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Abstract 

We consider M transmitting stations sending packets to a single receiver over a 
slotted time-multiplexed link. For each phase consisting of T consecutive slots, the 
receiver dynamically allocates these slots among the M transmitters. Our objective is 
to characterize policies that minimize the long-term average of the total number of  
messages awaiting service at the M transmitters. We establish necessary and sufficient 
conditions on the arrival processes at the transmitters for the existence of finite cost 
time-average policies; it is not enough that the average arrival rate is strictly less than 
the slot capacity. We construct a pure strategy that attains a finite average cost under 
these conditions. This in turn leads to the existence of an optimal time-average pure 
policy for each phase length T, and to upper and lower bounds on the cost this policy 
achieves. Furthermore, we show that such an optimal time-average policy has the same 
properties as those of optimal discounted policies investigated by the authors in a 
previous paper. Finally, we prove that in the absence of costs accrued by messages 
within the phase, there exists a policy such that the time-average cost tends toward zero 
as the phase length T --* oo 

1. Introduction 

We consider a flow control problem that arises in the performance modelling 
of  the "hop-by-hop" layer of computer communication networks. For a detailed 
overview on the architectural layers and flow control mechanisms, the reader is 
referred to [7,8,17]. The hop-by-hop scheme studied in this paper is the same as 
the one in [2-5] ,  its purpose being to maintain a smooth flow of  traffic between 
M transmitting stations attempting to send messages through a single communication 
channel to an adjacent receiving station. The time axis is divided into equal segments 
called slots. All messages consist of  packets of  equal length; the transmission time 
of  a packet is one slot and a packet transmission may only begin on a slot boundary. 
Each transmitter j has an independent generally distributed arrival process of packets 
per slot with finite first moment 2, (j) and a buffer of  infinite size. We assume that 
the arrival processes to distinct transmitters are mutually independent. Only one 
station is allowed to transmit during any particular slot. 
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T consecutive slots form a phase. Prior to the beginning of  each phase, the 
receiver informs each transmitter of the number of packets (referred to as a window 
size) that it is prepared to accept and the particular slots during which each transmitter 
is allowed to transmit. In making a decision on the assigned window size, the 
receiver uses the knowledge of arrival statistics, the number of  queued packets for 
each transmitter at the beginning of the preceding phase, and the window size 
assigned for the preceding phase. The number of queued packets at a phase is sent 
by each transmitter to the receiver with negligible overhead some time before the 
beginning of the next phase. Due to the arrival of  new packets, the number of  
queued packets changes by the time the receiver is able to use the information for 
the next window assignment. The window allocations by the receiver thus constitute 
a discrete-time Markov decision process with partial information. 

Optimal flow control allocations were first analyzed by Rosberg and Gopal [16], 
who considered a single transmitter, and a cost function reflecting the number of  
queued packets together with the number of unutilized (i.e. wasted) transmission 
slots. Subsequently, Cansever and Milito [3] investigated the problem for two 
transmitters (M = 2) with identical arrival statistics, with later generalizations to 
heterogeneous arrivals [4]. Cansever and Milito also conjectured results for M > 2 
transmitters. Later, they extended their work to more complex networks with multiple 
states in a layered tree-like ne twork  [5]. 

Our model in [2] is similar to that of [3,4]. As in these references, the cost 
per phase in [2] is the expectation of  the sum of the number of  untransmitted 
packets at the respective stations. Our objective then was to dynamically allocate 
a fixed number T of slots among the M > 2 transmitters to minimize the total 
discounted cost. Our results in [2] include a partial characterization of a set of  
optimal allocation policies. These structural properties enable us to prove that, for 
the set of  all discount factors fl < 1, a finite number of  dynamic optimal allocations 
suffice to completely describe an optimal allocation policy. For M = 2, we prove 
in addition that the optimal policy is a monotone function of a state, and that the 
total cost is convex. When the process of message generation at one transmitter is 
stochastically larger than the message generation process at the other transmitter, 
we further characterize an optimal allocation. Finally, if the message-generating 
processes at the M > 2 transmitter are i.i.d., we find an explicit form of the optimal 
allocation policy (compare [3]) that does not depend on the discount factor ft. 

Here, we turn our attention to time-average policies. We believe that a time- 
average cost criterion is a more natural setting for flow control problems, since it 
represents the long-term performance measure of the flow control algorithm. Moreover, 
in the time scale under which a flow control system generally operates, any discount 
attached to past data ought to be minimal; hence, discounting appears to us to be 
an artifice that facilitates solutions, at the cost of detracting from the validity of  the 
model. 

