
http://dv1www56.jstor.org:6085

Optimal Stochastic Scheduling of Forest Networks with Switching Penalties
Author(s): Mark P. Van Oyen and Demosthenis Teneketzis
Source: Advances in Applied Probability, Vol. 26, No. 2, (Jun., 1994), pp. 474-497
Published by: Applied Probability Trust
Stable URL: http://www.jstor.org/stable/1427447
Accessed: 04/04/2008 12:03

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at

http://dv1www56.jstor.org:6085/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part,

that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles,

and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at

http://www.jstor.org/action/showPublisher?publisherCode=apt.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed

page of such transmission.

JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We enable the

scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that

promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

http://www.jstor.org/stable/1427447?origin=JSTOR-pdf
http://dv1www56.jstor.org:6085/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=apt


Adv. Appl. Prob. 26, 474-479 (1994) 
Printed in N. Ireland 

? Applied Probability Trust 1994 

OPTIMAL STOCHASTIC SCHEDULING OF FOREST 
NETWORKS WITH SWITCHING PENALTIES 

MARK P. VAN OYEN AND 

DEMOSTHENIS TENEKETZIS,* University of Michigan, Ann Arbor 

Abstract 

We present structural properties of optimal policies for the problem of scheduling 
a single server in a forest network of N queues (without arrivals) subject to switching 
penalties. In addition to linear holding costs, we impose either lump sum switching 
costs or batch set-up delays which are incurred at each instant the server processes a 

job in a queue different from the previous one. We use reward rate notions to 
unearth conditions on the holding costs and service distributions for which an 
exhaustive policy is optimal. For the case of two nodes connected probabilistically in 
tandem, we explicitly define an optimal policy under similar conditions. 

OPTIMAL CONTROL OF QUEUES; QUEUEING NETWORKS; SWITCHING COST; SWITCHING 

TIME; MULTI-ARMED BANDITS; COUPLING 

AMS 1991 SUBJECT CLASSIFICATION: PRIMARY 60K25 

SECONDARY 90B35 

1. Introduction 

Applications such as computer networks, data networks, and manufacturing 
systems have motivated the efforts of researchers to address scheduling subject to 

switching penalties (see Browne and Yechiali (1989); Bruno and Downey (1978); 
Glazebrook (1980); Gupta et al. (1987); Hofri and Ross (1987); Liu et al. (1992); 
Magnanti and Vachani (1990); Monma and Potts (1989); Perkins and Kumar (1989); 
Rajan and Agrawal (1991); Santos and Magazine (1985); Van Oyen (1992); and Van 

Oyen et al. (1992)). Although it is often realistic to include a penalty for each 
switch from one project type to another, few results are known regarding optimal 
policies for such deterministic scheduling problems and very few for such stochastic 

problems. See Glazebrook (1980); Gupta et al. (1987); Hofri and Ross (1987); Liu 
et al. (1992); Rajan and Agrawal (1991); Van Oyen (1992); and Van Oyen et al. 

(1992) for the stochastic scheduling literature treating switching penalties. 
Monma and Potts (1989) analyze a variety of deterministic scheduling models that 

include batch set-up times (delays) under the optimization criteria of total weighted 
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completion time, maximum completion time, maximum lateness, and number of late 

jobs. For certain problems, optimal policies are partially characterized and computa- 
tional algorithms based on dynamic programming are developed. Because of the 

computational difficulty of these algorithms, Monma and Potts suggest that the 

development of heuristics for scheduling with set-up times (delays) is a topic of 
practical importance. We concur with their views, and toward this end we seek to 

rigorously develop qualitative results for stochastic scheduling with switching 
penalties, thereby providing insight into the character of such problems and a 
foundation for improved design and heuristics. 

Rajan and Agrawal (1991) study the stochastic scheduling of a single server in a 
system with switching costs (or switchover times) and a general exogenous arrival 
process which is uniformly split amongst p queues. The queues are identical with 
respect to service period, holding cost, and switching penalty; thus, the system 
possesses complete symmetry. They define optimality in terms of a stochastic 
dominance of the cost process under one policy over any other policy. Under a 
restriction to non-idling policies, they show that it is optimal to serve exhaustively 
and to allocate the server to the longest available queue at each epoch of 
exhaustion. The effects of initial customer configuration are studied and extensions 
to switchover times and to partial information are treated. Liu et al. (1992) study 
similar problems with switching times under the objectives of stochastically 
minimizing either the total unfinished work in the system or the total number of jobs 
in the system. They devote considerable effort to the determination of conditions 
under which optimal policies can be characterized as being greedy, exhaustive, 
non-idling, patient, or impatient. Moreover, they characterize optimal policies 
under a variety of information patterns: complete, partial, periodic, delayed, or 
nearest neighbor. We note, however, that the majority of their analysis requires the 
assumption of complete symmetry in the system. 

A treatment of connected, heterogeneous queues subject to either switching 
delays or switching costs is the primary novelty of our contribution. To the best of 
our knowledge, the existing literature does not address the issues introduced when 
heterogeneous queues are connected together. In Van Oyen et al. (1992), we 
analyzed a problem of parallel, heterogeneous queues with no arrivals and 
demonstrated the optimality of an index policy. Crucial to that result was the 
optimality of an exhaustive policy. Since the present formulation allows jobs served 
at one queue to be transferred to another, the system at hand may be said to possess 
internal arrivals. This addition introduces a substantial difficulty and destroys the 

simple index structure found in the case of parallel queues. If each queue is viewed 
as an arm of a multi-armed bandit, then the connections cause the bandit to be 
restless in the terminology of Whittle (see Whittle (1988) and Weber and Weiss 
(1990)). Regardless of the perspective taken, connections complicate the nature of 
an optimal policy. We are able, however, to delineate a class of problems for which 
relatively simple policies (exhaustive ones) are optimal. 
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Systems of connected queues for which switching is not penalized have enjoyed 
extensive treatment. Klimov (1974), (1978) identified the optimality of a strict 

priority rule for general topologies of interconnected queues with Poisson arrivals, 
linear holding costs, and no switching penalties. See also Foss (1984); Harrison 

(1975); Lai and Ying (1988); Nain (1989); and Nain et al. (1989). 
The paper is organized as follows. We formulate the switching cost and switching 

delay problems in Section 2, then analyze them in Section 3. Section 3.1 introduces 
basic reward and reward rate notions as preliminaries. A class of problems with 
deterministic connections for which exhaustive policies are optimal is identified in 
Section 3.2. In Section 3.3 we explicitly define an optimal policy for two queues 
connected stochastically in tandem. Finally, Section 3.4 addresses some issues 

pertaining to the search for an optimal solution to the class of problems identified in 
Section 3.2. 

2. Problem formulation 

A single server is to be allocated to jobs in a system of queues with no exogenous 
arrivals. The system contains N queues which are connected in the sense that a job 
completed in queue n (n E {1, 2, * . , N}) either leaves the system with probability 
one or re-enters the system at queue I(n) with probability 1, where I(n) E 
{1, ? * , n - 1, n + 1, * , N + 1} with I(n) = N + 1 denoting the case where jobs of 
node n exit the system. We assume that no job can visit any queue more than once, 
and hence every job eventually leaves the system. Thus, the directed graph 
associated with the queueing network can be described as a forest, that is, a 
collection of one or more trees. Each queue, n, possesses a general (positive) service 

period distribution with mean x 1- such that 0< ,1 < oo. Successive services in 
node n are independent and identically distributed (i.i.d.) and independent of all 
else. 

