 of the chain~i+e+, queue empty! is not represented inpt , or in A+
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We use~122!, Lemma 4, and Lemma 5 to computeE @b [tL11 #:

E @b [tL11 # 5 (
t52

T

P~ [tL11 5 t!b t 1 P~ [tL11 5 T 1 1!bT11

5 bdi (
t51

T21

~1 0!At21~1 0!'b t 1 bT11S12 di (
t51

T21

~1 0!At21~1 0!'D
5 bdi ~1 0!F(

t51

T21

~bA! tGA21~1 0!' 1 bT11S12 di ~1 0!F(
t50

T22

AtG~1 0!'D
5 bdi ~1 0!F(

t51

`

~bA! t 2 (
t5T

`

~bA! tGA21~1 0!'

1 bT11S12 di ~1 0!F(
t50

T22

AtG~1 0!'D
5 b2di ~1 0!F~12 bT! (

t50

`

~bA! t 1 bT (
t50

`

~bA! t 2 (
t5T21

`

~bA! tG~1 0!'

2 bT11di ~1 0!F(
t50

T22

AtG~1 0!' 1 bT11

5 b2di ~1 0!F~12 bT! (
t50

`

~bA! tG~1 0!' 1 bT11

1 bT11di ~1 0!F~bI 2 AT21! (
t50

`

~bA! t 2 (
t50

T22

AtG~1 0!'+

assssssssssssssssssdsssssssssssssssssssg
B

(123)

By Lemma 5, B # 0 for 0# b , 1; so, by ~123!, we have

E @b [tL11 # # b2di ~1 0!F~12 bT! (
t50

`

~bA! tG~1 0!' 1 bT11

5 bT11 1 ~12 bT!b2di ~1 0!~I 2 bA!21~1 0!'+ (124)

Combining~120! and~124! and using the Markovian property of the system, we obtain

12 b21E @bt1 6 Dh1
i 5 1,F0#

12 b
5

12 b21E @bt1 6 Dh1
i 5 1,x0#

12 b

$
12 b21E @b [tL11 #

12 b

5
12 bT 2 ~12 bT!bdi ~1 0!~I 2 bA!21~1 0!'

12 b

5
~12 bT!~12 bdi ~1 0!~I 2 bA!21~1 0!' !

12 b
+ (125)
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Combining~34! and~125!, we get

DJ $ ci mi @12 bdi ~1 0!~I 2 bA!21~1 0!' #
12 bT

12 b
2 cj mj

12 bT

12 b

5 @ci mi ~12 bdi ~1 0!~I 2 bA!21~1 0!' ! 2 cj mj #
12 bT

12 b
+ (126)

Condition~60! then impliesDJ $ 0, and the rest of the induction step follows as previously+
Finally, ~61! follows directly from~120! and the computation performed in~125!+ n

APPENDIX F

We begin with the following preliminary result+ For notational simplicity, we drop thei sub-
script and letr andh be the parameters satisfying~63! and~64! for someQi +

Lemma 6: Consider the stopping timet3 defined by~45!+ Then, under~62!–~64!,

P~t3 . t 6F0! $ 1 2 r te2h+ (127)

Proof: Let xt denote queue length ofQi at timet, and define

Mt :5 r2te2hxt+ (128)

Then,

EF Mt11

Mt

;xt . 0*FtG5 r21E @ehi ~xt2xt11! ;xt . 06Ft # # 1, (129)

where the last inequality follows from~64!+ Hence,

E @Mt11;xt . 06Ft # # Mt a+s+ (130)

becauseMt is Ft -measurable+
Let a ∧ b :5 min~a,b! and consider the stopped processMt∧t3

+ For this process, we have

E @Mt11∧t3
6Ft # 5 E @Mt11∧t3

;t3 . t 6Ft # 1 E @Mt11∧t3
;t3 # t 6Ft #

# Mt∧t3
I$t3.t% 1 Mt∧t3

I$t3#t%

5 Mt∧t3
a+s+, (131)

where the inequality in~131! follows from~130! and the fact that$t3 . t% [ Ft + Furthermore,

E @6Mt∧t3
6# 5 E @Mt∧t3

# # 1 , ` (132)

becauser $ 1, andh, x $ 0+
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BecauseMt is Ft -adapted andt3 is an$Ft % stopping time, Mt∧t3
is also adapted toFt +

So, from ~131! and ~132!, it follows that Mt∧t3
is anFt -supermartingale; consequently@6,