It is not surprising that the existence of  time-average policies of  finite cost 
requires that the average arrival rate is strictly less than the slot capacity, i.e. p < 1 
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in terms of a traffic intensity. We show that more is required: if p < 1, a necessary 
and sufficient condition for the existence of finite cost strategies is the finiteness 
of the second moment of the number of arrivals during a phase. 

We exhibit a pure strategy that attains a finite average cost under the condition 
of the preceding paragraph. This in turn leads to four further results: 

(1) For each phase length T, there exists an optimal time-average policy. 

(2) The time-average optimal policy can be obtained as a limit of infinite horizon 
optimal discounted policies as the discounting factor fl---> 1. 

(3) The properties of the time-average optimal policy are the same as those 
derived in [2] for optimal discounted policies. 

(4) Upper and lower performance bounds are obtained for the cost attained by 
the optimal policy. 

For each phase length T, the existence of time-average optimal policies and the 
derivation of their structural properties are based on: (1) the work of Boumas et al. 
[2] on the infinite horizon optimal discounted cost and structural properties of the 
optimal discounted stationary policies, and (2) the work of Sennott [18]. 

Finally, we prove that in the absence of costs accrued by messages within the 
phase, there exists a policy such that the time-average cost tends toward zero as the 
phase length T---> ~. This result is motivated by our interest in investigating the 
long-term average cost as a function of the phase length T, which in turn leads to 
an optimal phase length size. This problem turns out to be a very difficult one and 
we have not solved it in this paper. However, we have been able to solve a closely 
related problem, as we shall explain, For each phase, the cost has two additive 
components: (1) the number of packets awaiting transmission at the beginning of 
the phase, and (2) the waiting times accumulated by packets arriving during the 
phase, and not being available for transmission until the beginning of the next 
phase. Using the strong law of large numbers and the theory of convergence of 
probability measures as in Billingsley [1], we have been able to show that the cost 
component (1) asymptotically goes to zero at T ---> **. In addition, the corresponding 
asymptotically optimal policies are state independent and proportional to the arrival 
processes rates. The asymptotical behaviour of component (1) at T ---> ~0 combined 
with the monotonicity in T of the cost component (2) shed more light On the issues 
that should be addressed to determine the optimal phase length. Some of these 
issues are discussed in section 5. 

The paper is organized as follows. In section 2, we formalize the model and 
formulate the problem. In section 3, we first derive necessary conditions on the 
statistics of the arrival processes that ensure system-stable behaviour. Under these 
conditions, we then construct a pure strategy possessed of finite long-term average 
cost. In section 4, we demonstrate the existence of optimal time-average stationary 
policies, and show that these policies have the same properties as those derived 
in [2] for optimal discounted stationary strategies. In section 5, we exhibit the 
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existence of a stationary nonrandomized policy under which the long-term average 
number of packets awaiting transmission at the beginning of each phase converges 
to zero as T---> ~.  The flow control problem with priorities is briefly discussed in 
section 6. Finally, conclusions are presented in section 7. 

2. Model formulation 

2.1. DEFINITIONS AND PROBLEM STATEMENT 

Consider a hop-by-hop scheme that operates as follows. There are M transmitting 
nodes attempting to send messages to a single receiver. All messages consist of  
packets of  fixed length and time is divided into equal slots, one slot being long 
enough to transmit a packet. A packet transmission may begin only on a slot 
boundary. The window allocation proceeds in phases, a phase being a fixed 
predetermined number of slots, say T slots. Only one transmitter is allowed to 
transmit during a particular slot. We also assume that each transmitter has a buffer 
of  infinite size. We place two further restrictions on the model: (1) packets arriving 
in a particular phase may not be transmitted in that phase, and (2) packets that are 
being transmitted during a phase are not penalized for the delay within the phase. 
These assumptions may be considered as a restriction of the model. Relaxing them 
results in formulating a problem whose action space consists of not only the window 
sizes allocated to each transmitter but of the order in which the slots are scheduled 
for transmission also. This is a considerably more difficult problem, which will not 
be addressed here. 

The processes of message generation at each transmitter are stochastic processes 
with known statistics. The number of packets generated at transmitter j during 
slot i {~!J)}i**= 1, are i.i.d, random variables with finite first moment X~J). We assume 
that the arrival processes to distinct stations are mutually independent. 