Holding cost is assessed at a rate of Cn (Cn 0) cost units per job per unit time 

spent in queue n (including time in service). A set-up cost Kn (K, > 0) is incurred at 
each instant (including time 0) the server processes a job in a queue n different from 
that of the previous job. With R+(Z+) denoting the non-negative reals (integers), let 

{xg(t): t E R+} be the right-continuous queue length process of node n under policy 
g (including any customer of node n in service). Denote the vector of initial queue 
lengths by x =(xI, x2, . , XN) = X(0-) e (7+)N, where x is fixed. The policy g 
specifies, at each decision instant, the queue to be served or to be set up. Without 
loss of generality, the jobs within a given queue are assumed to be served according 
to an arbitrary ordering. Let ng(t) be the right-continuous process describing the 
location of the server at t under policy g. Define Fg = {t E R':ng(t-) 7 n, ng(t) = n} 
to be the set of random instances of switching into node n under g. For the fixed 
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initial state X(0-)= x, the total expected a-discounted cost of policy g, J(g), can 
now be expressed as 

(2.1) J(g) =E{ e-at( cg(t) dt + Kne -at 

n=l n=l treF 

where a > 0. Note that our notation J(g) does not explicitly indicate the dependence 
of (2.1) on the initial state x, because x is fixed and also because this simpler 
notation suits our purposes. The objective is to determine a policy g* E G that 
minimizes J(g), where G, the class of admissible strategies, is taken to be the set of 
non-idling, non-preemptive, and non-anticipative policies. Our restriction to non- 
preemptive policies implies that once the service of a job begins, that service cannot 
be discontinued, nor can it be interrupted by switching. Switches occur only at job 
completion epochs. Without loss of optimality, the minimization problem can be 
restricted to the class of pure Markov policies (see Ross (1983)). Since jobs are 
routed deterministically in the network, the class of pure Markov policies is 
equivalent to GL, the class of list policies. Thus g E GL can be regarded as a string 
g1g2 ' ' gk which specifies that the Ith job is served in node g,l {1, 2, * - , N} and k 
is used here to denote the total number of jobs to be served. In what follows, we use 
the term feasible to describe any policy g that specifies a service ordering that is 
consistent with the topology and initial state of the network. 

Although our presentation emphasizes the case of switching cost, we also address 
the case of switching delay which we deem to be at least as important. The switching 
(set-up) delay, Dn, represents a period of time which is required to prepare the 
server for processing a job of queue n, if n differs from the previous queue served. 
We assume that successive set-ups for node n require positive, i.i.d., finite mean 
delays independent of all else. The restriction to non-preemptive policies is 
understood to disallow reneging during set-up periods. Such a problem (with K = 0 
for all n) will be referred to as the switching delay problem. The objective is to 
minimize over g E GL 

(2.2) J(g) = E{ e at 
cnXg(t)) dt}. 

The remainder of the formulation is as before. 

3. Analysis 

We use the following terminology. For i, n E {1, 2,..., N} we say that a node 
n is upstream of node i if I(n) = i or if there exist intermediate 
nodes j, i2, j ' , jm E {1, 2, * * , N} such that I(n) = j, I(jl) = j2, ', I(jm) = i. 

Analogously, node n is downstream of i if the network allows jobs to proceed from i 
to n. We call a job in node n a descendant of a job in node i if the job in n was not 
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originally in n, but resulted (perhaps indirectly) from serving a job in node i. Thus a 

job in mode n will eventually generate one descendant in each node downstream of n. 
If switching is not penalized (i.e. K, = 0 and Dn = 0), the problem of Section 2 

possesses a solution described by an index rule and can be solved in a number of 

ways. One way is via the theory of priority queues initially developed by Klimov 

(1974), (1978) (see also Harrison (1975); Nain et al. (1989); Varaiya et al. (1985); 
and Walrand (1988)). Regardless of the details of the technique employed in the 
aforementioned references, the result is that an index can be associated with each 

job in the system. It is optimal to serve, at each instant, the job possessing the 

greatest index. The index is a measure of the reward rate that can be achieved by 
serving a job and is defined in Nain et al. (1989) or Varaiya et al. (1985). Because 
all jobs in a given queue are indistinguishable, the index can be associated with the 

queue, rather than with individual jobs. When switching penalties are considered, 
the switching penalty requires one to consider a group of jobs rather than an 
individual job. The dependence of reward rates on the particular queue lengths 
greatly complicates the problem. 

Another way to view the problem without switching penalties is via the theory of 

scheduling subject to precedence constraints. Section 3.10 of Gittins (1989) exposits 
the scheduling of jobs subject to precedence constraints. The relationship of our 

problem to Gittins' formulation of scheduling subject to precedence constraints can 
be seen as follows. Consider the set, 3, of all jobs that will ever be served in the 

system; that is, those initially present and their descendants. If suffices to identify 
each job in X with a distinct queue and an associated precedence constraint. That is, 
if the job x' is an immediate descendant of a job x and x' in turn possess an 
immediate descendant x", then precedence constraints are needed to require that the 

processing of x precedes x' and similarly x' precedes x". Thus for every job 
originally in the system, the reformulated problem contains m (1 _ m - 

N) queues, 
each possessing a single job having either no precedence constraint (if initially 
present) or one precedence constraint (if a descendant), as dictated by the 
connection structure. Thus Corollary 3.21 of Gittins treats the case without switching 
penalties. As we have previously noted, switching costs (or delays) cannot be 
associated with an individual job; rather, they must be tied to a class or group of 

jobs. Thus one is forced to abandon the simple model of precedence constraints and 
fixed costs/rewards associated with each job. 

The preceding discussion provides a perspective on the difficulties introduced by 
switching penalties. As we shall show, index rules like Klimov's (1974), (1978) are 
no longer optimal in general. To proceed with our analysis, we first introduce 
notions of reward and reward rate that will be used to prove the main result. 

3.1. Reward and reward rate notions. In this section we begin with the 
discounted problem with switching cost. The case a = 0 is treated later as a limiting 
case. We extract from the cost criterion (2.1) expressions for the reward associated 
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with a particular sequence of actions under the assumption a > 0. These rewards in 
turn define associated reward rates. Together, they prove crucial to the development 
of qualitative and quantitative properties of optimal policies. At the end of this 
section, we treat the problem with switching delay. 

Let Yf(t) denote the cumulative number of departures from node I through time t 
under g. Thus, 

(3.1) Xgn(t) = x, + Yg(t)- Yg(t), 
i:I(i)=n 

where the sum Si:/(i)=, Yg(t) is vacuous if there are no nodes upstream of n. Using 
(3.1), the cost criterion (2.1) with X(O-) = x can be expressed as 

(3.2) 
N N 

J(g)= c,nxn,-1- E jc Ygn(t)- E Yg(t) e-tdt- E d Kne--at 
n-= n=l I i:I(i)=n n=l t1eF 

Equation (3.2) demonstrates that minimization of the original cost J(g) is equivalent 
to maximization of the expected discounted reward R(g), where 

(3.3) R(g)=E{-E K,ne -+ c 
Yg(t)- Yg(t))e- t dt}. 

n=1 tEr n= () i:l(i)=n 

To interpret R(g), note that the cost function J(g) is composed of three constituent 
elements: (1) the infinite-horizon holding cost incurred if one never serves the jobs 
initially in the system, (2) the holding cost that is saved by service under g, and (3) 
the switching penalties paid to achieve service under g. Since the first element is 
constant for all policies, the reward of policy g, R(g), can be interpreted as the 
holding cost saved under g minus the switching penalties incurred under g. 