Chap+ 24# ,

Mo $ E @Mt∧t3
6F0#

5 E @ r2~t∧t3!e2hxt∧t3 ;t3 . t 6F0# 1 E @ r2~t∧t3!e2hxt∧t3 ;t3 # t 6F0#

$ r2tP~t3 # t 6F0!, (133)

where the last inequality follows from

E @ r2~t∧t3!e2hxt∧t3 ;t3 . t 6F0# . 0

and

E @ r2~t∧t3!e2hxt∧t3 ;t3 # t 6F0# $ E @ r2t ;t3 # t 6F0#

5 r2tP~t3 # t 6F0!

becauset3 # t impliesr2~t∧t3! $ r2t asr $1, and alsoe2hxt∧t3 51 asxt3
5 0 by the definition

of t3 @cf+ ~45!# + As Mo :5 e2hx0, we conclude from~133! that

P~t3 # t 6F0! # r te2hx0 # r te2h ∀x0 $ 1+ (134)

Therefore,

P~t3 . t 6F0! $ 1 2 r te2h+ n

Based on Lemma 6 we proceed to prove Theorem 6+

Proof of Theorem 6: The arguments leading to~34! are the same as in Theorem 1+ There-
fore, from ~34!, we have

DJ 5 E @R6F0# $ ci miF 12 b21E @bt1 6 Dh1
i 5 1,F0#

12 b
G2 cj mj

12 bT

12 b
a+s+

5
12 bT

12 b
Sci miF 12 b21E @bt1 6 Dh1

i 5 1,F0#

12 bT G2 cj mjD a+s+ (135)

Furthermore, from the definition oft1 andt3 @cf+ ~22! and~45!, respectively# , we obtain

E @bt1 6 Dh1
i 5 1,F0# # E @bt3 6 Dh1

i 5 1,F0# # E @bt3 6 Dh1
i 5 1,F0# 5 E @bt3 6F0# (136)

and

E @bt3 6F0# 5 1 2 ~1 2 b! (
t50

T21

b tP~t3 . t 6F0 !+ (137)

Because of~127!, ~137! gives

E @bt3 6F0# # 12 ~12 b! (
t50

T21

b t~12 r te2h !

5 12 ~12 b!F 12 bT

12 b
2 e2h

12 ~br!T

12 br
G + (138)

294 C. Lott and D. Teneketzis



From~136! and~138!, it follows that

12 b21E @bt1 6 Dh1
i 5 1,F0#

12 bT
$

12 bT

12 bT
2 e2hF 12 b

12 br
GF 12 ~br!T

12 bT G
$ 12 e2h

12 b

12 br
a+s+ (139)

Combining~135! with ~139! and the fact thatr , 10b, we obtain

DJ 5 E @R6F0# $
12 bT

12 b
Sci miF12 e2h

12 b

12 br
G2 cj mjD a+s+ (140)

We use~140! to prove, by induction, the optimality of the index policy under Condition~65!+
For T 5 1, following the proof of Theorem 1, we obtain

E @R6F0# 5 ci mi 2 cj mj , (141)

and because 1# r # 10b, h . 0, we have

0 , e2h
12 b

12 rb
, 1+ (142)

Condition~65! together with~142! show that

E @R6F0# 5 ci mi 2 cj mj . 0+ (143)

Therefore, the index policy is optimal when the horizon isT 5 1+
For the induction step, the arguments of Theorem 1 leading to~34!, together with the

arguments leading to~142! and Condition~65!, give

DJ 5 E @R6F0# . 0+ (144)

Consequently, the index policy described in Section 2 is optimal for any finite horizon under
~62!–~65!+

We proceed to prove the optimality of the index policy for any finite horizon problem
under~62!–~64!, ~66!, and the assumption that at most one arrival can occur at each queue at
each instant of time+ To accomplish this, we determine an upper bound on the right-hand side
of ~136! and combine this bound with~135! to prove the optimality of the index policy under
Condition~66!+ To upper-bound the right-hand side of~136!, we first note that by the defini-
tion of t3 we have, for anyx0

i $ 1,

E @bt3 6F0, x0
i # 5 E @bt3 6F0# a+s+ (145)

Therefore,

E @bt3 6F0# 5 E @bt3 6F0, x0
i 5 1# 5 1 2 ~12 b! (

t50

T21

b tP~t3 . t 6F0, x0
i 5 1! a+s+ (146)

MULTICHANNEL ALLOCATION IN MOBILE NETWORKS 295



We lower-boundP~t3 . t 6F0, x0
i 5 1! and this leads to an upper bound onE @bt3 6F0# + To

lower-boundP~t3 . t 6F0, x0
i 5 1!, we note, by the first inequality in~133!, that