Let Y~J) be the number of packets generated at transmitter j ( j  = 0, 1 . . . . .  M) 
during phase k (k = 0, 1 . . . .  ). For each j, the Y~k j) are i.i.d, in k. Indeed, each YCk j) 
is the sum of  T i.i.d, random variables representing packets generated at the respective 
slots of  the phase. For simplicity, we often use the notation Yk to denote the vector 
whose M components are the Y(k j). 

We now write the evolution equations for the flow control system. The number 
of  packets in the buffer at the beginning of phase k is called Nk; the same vector 
convention holds for Yk. In a similar vein, define w k as the allocation vector for 
phase k, W(k j) being the number of  slots assigned to transmitter j for phase k. 
Finally, we let X k be the number of  packets "left over" at the beginning of  phase 
k, in the sense that they had been buffered at the beginning of  phase k - 1, but not 
transmitted during the course of that phase. More precisely, we shall define X k by 
the relation 

Xk __a (Nk- 1 - wk- 1 )+, (2.1) 
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where we adopt the vector notation 

M 
x +_a y~ max(O,x(j)). 

j= l  

Inherent in (2.1) is the assumption that arrivals during phase k -  1 cannot be 
transmitted during that phase, but are available for transmission in phase k. It 
follows that the number of buffered packets for the respective transmitters at the 
beginning of phase k is described by 

Nk = Xk + Yk- 1. (2.2) 

Observe that (2.2) holds only for k > 1; to complete the set of dynamic equations, 
we assume that N O and w0 are given. From (2.1) and (2.2), we thus arrive at the 
dynamical equations of evolution 

Xk = I (Xk- 1 + Yk-2 -- Wk- 1 )+ if k > 2, 
Ix1 if k = 1. 

(2.3) 

It will be seen that {Xk} turns out to be the more natural state variable, not only 
for the evolution equations, but also for the cost expressions and the allocation 
rules. 

It is convenient as well as reasonable to define for the cost function during 
a single phase 

r (N)=  ~ ~ N(J) + ~ ,,,m ~:(j) , (2.4) 
j= l  k=0 m=l 

where we have used 6!J) to denote the number of packet arrivals to transmitter j 
during slot m of any phase i. The cost (2.4) may be interpreted as a total waiting 
time via Little's formula, except that we have not found it feasible to take account 
of the particular slot during which a packet is transmitted. From (2.3), it follows 
that the expected cost per phase is furnished by 

M T(T+  1) ,~, 
E[r(N)] = r ~ E[x(J )]+ 2 It, (j). (2.5) 

z . . . . /  

j= l  j= l  

For the allocation w determined by the receiver, we first define the action 
space A to describe the possible allocations of slots within a phase, namely 

A w = . . . . .  w " Z r . 

j= l  
(2.6) 
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During the course of phase k - 1, each transmitter is able (with negligible overhead) 
to apprise the receiver of  his value of N~(J) 1 . Since the receiver also knows wk(J_.)l, he 
can deduce X(j ) by the relation (2.1). It follows from the evolution equation (2.3) 
that {Xk} is a Markov decision process, whose optimal control requires only the 
most recently available state (cf. [13], section 6.7). In short, we need only consider 
the set of admissible control policies zr = I'l** k = 17rk, where 

zck " Z ff --> A. (2.7) 

More succinctly, we write wk(Xk) tO indicate that the allocation of  slots for 
phase k is based on the current state X~. We emphasize once again that our allocation 
is based on imperfect information; at phase k, X k represents data from the beginning 
of  phase k -  1, and does not take into account the arrivals Yk - 1 that contribute to 
the current buffer content N k. For future reference, the set of admissible controls 
as described above will be called Pr. Finally, when we consider only stationary 
policies, we shall omit the subscript from w k. 

When a policy zr is employed, we define the long-term average cost for phase 
length T by taking the time average of the expected cost (2.5), and conditioning on 
the beginning state x. We thus obtain 

n M ~r x ( j )  T +  1 M 
WT(Zr, x ) =  l i m su p n  - 1 ~  ~F__4[ k ] + ~  ~ & ( ) ) "  

n --> ~, k = l  j = l  j = l  
(2.8) 

Attention is called to the second term, which varies only with T, and does not 
depend on the allocation algorithm for the slots. Because this term plays no role 
in the choice of optimal allocation, we shall focus our attention primarily on the 
first term. 