Consider a policy ir that sets up node j at time t = 0, serves u (u xj) jobs, and 
idles thereafter. Policy ir is defined by the string zrr2 ?* * n,, with ni =j for all i, 
where 7Ti denotes the queue in which the ith job is served. For our purposes, it is 
useful to compute the reward of this sequence of actions. Let fj,i denote the 
processing time required to complete i jobs in node j, and let Sj - E{exp (-afj ,)} be 
the expected discounted service period for a single job in node j. Since successive 
service periods in j are i.i.d., E{exp (-a c,i)} = SJ and we find 

R(7t)= -Kj + E L cje -a' dt - c()e 
-at 

dt] 

(3.4) 
= -Kj + S(cj - cl))a1 

i=l 

= -Kj + (cj - c,O))Sj(l - S)-a-l(l 
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where CN+ 1- 0. Note that provided u - x, R(lr) does not depend on the system 
queue lengths at time 0. 

For n = 1, 2, , N, let 

(3.5) hn (c, - Cln))Sn(l - Sn), a > 0 

where h, can be interpreted as the (equivalent constant) rate at which holding cost is 
reduced by working in node n. To see this, notice that a-~(1 - S?) = E{ff 1 e-a' dt} in 

(3.4). For a given string g, let v(g) denote the expected discounted reward earned 
per expected unit of discounted time (hereafter referred to simply as reward rate) 
associated with policy g. Similarly, let vj(u) denote the reward rate associated with 
the service of u E '+ jobs in node j E {1, 2, * * , N}. Then for a > 0 and policy r as 

previously defined, (3.4) yields 

(3.6) V(7r) = vj() = R(r)/E{ e-at dt 

(3.7) = hj - aKj/(1 - S). 

Thus, reward can in turn be easily described in terms of reward rate for problems 
with discounting: 

(3.8) R(it)= V(r)E 
e- 

atdt} (3.8) 

= vj(u)a -1(1 -S5?). 

Equations (3.7) and (3.8) are the reward rate and reward associated with a 'block' 
of consecutive jobs of the same type. They form the basis for evaluating more 
general policies. If g E GL, then g can be written in block form as 

(3.9) g =j(1)"(l) Ilj(2)u(2)11 . . * j(q)u(q) = B1 I B2 II * II Bq, 

where j(i)"(i) denotes a string of u(i) jobs of type j(i); II denotes string concatena- 

tion; u(i), q E F (the set of natural numbers); j(i) j(i + 1); and Bi =j(i)"(l). R(g), 
the reward of string g, can be computed as follows. Let ri = fj)(i),,, the service 

period associated with block Bi; si = E{exp (-ari)}; and b(i) = ;i- zrl. Then 

R(g) =E e ab(i) R(Bi)} 

(3.10) 

= fs, RB). 
i=l 1=1 

Using (3.8) and (3.10), the reward rate of g can be decomposed and written in terms 
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of constituent reward rates as 

V(g) = E{ ( s,)R(B,i)} E eat dt} 

(3.11) q i-1 q 

[= (nH s,)V(Bi)(I -s,)[1 - Hsi 
where a >0, sf = S,((') and vI(Bi) = vj(i)(u(i)). As will be seen in the proofs of our 

results, the reward rates, v(.), play a key role in comparing the rewards, R(,), 
earned under alternative policies (which will be constructed as local perturbations of 
each other). 

Remark 1. For the problem with a = 0, we define h, to be the limit, as a\0, of 
the product of a and (3.5): 

(3.12) h (c - c(,))/x, a = 0. 

Remark 2. In the problem with switching delays, the rewards and reward rates 
differ slightly. We point out only the differences that remain after setting Kn = 0 for 
all n. We use the notation previously developed. Instead of (3.4), the reward for 

serving u jobs in node j is, for a > 0, 

R(ir) =R(j")=E [?\| (cj c,))e 
- dt 

(3.13) i= +f 
= E{exp (-aDj)}(cj - c,))Sj(1 - Sj)-'a-'( 

- 
Si). 

The definition of hn remains unchanged. The reward rate of (3.7) becomes 

(3.14) v(j") = vj(u) = R(r)IEE e-a dt} 

(3.15) = E{exp (-aDj)}hj(1 - Sl)/(l - SjE{exp (-aDj)}). 

Thus, (3.8) is now 

(3.16) R(j") = vj(u)a -(1 - S7E{exp (-aDj)}). 

The remainder of the development applies, provided we redefine the following 
quantities. Let the time required to set up and to serve the ith stage of policy g (see 
(3.10)) be defined as ri = Dj(i) + f(i),(i). Thus, 

si = E{exp (- ari)} 
= E{exp (- aDj(i)}Sj(l(i). 

In Section 3.4, we present an investigation of approaches for simplifying the 
search for an optimal policy. So as to make that discussion precise in the context of 

switching delays and no discounting, we present here the necessary reward rate 
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quantities. Recall that (3.12) defines h, for undiscounted problems. For a block of u 

jobs in node j, we get v(j") as the limit as a \0 of (3.15). Thus, 

UI-1 
(3.17) (j") = vj(u) = h + E{D} a = 

U/.I1 + EIDjl' 

Similarly, the limit as a 0 of (3.13) times a yields 

(3.18) R(j") = hju-1 = u(cj - c,j)), a = 0. 

For a policy g as in (3.9), we get a reward rate of 

(3.19) v(g) = R(j(i(i))/ (u(i),1) + E{Dj(}), a = 0. 
i= i =1 

3.2. The main result. The presence of node connections creates a problem 
considerably more complicated than the scheduling of parallel queues with switching 
cost, for which an index policy is optimal (see Van Oyen et al. (1992)). For the 

problem of connected queues formulated in Section 2, we believe that the incentive 
to switch to a particular queue is increasing in its queue length. Thus, we conjecture 
that a threshold-type policy is optimal in general (that is, for each queue there is a 

switching curve that depends on all other queue lengths). We do not prove this 

conjecture; instead, we use the reward rate notions developed in Section 3.1 to 

prove for certain problems the optimality of exhaustive service, as defined below. 

Definition 1. A policy g is said to be exhaustive if according to g the server 
switches out of node n at decision instant t only if queue n is empty at t. 

Note that an exhaustive policy may visit a node multiple times because of the 
connection structure. We now derive the main result of the paper. 

Theorem 1. If the connected queues can be labeled such that 

(3.20) h I h2' ? ? hN and I(n) > n for n =1,2, ? ? , N, 

then only an exhaustive policy can be optimal for the stochastic scheduling problem 
with a cost criterion given by (2.1). Otherwise, an exhaustive policy is not in general 
optimal. 

Discussion. The results of Theorem 1 might be argued for on intuitive grounds 
using the following reasoning: 

Suppose first that the queues are labeled such that h _- h2 -' ' hN and I(n) > n 
for n = 1, 2, * *? N. Assume that at time t = 0 it is optimal to serve node j; let y <xj 
jobs be served consecutively in node j during [0, ts) where ts is a decision epoch. We 
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consider whether there is any incentive to switch from node j at ts. At time t, the 
reward rate for serving one or more jobs in node j is hj, since the switching cost Kj 
was already paid at time 0 upon set-up. There ought not to be any incentive to 
switch to any nodes upstream of j, since it was orignally preferable to serve node j, 
and the reward rate of any node upstream of j remains constant (the number of 
customers in these nodes is not affected by the service of node j). Similarly, there is 
no incentive to switch to any node k such that 1(j) = k. It remains to consider node 
(j') whose queue length has grown from x,j) at time 0 to x,(j) + y at time ts. Since 

hj_ h,(,) > v/(/)(l) for any number of jobs 1, the reward rate of node I(') cannot 

surpass that of continuation in node j. Thus, it is intuitively plausible, under the 
above assumptions, that once a node is set up, it should be cleared before switching 
to another. This is rigorously shown in the proof of the theorem. 