Mo~x0
i ! $ E @Mt∧t3

6F0, x0
i 5 1#

5 E @ r2~t∧t3!e2hxt∧t3 ;t3 . t 6F0, x0
i 5 1# 1 E @ r2~t∧t3!e2hxt∧t3 ;t3 # t 6F0, x0

i 5 1# +

(147)

Using the fact that at most one arrival can occur at each queue at each instant of time, and
x0

i 5 1, we note that

e2hxt $ e2h~t11! a+s+ ∀t+ (148)

Because of~148!, ~147! gives

e2h 5 Mo~x0
i ! $ r2te2h~t11!P~t3 . t 6F0, x0

i 5 1! 1 r2tP~t3 # t 6F0, x0
i 5 1! (149)

and becauseP~t3 # t 6F0, x0
i 5 1! 5 1 2 P~t3 . t 6F0, x0

i 5 1!, ~149! gives

P~t3 . t 6F0, x0
i 5 1! $

12 e2hr t

12 e2h~t11!

5 ~12 e2hr t ! (
h50

`

~e2h~t11! !h, (150)

which is the desired lower bound forP~t3 . t 6F0, x0
i 5 1!+

Combining~146! and~150!, we obtain

E @bt3 6F0# # 12 ~12 b! (
t50

T21

b t~12 e2hr t ! (
h50

`

~e2h~t11! !h

5 12 ~12 b! (
h50

`

e2hh (
t50

T21

@~be2hh ! t 2 e2h~bre2hh ! t #

5 12 ~12 b! (
h50

`

e2hhF 12 ~be2hh !T

12 be2hh
2 e2h

12 ~bre2hh !T

12 bre2hh G , (151)

which provides the desired upper bound on the right-hand side of~136!+
The combination of~136! and~151! results in

12 b21E @bt1 6 Dh1
i 5 1,F0#

12 bT

$ (
h50

`

e2hhF 12 b

12 be2hh

12 ~be2hh !T

12 bT
2 e2h

12 b

12 bre2hh

12 ~bre2hh !T

12 bT G
5 (

h50

`

e2hh
12 ~be2hh !T

12 bT F 12 b

12 be2hh
2 e2h

12 b

12 bre2hh

12 ~bre2hh !T

12 ~be2hh !T G
asssssdssssg asssssdsssssg

$1 #1

$ ~12 b! (
h50

`

e2hhF 1

12 be2hh
2

e2h

12 bre2hh G +
asssssssssssdsssssssssssg

G1

(152)
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The inequality in~135! together with~152! gives

DJ 5 E @R6F0#

$
12 bT

12 b Sci mi ~12 b! (
h50

`

e2hhF 1

12 be2hh
2

e2h

12 bre2hh G2 cj mjD a+s+ (153)

We use~153! together with Condition~66! to prove the optimality of the index rule by induction+
For T 5 1, we have, following the proof of Theorem 1,

DJ 5 E @R6F0# 5 ci mi 2 cj mj + (154)

Becauset1 # T 1 1 a+s+, we have

12 b21E @bt1 6 Dh1
i 5 1,F0#

12 bT
# 1, (155)

so that by~152!, we have

~12 b! (
h50

`

e2hhF 1

12 be2hh
2

e2h

12 bre2hh G # 1+ (156)

Because of~156! and Condition~66!, ~154! gives

DJ $ 0; (157)

therefore, the index policy is optimal when the horizon isT 5 1+
For the induction step, the arguments of Theorem 1 leading to~34!, together with the

arguments leading to~153! and Condition~66!, give

DJ 5 E @R6F0# $ 0+ (158)

Consequently, the index policy described in Section 2 is optimal for any finite horizon under
~62!–~64!, ~66!, and the assumption that at most one arrival can occur at each queue at each
instant of time+

To prove that each term in the sum appearing on the left-hand side of~66! is positive,we
first note that, because of~63!,

12 bre2hh $ 12 behe2hh+ (159)

Consequently, becauseh . 0,

e2h

12 bre2hh
#

e2h

12 behe2hh
5

1

eh 2 be2hhr
#

1

12 be2hhr
∀h $ 0+ (160)

This completes the proof+ n

Remark: When only theh 5 0 term is included in Condition~66!, it becomes equivalent to
Condition ~65!+ Hence, each subsequent term in the summation of Condition~66! further
improves the sufficient condition beyond that of Condition~65!+
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