If we call the total number of unsent packets at the beginning of phase n 

M 

S,, a= y_~ x~j)  ' (2.9) 
j = l  

then for each fixed T there is no loss of generality (with respect to either system 
stability or optimality of flow control) in restricting attention to the cost function 

VT(TC, x) ~= limsuP n Eff Sk • 
k = l  

(2.10) 

We also define the value function 

Vr(x) & inf Vr(zc, x). (2.11) 
n~ Pr 
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We are now ready to state the problems we address in this paper: 

(1) For each fixed T, find necessary and sufficient conditions on the statistics of 
the arrival processes at the transmitters that guarantee stable system behaviour. 
That is, under these conditions there will exist flow control policies possessed 
of finite long-term average cost Vr(" , ' ) .  This problem is decomposed into 
two subproblems: (a) establish the necessary stability conditions first, and 
(b) show that these conditions are sufficient for system stability by constructing 
a pure policy possessed of finite long-term average cost for each phase 
length T. 

(2) For each fixed T, establish the existence of an optimal flow control policy for 
the long-term average cost criterion as given by (2.10) and derive qualitative 
properties of this optimal control policy. 

(3) Explore the asymptotic behaviour of ~'r(x) as T--> oo. 

It is worthwhile at this point to make the following observation. In (3) above, we 
study the behaviour of the minimal asymptotic long-term average cost consisting 
only of the number of packets awaiting transmission at the beginning of  each phase 
as T ---> ,,o. We do not incorporate the additional cost due to holding packets arriving 
within each phase. The long-term average of the sum of  these two costs is as given 
by (2.9). By inspection, the second term on the right-hand side of (2.8) tends toward 
infinity as T ---> oo while, as we shall show in section 5, the first term can be made 
to tend toward zero under some specified allocation strategy. Therefore, there exists 
at least one optimal phase length, say T*, that minimizes the optimal value of  Wr 
over T. We will elaborate on this optimal design problem in section 5. 

We now move to the next subsection to discover a fundamental relation 
between the state evolution of this queueing network and the waiting time process 
of some G/G/1  queue, that we shall shortly define. 

2.2. RELATION TO THE G / G / 1  QUEUE WAITING TIME PROCESS 

In this subsection, we relate the state evolution of this queueing network to 
the waiting time process of a G/G/1  queue. The key to this connection is the 
following simple inequality: for any real numbers {x~ k), 1 < i < n, 1 < k < m},  we 
have 

1 i_< n , <  ~_~ max{x l  k)" 1 < i <  n}  (2.12) max x i . . . .  
k = I  k = l  

Applying (2.12) to the sum of the components of (2.3), we obtain 

- -  n - 1  - - -  " n - 1  

j=l  i=1 
(2.13) 
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We first define 

M 
y. a= y__, r ( j ) .  (2.14) 

j=l 

Since Z~=1 w~ j) < T for all k, we then infer from "(2.9) and (2.13) that 

Sn > (Sn - 1 + Yn - 2 - -  7 " ) + "  ( 2 . 1 5 )  

We next define the random process 

W. (w._l +Y.-1 
if n = l ,  

(2.16) 
- T)  + i f  n > I .  

The random process {W~} behaves exactly like the waiting time for a D/G/1 queue 
with interarrival times equal to the phase length T, and i.i.d, service times {Y,}, see 
Lindley [14]. Combining (2.15) and (2.16) produces the relation 

S. > W n, (2.17) 

which is to say that under any control policy, the total cost at epoch n is at least 
as high as the waiting time of the nth customer of a D/G/1 system. The relation 
(2.17) is of particular importance in the sequel, for it will enable us to draw the 
following conclusions: 

(i) any unstable behaviour of {W.} will imply unstable behaviour of {Sn}; 

(ii) the minimal long-term average cost Vr(x) is always higher than the time 
average of {W.}, whenever the latter exists. 

In the next section, we will then take advantage of the established theoretical 
results of the G/G/1 queue [14,10,11] and the theory of random walks [6,9] to 
study the stability behaviour of the queueing network. 

3.  E x i s t e n c e  o f  f in i t e  a v e r a g e  c o s t  p o l i c i e s  

In this section, we derive necessary and sufficient conditions on the statistics 
of the arrival processes at the transmitters that will guarantee the existence of finite 
long-term average cost flow control policies. In this regard, we shall first define 
system stability. 