Suppose next that h h2' .. hN, I(n)> n, n = 1, 2, * ?N, is not true. 
Assume at time 0 it is optimal to serve node j and h,ij) > hi. As before, let y < xj jobs 
be served consecutively in node j during [0, ts). At time t, the reward rate for serving 
one or more jobs in node j is hi; the reward rate of serving node l(j) is 

v/(j)(xI(j) + y). It is possible, for certain x(j) and y, to have vY(j)(xl(j) + y)> hj since 

h,(j) > hj and v,(j)(l)ih,(j) as -->oo. Consequently, at ts it may be optimal to switch 
from node j to node I(j). This is illustrated by an example at the conclusion of the 
proof of the theorem. 

Note that the statement of Theorem 1 does not provide any information about the 
optimal order of scheduling (i.e. optimal exhaustive list policies). Determining an 
optimal exhaustive list policy remains a difficult unsolved problem. In Section 3.4 
we indicate how the notions of reward rate can be used to simplify the search for an 
optimal policy. 

In the case that cn = 0 for all n, the problem reduces to that of minimizing the cost 
due to switching and the result implies that for any forest, an optimal policy is 
exhaustive. 

Before detailing the proof of Theorem 1, we present three lemmas that develop 
basic properties of rewards and reward rates. In the following lemmas, M(, MI, M2, 
and M3 denote (partial) job lists such that the final job of Mi is of a different queue 
than the first job of Mi+i. Let ri denote the time required to process Mi and 
si = E{exp(-ari)}. The first lemma follows directly from (3.11) and Corollary 1 
follows in turn from it and (3.7). 

Lemma 1. v(M1 II M2) max {v(MI), v(M2)}. 

Corollary 1. For a network satisfying h h2 > ' * hN, if a job list Ml contains 

only jobs in queues n, n + 1, * * , N, then v(M1) < hn. 

Lemma 2. Suppose v(M IIM211 M3) > r, v(M3) > r, and v(M2) 
- r for some r E R; 

then v(M1 II M3) > r. 

Proof. Assume that a switch is required between Ml and M3 to process Ml 11 M3; 
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otherwise, the result follows a fortiori since M1 II M3 requires one less switch than 
our calculations include. Using (3.11) and si < 1, v(M II M211 M3) > r implies 

0 < (v(MI) - r)(1 - si) + sl(v(M2) - r)(1 - s2) 

+ sls2(v(M3) - r)(1 - s3) 
- 

(v(MI) - r)(1 - sI) + s,s2(v(M3) - r)(1 - s3) 

< (v(MI) - r)(1 - sl) + sl(v(M3) - r)(l - s3), 

from which we conclude the result using (3.11) again. 

Lemma 3. Let g Mo j" II M2 II M3, where M1 = j" and M2 contains no descen- 

dants of j". Then g - Mo 1\M211 j" 11 M3 is a feasible list policy. If v(jf) < v(M2), then 

R(g) > R(g). 

Proof. Assume the interchange of j" and M2 does not result in fewer switches for 

g; otherwise, the result holds a fortiori. Using (3.10) and (3.11), we get: 

R(g) - R(g) = a-'so[V(M2)(1 - s2) + s2v(j")(l - si) 

- (ju)(1 
- 

s) 
- SIv(M2)(1 - 2)] 

= a- So( - s1)(1 - s2)[V(M2) - v(ju)] 

>0. 

We are now prepared to prove the main result. 

Proof of Theorem 1. Suppose g E GL (a list policy) is not exhaustive. Since g is 
not exhaustive, there exists some node n and time ts at which g switches from queue 
n to another while jobs remain in n. List g can be written as M' IInY I M", where y is 
the number of jobs in n served prior to t,. Without loss of generality, let M' = 0 

(where 0 denotes the null string); thus g = nY Il M" with y < x,. Since all jobs in a 

given node are indistinguishable, we may assume without loss of generality that 
within a queue the jobs are processed first-come-first-served. We develop M" more 

explicitly by considering the second visit of g to n: two scenarios are possible. In the 

first, during its second visit to n, g completes the x, jobs initially in node n plus some 
number z' E Z+ of jobs which are descendants of jobs served between the first and 
second visits to n. With z A x, - y, exactly z + z' jobs are served on the second visit 
to n. In the second scenario, the total number of jobs served in the first two visits to 
n'is less than xn. For this case, let z <x - y denote the number served in n on the 
second visit. Thus, in either scenario, it suffices to consider g of the general form 
g =ny IIM" =nyll M llnZ+Z' l M"', where z <x, -y and z' is zero if z <x, - y. 

We proceed now to modify g and construct an exhaustive policy that strictly 
improves g. For technical reasons, the modification of g proceeds according to two 
cases. We present first the main idea behind each case, then we provide the technical 
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details of the proof. Case I constructs a right-modification that moves z jobs of node 
n, (nZ), from the second visit of node n to the first visit of the server to node n (and 
thereby shifts M to the right). Case II constructs a left-modification which serves the 
y jobs of node n, (nV), following some of the jobs in M as follows. List M is 
separated into a string of consecutive blocks upstream of n followed by a string of 
consecutive blocks downstream of n. Thus, the assumed topology of the forest 
admits a policy Ig which schedules the string of consecutive blocks upstream of n 
prior to the block ny. Repeated application of Cases I and II concludes the 
argument. 

Case I. Suppose h, _ v(M). We show that g can be improved by the right- 
modification rg =ny+Z IIM l n 'll M"'. The comparison of g and rg requires some 
notation: let t( be the instant the jobs of ny are completed under g. Let TM and Tr 
be the processing times of M and nz respectively, and let sM = E{exp (-arM)}, 
S = E{exp(-arz)}. Assume z' >0 since in the case z' =0, rg saves a switch and 
thus is even more favorable than g. Since policies rg and g are identical during [0, t,) 
and (t, + + M + z, oo), the advantage of rg is: 

R(rg) - R(g) = E{exp (-ato)[hna-l(1 - SZ) 

+ exp (-arz,)(M)a (1 - sM) - K exp (-a(r, + TM)) 

- (M)a-(1 - SM) - exp (- ar)(h, a-(1 - S) - K,)]} 

= E{exp (-ato)}[a-'(1 - Sz)(1 - sM)(h, - v(M)) + K,sM(1 - S)] 

>0, 

where we have used the independence of all service periods and h -> v(M). If g is 
such that xn = y + z, then the resulting policy rg serves node n exhaustively at t,. 
Otherwise, we proceed by modifying policy rg according to either Case I or Case II 
described below. 

Case II. Suppose hn < v(M). The argument for this case is more delicate. In 
accordance with (3.9), write M in block form as 

M = B, IIB21 11 Bq for some q E F, 

where Bi = j(i)"(i) and adjacent blocks describe different queues. Define p to be the 
least element of {1, 2, * , q - 1} such that 

(3.21) v(Bp+p+ IIB+211 .. II Bq)<hn? 

It is possible that p does not exist, in which case let Me = M and Mr = 0; otherwise 
define 

(3.22) Me = B1 IIB2 . 1 Bp, 

(3.23) Mr= Bp+, IIBp+2. *II Bq. 

Since Mr is the largest right-tail substring of M possessing reward rate less than or 
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equal to h,, Lemma 1 and the hypothesis h, < v(M) reveal that the remaining 
left-tail substring, Me, has reward rate greater than h,. From Me we recursively 
construct two strings, Me (i*) and M (i*), so as to correspond to the jobs of Me in 
{1,2, ... , n - 1} and {n + 1, n + 2, * *, N} respectively, that is, jobs upstream and 
downstream of n, respectively. The recursion proceeds as follows. 

Let Me (0) = Me as defined in (3.22) and M (O) = 0. The following properties 
hold for each stage i of the recursion beginning with i = 0: 
(P1) The sequence (1,2, .* ,p) possesses a subsequence (m(1), m(2), .., m(f)) 
such that for all 1 = 1,, 2, , p 

(3.24) v(Bm(I) IIBm(+)l )' * * I Bm(,) > hn 

and M (i) = Bm(1) IlBm(2)ll * * * Bm(). 
(P2) M D(i) is such that v(M (i)) - 

h, (where v(0) - 0). 
(P3) For policy g(i) ny l M[ (i)l MD(i) l MI nZ+Z' M"', R(g(i)) _ R(g). 
Property P1 expresses the condition that there is a subsequence of indices of the 
blocks of Me such that the resulting string Me (i) has the property that all right-tail 
substrings possess a reward rate greater than h,. For i = 0, P1 holds with p = p and 
m(l) = 1 for I = 1, 2, * * , p since (3.24) follows from the combination of Lemma 1, 
the Case II hypothesis, and the definition of p. Since P2 and P3 are true for i = 0, 
the basis for recursion is established. 

Assume P1, P2, and P3 at stage i; we now prove them for i + 1. By definition, 
Meu(i) = Bm(l) IlBm(2)11 .* II Bm(). Let k E {1, 2, * * p}^ be such that j(m(k)) > n and 
j(m(l)) < n for all 1 E {k + 1, k + 2, * * *,, where j(m(l)) denotes the type of job 
served in block Bm(l). The subsequence index k picks out the last block of Me (i) 
corresponding to service in {n + 1, n + 2, * * , N}. If k does not exist, our construc- 
tion is complete and i* = i; otherwise, we define strings Me (i, I) and Me (i, r) such 
that M (i) = M (i, l) IIBm(k)ll MU(i, r). Equation (3.24) implies 

(3.25) v(M (i, r)) > h, 

and j(m(k))> n implies by Corollary 1 that 

(3.26) V(Bm(k)) < hn. 
Let 

MeU(i + 1) - Me(i, l) 1 Me(i, r) 

MeD(i + 1) Bm(k) 11 MD(i). 

.For stage i + 1, P1 follows by setting the new subsequence equal to the previous 
one with element k deleted. Lemma 2 implies (3.24): all right-tail strings of 
M{(i + 1) are improved with respect to reward rate by the deletion of block Bm(k). 
Since by construction M(i + 1) contains only jobs in queues of {n + 1, n + 
2, * *, N}, P2 follows by Corollary 1. Consider 

g(i + 1) = nY I[Mj(i + 1)\11 M(i + 1) + M'rII nZ+Z' II M"'. 
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Since Bm(k) does not contain descendants of ML(i, r), interchanging the order of 

Bm(k) and Mt[(i, r) is feasible and Lemma 3 establishes P3 by (3.25) and (3.26). 
Policy g(i + 1) is non-anticipative, because we have assumed deterministic node 
connections. 

As previously noted, the construction of Mt j() and M (') is completed at stage 
i* such that M{ (i*) no longer contains jobs in {n + 1, n + 2, * , N}. Define policy 
lg = M(i*) \lny I MD(i*) lIMrll nz+z' I M'". Note that vI(Mf(i*)) > hn by P1. Since 

v(n) <h,, Lemma 3 yields R(lg) - R(g(i*)) >; thus, we conclude by P3 that 

R(lg)- R(g) >0. We proceed further by modifying policy Ig according to either 
Case I or Case II. 

The preceding two cases show that any non-exhaustive policy g can be strictly 
improved by an exhaustive policy. Such an exhaustive policy can be found by first 
replacing g by either rg or Ig and then repeatedly applying the constructive 
arguments of Cases I and II to points of non-exhaustion. 

Thus, Theorem 1 is proven for a > 0. When a = 0, we establish the result using a 
continuity argument. Since we have assumed service periods of finite mean, standard 
arguments establish that the objective function J(.) is continuous in a at a =0. 
Continuity guarantees that an exhaustive policy which is optimal in the neighbor- 
hood of zero will remain optimal for a = 0. 

We conclude the proof of Theorem 1 with the following counterexample to the 
optimality of an exhaustive policy when (3.20) is not true. 

Example 1. Consider the case of two queues with c, = 3, c2 = 4, K1 = K2 = K = 1, 
a = 0, I(1) = 2, I(2) = 3, xl = 2, x2 = 0, and deterministic one unit service periods in 
both nodes. Thus the first node feeds the second and possesses a lesser holding cost 
rate than the second. Only two policies are admissible: let the first, g, serve the 
queues in the order 1 2 1 2 and the second, e, in the order 1 2. Since the total cost 
of g is 4c, + 2c2 + 4K = 24 and that of e is 3c, + 4c2 + 2K = 27, we find that 
exhaustive service cannot be optimal in general for problems with connections. 

Remark on self-loops. The assumption of a deterministic connection from node n 
to I(n) can be relaxed slightly without complication. Theorem 1 remains valid if a 
job completed at n is sent to l(n) with probability Pn, 0 <p, < 1 (independent of all 
else) and reenters node n otherwise. Because it suffices to consider pure Markov 
policies, a policy that chooses a job in node n for a given state will continue to 
process that job until it eventually enters node I(n). This problem can thus be 
reduced to a deterministic version for which the service distribution reflects the total 
time required for the job to reach node I(n). Thus, it suffices to modify Sn and it,. 
The resulting problem with deterministic interconnections is easily calculated to 
possess an effective mean service rate of /n(l - pn) Problems with more general 
routing remain open. 

Remark on the switching cost problem. For the case of no discounting (a = 0), 
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the switching cost problem is trivialized under the condition given in Theorem 1, and 
a particular exhaustive strict priority rule is optimal. With hi -h2?' " hN and 

I(n) > n, consider a policy that exhaustively serves the queues in order 1, 2, * *, N. 

Following Nain (1989), we call this policy the 'exhaustive upstream-queues-first c',u 
rule'. The reward rate c'Au can be defined by (3.7) as lim,,.o av(u) = (cn - c(,n))/ln 
Since each queue is visited only once, switching cost is minimized. To see that 

holding cost is also minimized, suppose that the jobs originally in the system and all 
their descendants are available for service at time t = 0. It is well known that holding 
cost is minimized by serving at each instant a job/queue maximizing c/1,i = hi. Since 
the exhaustive upstream-queues-first c'A. rule minimizes both switching cost and 

holding cost and is admissible for the forest topology assumed, it is optimal. In light 
of the degenerate case for problems with switching cost and a = 0, we emphasize the 

importance and greater difficulty of the undiscounted problem with switching delay. 
The policy (1,2, * , N) is not in general optimal when a >0 as the following 

counterexample shows. Consider two queues in parallel. Let x, = 1, x2 = 2, K1 = 1, 
K2 = 1-5, c, = c2, and let the service times be equal, deterministic, one unit at both 

queues. Let a = 0 1054 so that Si = exp (-aao) = 0-9 for i = 1, 2. We need consider 

only the exhaustive policies g' = 1, 2, 2 and g2 = 2, 2, 1. Since the holding costs are 
identical under both policies, 

J(gl) - J(g2) = [K1 - exp (-ao,)K2] - [K2 + exp (-2aa2)K,] 

=[1 + 0-9(1-5)] - [1.5 + 0-81] 

>0, 

even though ht = h2 and K, < K2. 