DEFINITION 

The system is stable under control policy 7r if the long-term average cost 
(2.10) is finite. 
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In the remainder of the paper, we shall set 

M 
A , ~ ( j ) .  

j = ]  

We shall establish the following results. 

(I) 

(2) 

(3) 

(3.1) 

If p > 1, or p = 1 and the arrival processes at the transmitters are not all 
deterministic, the system is unstable; that is, under any control policy, the 
expected number of unsent messages grows without bound. 

If p < 1 and the second moment  of  the arrival process at some transmitter is 
infinite, the system is unstable under any control policy. 

If p < 1 and the second moment  of  the arrival process at each transmitter is 
finite, we construct a nonrandomized stationary strategy that leads to a stable 
system for each phase length T. 

3.1. UNSTABLE BEHAVIOUR 

We begin by proving assertion (1), and then describe a policy with finite 
long-term average cost when p = 1 and the arrivals are deterministic. 

THEOREM 3.1 

If p >  1, or p =  1 and the arrival processes at the transmitters are not all 
deterministic, then the system is unstable under any allocation policy in the sense 
that for any control policy ~r and any initial state X 1 = x, 

(a) If /9 > 1, then 

lim 1 ~ - Sk(~:)= l i m S n ( g ) = + ~ ,  w.p.1; (3.2)  
n---~** t/ k = l  n-~** 

(b) If p = 1, then 

limsupSn(Tr) = + ~  w.p.1. (3.3) 

Before we prove the theorem, we need the following lemma. It will be used 
to prove that if p = 1 and the arrival processes at the transmitters are not all 
deterministic, then the system is unstable under any control policy. 

LEMMA 3.2 

Let X 1 . . . . .  X u be mutually independent random variables. Then ~ _  1 X j  = T 

if and only if for each j ,  Xj  - nj for some non-negative integers n 1 . . . . .  n M such 
that ~}4=1 nj = T. 
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Proof 

If for some non-negative integers n 1 . . . . .  nu, X, - n, for each j and Y'.~= inj = T, 
then trivially Y.:a=l Xj - T. Conversely, suppose Y.j~=I JCj - T. Let 

~ (J)(z) = ~ a(J)z i -i 
i=o 

be the generating function of Xj, where {q~/)}~*=o is the probability mass function 
of  Xj. Since the Xj's are independent, the generating function O(z) of  ~,j~ 1Xi must 
satisfy 

M 
~(z) = I-I ~(J)(z)= z T. (3.4) 

j= l  

Since the coefficients of each (~(J)(z) are non-negative, then by the above equation 
each ~(J) must be of  finite order. It then follows that for each j,  the polynomial 
dp(J)(z) must divide z r. This is possible if and only if .~(J)(z)----- "~nJa(J)znJ for some 
in teger  nj, 0 < ny < r. This then implies that q~)  = 1 and ~ t=  I nj = T. [] 

Proof of  theorem 3.1 

Let us remind the reader of the relation (2.17), which we state here again for 
convenience: 

s.  _> w.. (3.5) 

Recall that W n, as defined by (2.16), is the waiting time process of  a D/G/1 queue. 
The inequality (3.5) is the key to the following proof. 

If p > 1, W,, does not possess a limiting distribution, see [14]. In addition, 
lim n ~ ,,Wn = ,,,, almost surely. This result is not explicitly stated in [14], but it can 
be seen as follows, Define the sequence of i.i.d, random variables 

Uk __a Yk - T, (3.6) 

and the random walk 

0 if n=O,  

v . ~  .-1 
Z U k  if n >  1. 
k=0 

(3.7) 

We first prove by induction that 

w.  >__ v ._  1. (3.8) 
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Equation (3.8) is trivial for n = 1. We now suppose it holds for n and prove it for 
n + I. Since Vn = Vn + Yn- t - T, then 

w ÷1 = (wn + T)÷= Vn_l + Vn)÷- > (3.9) 

the last inequality following from the induction hypothesis. If p > 1, then the drift 
of  V n, E ( U o ) = ( p - 1 ) T ,  is positive so that lim,,__,**V,,= ~, almost surely (see 
Feller [6] or Gut [9]). Thus, (3.2) follows immediatelt from (3.5) and (3.8). Assume 
next that p = 1, and the arrival processes at the transmitters are not all deterministic, 
i.e. for some i and all n ~ Z . ,  P[Y(o i) = n] < 1. This implies by lemma 3.2 that 
P[Uo = 0] < 1, so that lim supn ~**V,, = +o0 w.p.1, by [5] or [6]. Expression (3.3) is 
now immediate upon invoking (3.5) and (3.8). [ ]  