Remark on the switching delay problem. We introduced at the end of Section 2 
the case of switching delay. Although the problem with switching delay is in some 

respects more difficult (see, for example, the preceding remark on the undiscounted 

case), it shares with the problem with switching cost the structural property 
described in Theorem 1. The previous approach applies to the case of delays, 
provided the basic reward rate definitions are modified as described in Remark 2 of 
Section 3.1 to account for the set-up delays. To see that the case of switching delays 
is essentially similar to the case of switching costs, consider the following. For the 
discounted case with switching cost, we addressed the problem of maximizing the 
reward R(g) given by (3.3). To compare the rewards earned under different policies, 
we found the use of reward rates to be effective (see (3.6)-(3.8), (3.11) and their 
use in the proof of Theorem 1, explicitly in Case I and via Lemma 3 in Case II). The 
case of switching delays is similar, but now the reward and reward rate expressions 
must take into account the switching delays specified by the policy under 
consideration. Because the reward rates are used to compare the rewards earned by 
an initial policy and another locally perturbed version of it, the arguments presented 
in the proof of Theorem 1 apply directly. Theorem 1 holds as stated under the 
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criterion of (2.2). The proof of Theorem 1 concludes with the following 
counterexample. 

Example 2. Consider the problem of Example 1, except with deterministic set-up 
delays of 2 unit at each node instead of the set-up costs. Because J(e) = 32 while 
J(g) = 30, exhaustive service is not optimal. 

3.3. Two nodes in tandem. In this section, we consider the case of N = 2 nodes. 
We analyze this problem for two reasons: (1) The results for networks with two 
nodes can be used to (sequentially) simplify the search for optimal policies for more 
complicated networks (this will be shown in Section 3.4). (2) For networks with two 
nodes, we can extend the formulation of Section 2 to incorporate stochastic 
connections. 

Throughout Section 3.3 we suppose that node 1 feeds node 2. Let p denote the 
probability that a job served at node 1 is routed to 2; with probability 1 - p that job 
exits the system. Successive routing outcomes are i.i.d. The remainder of the 
formulation of Section 2 applies, except that the set of pure Markov policies is now 
richer than GL. Feedback policies must be considered because the state evolves 
subject to random routing. We show, however, that for a certain class of two-node 
problems, we can explicitly define an exhaustive list policy that is optimal. Before 
proceeding, note that one may also consider the case where a job served in node 2 is 
routed back to queue 2 with probability P2 and exits the system with probability 
1 - p2 Indeed, a self-loop can also be introduced at node 1. Our results hold for 
such problems. The self-loops are best treated as previously described in the remark 
on self-loops above, so in what follows we restrict attention to networks without 
self-loops (equivalently, forests). For the sake of applications, we conclude this 
section with a treatment of the undiscounted switching delay problem. 

The reward and reward rate notions developed in Section 3.1 apply here as well. 
For a > 0, let 

(3.27) h = (cl - pc2)S1(1 - S), 

(3.28) h2 = c2S2(1 - S2)- 

We begin with a lemma. 

Lemma 4. Suppose that node 1 feeds node 2. If h, - h2, an optimal policy must be 
exhaustive. If hI < h2, an optimal policy is not, in general, exhaustive. 

Proof We first consider the case a > 0 and argue that node 1 must be served 
exhaustively. The arguments of Theorem 1 can then be applied to node 2 based on 
the exhaustive service of node 1. The result holds for a =0 by the continuity 
argument made for Theorem 1. 
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We show that any policy which does not serve node 1 exhaustively can be strictly 
improved. Suppose that at time t, a pure Markov policy g has just completed a job in 
node 1 and the new queue lengths are x(1) and x(2) in nodes 1 and 2 respectively, 
where x(1)>0, x(2)>0. Moreover, assume policy g switches to node 2 at time t. 
Since all jobs served at 2 exit the system, it is known at time t that a non-random 
number of jobs, u2, will be served in node 2 under g prior to the first return to node 
1. Let g denote the following (right) modification of g. Policy g is identical to g on 

[0, t), and at t serves an additional job in node 1 during [t, t + o-a). At time t + o-, g 
switches to 2 and serves u2 jobs for T (T = -f2,,) units of time, after which instant g is 

coupled to g and the two policies thereafter possess identical costs. The reward and 
reward rate notions developed in Section 3.1 apply here, since h, incorporates the 
stochastic connection from node 1 to 2. If x() = 1, g saves a switch at time 
t + o-I + T; thus, the advantage of policy g over g can be expressed according to the 

following inequality: 

R(g) - R(g) _E{e -a}[h,a-I(1 - S1) + S1, 2(U2)a- (1 - S2') - S1S"K, 

-(v2(U2)ar-l(l 
- S') + S2ll(hla-'(l - SI) - K1))] 

= E{e -"}[K, S'(1 - S,) + a - (1 - S,)(1 - S"')(h1 - v2(U2))] 

>0, 

since v2(u2)<h2 -hl. Repetition of the above right modification x(1) times yields 
an improved policy at each step, and eventually a policy that serves node 1 

exhaustively. 
Since it suffices to consider policies that serve node 1 exhaustively, the stochastic 

routing from node 1 is no longer an issue. The argument of Theorem 1 of Van Oyen 
et al. (1992) can be used to prove that it is optimal to serve node 2 exhaustively. 
For the sake of insight and continuity with Section 3.2, we choose instead to sketch 
the argument of Section 3.2, which is more general. Suppose g does not serve node 2 

exhaustively; that is, g begins in 2, switches to 1 and clears it, and then returns to 
clear 2. Suppose h2 > v(1X') where v(1xl) is defined by (3.7). Then the arguments of 
Theorem 1 show that policy rg = 21X'lx2 strictly improves g, where z' indicates the 
number of jobs of node 1 sent to 2. On the other hand, if h2 v(lx'), then policy 
Ig = ll2x+z' strictly improves g. Note that rg and Ig are non-anticipative since g 
serves node 1 exhaustively. The following example concludes the proof by showing 
a case for which no exhaustive policy is optimal. 

Example 3. Consider the problem specified in Example 1 except that I(1) = 2 with 

probability 
I and jobs leave the system with probability I. Policy e is as before, and 

analogously to Example 1, g is defined to be the policy that gives strict priority to 

jobs in node 2. Then J(e) - J(g) = (2c2 c - - 2K) + 4(c2 
- 

c1 - K) = 3 

In the case that h1 I h2, Lemma 4 limits the class of candidates for optimality to 
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only two policies: the first, say g1, clears node 1 then 2; the other, g2, clears them in 
the order 2 1 2. As previously noted, the case h, _h2 with a = 0 is degenerate: 
policy 1 2 is always optimal. For the case h1 I h2 with a > 0, define the following 
indices using (3.27) and (3.28): 

(3.29) W1(x) v1(x) = h, - aKI(1 - Sl), 

(3.30) 2(X1, X2) - h2 - aK2I(1 - S~2) 
(3.30) 

- 
aK2(1 - (1 

- 
p)X)SlS2/((1 - S)(1 - S2)) 

By computing the expected cost difference of g' and g2, we show that '1(x1) and 

12(xi, x2) define an optimal policy. The computation is simplified by noting that 

along any sample path, g1 and g2 are identical following the second return to node 2 
under g2. Thus, 

R(g')- R(g2) = [v1(xl)a-1(1 - S1) + Sx'(-K2 + h2a-1(1 - 
SX2))] 

- [2(X2)a -1(1 - 
S2) + v SX2V,(x)a- 1(1 

- 
Si') 

- (1 - (1 -p)XI)SXIS2K] 

a-l(1 - Sl)(1 - 
SX2)q[W(x) - 2(Xl, X2)]. 

Consequently, we have derived the following result. 

Theorem 2. Consider the class of problems with N =2, a>0, P(I(1)= 2)= 
p, P(I(1) = 3) = 1 -p, I(2) = 3, and h, 1 h2. If l'(x1)> > 2(x1, x2), it is optimal to 
serve the nodes exhaustively in the order 1 2; otherwise, the exhaustive policy 
serving the nodes in the order 2 1 2 is optimal. 

Note that the index of node 2 depends on the states of both queues. Thus, even in 
the case of two tandem queues, the optimal policy cannot be properly regarded as 
an index rule of the Gittins type, because the index of one queue (project) depends 
on the state of another (see Gittins (1989)). 

We conclude this section with a treatment of the problem of switching delay with 
no discounting, since we deem this case to be of significant importance in 

applications. We assume that independent of all else, a finite-mean random set-up 
delay Dn is incurred upon any switch into node n. Similar to (3.12), for the case 
a=0 we define h, = (cI -pc2)1il and h2 = c2L2. Because the discounted cost 
criterion converges to the undiscounted criterion as a \0, the arguments of Lemma 
4 indicate that an exhaustive policy is optimal, provided h1 ' h2. Thus, we proceed 
to define indices PI(xl) and /2(x, X2) similar to those in Theorem 2 so as to 

explicitly define an optimal rule. After some careful accounting, and the 
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cancellation of identical costs under the two strategies, we find that the advantage 
of policy 1 2 over 2 1 2 is given by 

E{ClXi(T2 + D2) - C2X2(T1 + D1) - C2pX1 2} 

= (C -pc2)xlE{T2 + D2} - c2x2E{Tl + D1} - C2px1E{D2} 

= E{(T1 + D1)(r2 + D2)}[(c1 -pc2)AlE{rl}/E{r1 + D1} 

- c2t2(E{T2}/E{T2 + D2} - c2px1E{D2}/E{rz + D{2 + })]. 

Thus, for the case of a =0 and switching delays, the analog of Theorem 2 holds 
true: Provided (Cl - pC2)-1 C2AX2, policy 1 2 is optimal if 1(x1) V2(x1, X2) and 
2 1 2 is optimal otherwise, where 

(3.31) wl(x1) = (cl -pc2),u-Ll(x1,ll/(xl-1 + E{DJ1)), 

(3.32) A2(x1, x2) = 
C2]x2[X2]l2 1/(x2l21 + E{D2}) 

-px12L2 E{D2}/((xE1 -1 + E{D1})(X2p2 1 + E{D}))]. 

This concludes our treatment of two tandem queues. The solution of trees with 
more than two nodes and probabilistic interconnections, however, remains an open 
problem because the approach used here does not carry over to the general case. 

3.4. Computational considerations. For the problems formulated in Section 2, the 
class of feasible list strategies, GL, may be of extremely large cardinality depending 
on the number of nodes, the forest topology, and the initial queue lengths. 
Throughout this section, we assume the network parameters satisfy h1i h2 - ' 

hN and I(n)> n for n = 1, 2, * * *, N. Thus Theorem 1 guarantees that the search 

may be reduced (very significantly if the queue lengths are large) to GE, the set of 
exhaustive list policies. To be consistent with our development thus far, we 
emphasize the discounted problem with switching cost. We discuss the problem with 
switching delays only in cases where the two problems are significantly different. 
Although (3.7), (3.8), and (3.10) explicitly define the cost of any policy in GE and 
thereby provide the basis for a search, the problem of determining an optimal policy 
remains computationally expensive. In this section we investigate two approaches 
that simplify the search over GE for an optimal policy. First, we demonstrate how 
the basic reward rate expressions v(.) and the result for two tandem queues can be 
used in searching GE. Second, we investigate a heuristic for constructing a policy for 
a multitree forest network from the rules that are optimal for each constituent tree 
taken in isolation. 

We begin with a discussion of the applicability of the basic reward rates v(.). 
Consider a network of two unconnected queues, 1 and 2, which contain a and b jobs 
respectively. As we showed in Van Oyen et al. (1992), it is optimal to serve node 1 
first if, and only if, v(la) -v(2b). Such tests based on v(.) remain valid for nodes 
served consecutively, provided that the order of service can be feasibly inter- 
changed. That is, consider a forest satisfying (3.20) and a policy 
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g = Mo II M I M2 11 M3 E GE such that switches are required at the beginning of both 
Ml and M2 (Mo = 0 and M3 = 0 are permitted). If g' = Mo IIM211 M1 1 M3 is a feasible 

policy and v(M2)> v(Mi), then the cost of policy g' is strictly less than that of g. 
Moreover, if g' ? GE, then g' can be improved by another policy g" E GE. One may 
be able to construct g" either by using again the basic reward rate expressions or 
by using our result for two tandem queues, and thus the comparison of g 
and g" can be made without explicitly computing J(g) or J(g"). To illustrate the 
preceding discussion, consider a forest with N>3 nodes, suppose nodes 1,2, and 
3 are in series, and assume queue lengths a, b and c respectively. 
Let g = Mo 112b 3b+c I la 11 2a 113 II M3 E GE, M1 = 2b11 3+c, and M2= la 112a l 3a. 

If v(M2) > (MI), then policy g cannot be optimal, and the result for two 
tandem queues can easily be used to determine which of the following two 
policies improves g the most: policy g = Mo I|ia11 2a+b 113a+b+cl M3 or 

policy g = Mo I1l"ll 3c 112a+b 3a+h I M3. To see this, notice that the simple 
comparison v(M2)> v(MI) reveals that g is more costly than g' 
Mo 1IM211 MI IIM3 = Moll ia 112al 3a 112b1 3b+c 1 M3. Furthermore, since g' ? GE, it can 
be improved either by g or by g. In the following example, we elaborate on these 
ideas and show how we can systematically simplify the search for an optimal policy 
in the case of a network with three nodes. 

Example 4. Consider the case of three nodes in series with h, > h2 > h3, and let 
node 1 feed 2 and 2 feed 3. In this case GE contains the following nine exhaustive 
lists, simply denoted by the order in which queues are served: 

123, 1323, 2123, 
2 1 3 2 3, 2 3 1 2 3, 3123, 
32123, 321323, 323123, 

In this example, every feasible list is linked to two other policies by the test for two 
tandem queues or by the index of (3.7). Theorem 2 can be used (setting p = 1) to 
compare the following pairs of exhaustive policies: 

(1 2 3,1 3 2 3); (1 2 3,2 1 2 3); 
(2 1 2 3,2 1 3 2 3); (2 3 1 2 3,3 2 3 1 2 3); 
(3 2 1 3 2 3,3 2 1 2 3); (3 2 1 2 3,3 1 2 3). 

For example, begin with policy 1 2 3. If 1X3(x2 +xl,x3) > 2(x1 +x2) (where 
3(', ') and W2(') are defined analogously to (3.30) and (3.29) respectively), then 

1 2 3 is improved by 1 3 2 3. 
Moreover, the basic reward rate expression of (3.7) can be used to compare other 

pairs of list strategies: 

(3 2 3 1 2 3,3 2 1 3 2 3). 
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For example, if V3(X3) > Vl(X1), then 1 3 2 3 is improved by 3 1 2 3. 

The preceding example illustrates how the index theorem for two queues in 
tandem can be used to simplify the search for an optimal policy in a three-node 
network. It may be possible to use the results for three-node networks to simplify 
the search for four-node networks and so on. We believe that the computational 
effort depends on the topology of the forest under consideration. For example, the 

parallel queue topology is the simplest case and possesses a closed-form index rule, 
while the cardinality of GE is maximized in the case of N queues in series. 

In the remainder of this section, we investigate a heuristic approach that reduces 
the search over GE. We assume that the problem of scheduling a tree can be solved, 
and discuss the possibility of scheduling a forest of multiple trees using lists that are 

optimal for the individual trees. Suppose that the forest contains / trees 

T,, T2, ?* * , T, with list Mi being optimal for tree 7T (taken in isolation). As a means 
of dramatically reducing the search over GE (which grows quickly in 1), consider 

restricting attention to (forest) lists which serve the trees in a manner consistent with 

Mi for all i. Under the assumption that policy g sequences jobs in tree i in a manner 
such that the ordering of Mi is preserved, the problem reduces to optimally splicing 
together the lists MI, M2, * , Ml so as to minimize cost (maximize reward). 
Because each tree is completely independent of the others, using the results of 
Section 3.1 we can reduce the problem to a multi-armed bandit problem treated by 
Gittins (1989). At any decision instant, let Bi(1)Bi(2) .. Bi(q) denote the q 
remaining stages of service for tree i (according to Mi) with Bi(j) denoting the jth 
block of jobs to be served. An index rule is optimal under the decomposition 
assumption, where the index of tree T7 is given by 

(3.33) i = max v(Bi(1)Bi(2) Bi(j)). 

Note that the switching costs (or delays) are absorbed in v(-), thereby yielding a 

problem without switching costs. Thus, for the problem of scheduling a forest of 1 

trees, the assumption that the optimal sequence of an isolated tree be maintained in 
the schedule for the forest results in substantial simplification. Upon solution of / 

single-tree problems, the index rule for the forest can be computed by the standard 
methods used for multi-armed bandit problems. If at time t = 0, q/i is maximum, the 
index rule proceeds to serve the first j blocks of Mi (j is defined by (3.33)). Then i/ is 
re-evaluated based on the remaining list and the procedure continues in this manner. 
This re-evaluation, and hence the entire policy, can be determined off-line. 

Since the index rule of (3.33) is optimal under the assumption that attention be 
restricted to MI, M2, ' , M, we consider the removal of this assumption. The 

following example demonstrates that such an index rule is not optimal without the 
restrictive assumption made earlier. 

Example 5. Consider a forest with two trees and set-up cost K for all nodes. Tree 
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1 contains two nodes in tandem: node 1 feeds node 2. The second tree contains an 
isolated node, call it queue 3. Suppose a > 0 and h = h2 = h3 = h; thus the problem 
reduces to that of minimizing the total expected discounted cost due only to 

switching, because the expected holding cost is equal under all policies in GE. Let 
xl= 2= x=X3= 1, S1 = 10, S2 = 2, S3= -, where Si denotes the expected discounted 

processing time of node i. The proposed heuristic considers the two trees in 
isolation. If tree 1 is isolated, a quick calculation reveals that policy 1 2 is optimal. 
So, the heuristic assigns the index rli (Equation (3.33)) based only on the 
consideration of either serving node 1 only, or node 1 followed by node 2. Using 
Equations (3.7) and (3.11), we get 11 = h - (2.452)aK, which is achieved by serving 
node 1 followed by 2. For the second tree (queue 3), the index of Equation (3.33) is 
h - (2.500)aK. Thus, the heuristic algorithm specifies policy 1 2 3, which incurs a 
total switching cost of 2-125K. For the forest, however, policy 2 3 1 2 is optimal 
and incurs a total expected switching cost of 2-070K. The optimal list for the forest 
serves tree 1 in the order 2 1 2 even thought this order is not optimal for tree 1 
taken separately. For this example, the heuristic gives the second best performance 
of seven candidates in GE. 

Example 5 can be explained as follows. Because h, = h2 h3, and S2< 53 <SI, it 
follows that the reward rate of a single job in node 2 is greater than that for node 3, 
which is in turn greater than that for node 1. When scheduling tree 1, the large 
reward rate of serving node 2 does not offset the penalty of an additional switch, 
thus 1 2 is optimal. For the forest, however, the time required to serve job 3 

sufficiently discounts the cost of the second switch into 2 so that it is optimal to 
follow 2 3 1 2 and thereby maximize reward rate. 

Example 5 relied heavily on a large discount factor (or possibly a small a with 

very long service periods) to identify a case for which the optimal forest-schedule 

diverged from a policy known to be optimal for one of the constituent trees. Since 
either policy 1 2 3 or 3 1 2 is optimal for a =0 under the condition given in 
Theorem 1, the forest scheduling problem with switching costs can be decomposed 
without loss of optimality in this case. For the problem with switching delay, 
however, the problem is more complex. Even in the case of a = 0, it is not optimal 
to construct the schedule for the forest based on optimal lists for the trees, as the 

following example indicates. 

Example 6. Consider a forest consisting of three nodes. Node 1 deterministically 
feeds node 2, forming a tree of tandem queues. Node 3 is unconnected. For all 
i = 1, 2, 3 let Di = -i = 1. Let a = 0, cl = 5, c2 = 1, C3 = 2, Xl = 1, x2 = 9, and leave x3 
unspecified. Thus, we have h- = (cl - pc2)l,1 = , h2 = C212 = 1, h3 = c3/b3 = , and 
Theorem 1 guarantees that an exhaustive policy is optimal. Theorem 2 as applied to 
the problem of switching delay gives P2(x, x2)) > (x)= 3 and so policy 2 1 2 
is an optimal policy for nodes 1 and 2 considered in isolation. The heuristic 
algorithm determines from (3.33) and (3.19) that the index of the first tree, q1, 
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equals 9 and is achieved by serving 9 jobs in node 2. Because the index of queue 3 
is 0'4X3/(x3 + 1) < 2, the algorithm begins service in node 2. Moreover, the algorithm 

specifies policy 2 1 2 3 for any value of x3. With respect to the holding cost incurred 
in node 3 alone, however, policy 1 2 3 saves cost C3X3 over 2 1 2 3, because it 

requires one less switch. Since the holding cost incurred in nodes 1 and 2 is greater 
under policy 1 2 than policy 2 1 2 by amount 16 cost units, we find that policy 
2 1 2 3 is optimal for x3 ? 40 and 1 2 3 is optimal for x3 > 40. 

This example shows that if one restricts attention to policy 2 1 2 (which is optimal 
for that tree) when scheduling the forest, the result is suboptimal for x3 > 40 by 
amount C3X3 - 16. This loss is unbounded in x3. It is, however, bounded as a fraction 
of the total cost incurred under an optimal policy. For this example the fractional 
loss incurred by considering only schedules based on the 2 1 2 strategy is at most 

1/(2 + (X3 + 1)/(21t3E{D})) < . 

4. Conclusion 

We have analyzed the optimal stochastic scheduling of a single server in systems 
of queues connected as forests and for which switching of the server is penalized. 
Although exhaustive service is not optimal in general, we identified in Theorem 1 a 
class of forests for which exhaustive service is optimal. This limited characterization 
of optimal policies contrasts sharply with the elegant index policies that are optimal 
when switching penalties are not modelled. In Theorem 2 we explicitly define an 

optimal policy for a class of networks of two tandem queues with stochastic routing. 
We indicated that this policy is different from the Gittins index policy. Finally, we 

presented some strategies for simplifying the search for an optimal policy in systems 
of the class identified in Theorem 1. 
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