Remark  

We note that i f p  = 1 and the arrival processes at all transmitters are deterministic, 
a control policy with finite long-term average cost exists. Suppose that for each j, 
Y(o j) - n i for some non-negative intergers n~ . . . .  nu such that E~/__ I nj = T. Consider 
the stationary control policy (w! I) . . . . .  w! u)) = (nl . . . . .  riM) for all i > 1. By (2.3), 
X~ (j) = x (j), for all n > 1, and this strategy possesses a long-term average cost equal 
to ~ =  ~x (j). 

We next show that in addition to p < 1, finiteness of  the second moment  of  
the arrival process at each transmitter is a necessary condition for the existence of  
control policies that lead to a stable system. Let {X,,(J)Qr), n >_ 2} denote the state 
of transmitter j at epoch n when policy lr = I'll*= 1 ~ri is employed, starting with the 
initial state X(~ j) = x (j). 

THEOREM 3.3 

Assume p < 1. If for some i, E[(~i))  2] = 0% then the system is unstable under 
any control policy, i.e. for any control policy n: and any initial state X 1 = x~ 

,~** n Sk(~r)= " Ex[S,,(ff)] = oo w.p.1. (3.10) 
k = l  n 

Proo f  

When p < 1, the waiting time process {W,,}, as defined by (2.16), tends in 
distribution to a finite random variable, say W (see Lindley [14] or Kiefer and 
Wolfowitz [10]). Since E[(~i))  2] = *,, implies that E[U 2] = **, then by theorem 3 o f  
Kiefer and Wolfowitz [11], E ( W ) =  ,~. In addition, by [11], theorem 1, we have 
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1_ n~**'~ k=~W k =E(W) =1. (3.11) 

This result together with (3.5) and (3.8) imply (3.10). [] 

Having established the necessary stability conditions through theorem 3.1 
and theorem 3.3, we shall show next that these conditions are sufficient for stable 
system behaviour. 

3.2. STABLE BEHAVIOUR: CONSTRUCTION OF A FINITE AVERAGE COST PURE POLICY 

In this subsection, we exhibit the existence of a nonrandomized stationary 
strategy that leads to a stable system for each phase length T. Before proceeding 
with the construction of this pure strategy, we shall remind the reader of a key 
lemma that will enable us to interchange limits in distribution (or probability, or 
with probability 1) and expectations of a sequence of random variables. The key 
to this interchange is the uniform integrability of the sequence as indicated in [1], 
theorem 5.4. In this regard, we shall often make use of the following facts. 

LEMMA 3A (UNIFORM INTEGRABIL1TY) 

(a) Let Z, {Z,,} be a sequence of non-negative integrable random variables, and 
suppose that Z n converges in distribution (or with probability 1, or in probability) 
to Z. Then {Zn} is uniformly integrable if and only if E(Zn) ---> E(Z). 

(b) Any sequence of i.i.d, random variables with finite mean is uniformly integrable. 

(c) Suppose {Zn} is a sequence such that IZ~l -< z w.p.1 and E(Z) < ~. Then {Z,,} 
is uniformly integrable. 

In the remainder of the paper, we shall consistently suppose that 

p < 1, (3.12) 

E[(~IJ)) 2] < ~,,, 1 < j <  M. (3.13) 

To avoid trivialities, also assume 

O<P[~J )=o]<  1, 1 < j < M ;  (3.14) 

the inequality on the right precludes channels without message inputs, while the 
left-hand side inequality is implied by the stability requirement (3.12). We recall 
that (cf. (2.14)) 
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M 

Yn _a ~.  yn(j). (3.15) 
j = l  

For future reference, we call 

A 
Pk = P[Yo = k], (3. I6) 

and note that (3.14) implies P0 > 0. 
We also recall that (cf. [29)) 

M 

S, = ~ X~J); (3.17) 
j = l  

{Sn} need not be a Markov chain under an arbitrary policy, but it is one under the 
policy we shall describe. Let w~ i) be the number of slots allocated to transmitter j 
at epoch n. Apply the following nonrandomized stationary policy to {Xn}: 

if Sn < T, take w<n j) = x~ j), (3.18) 

M 

if Sn > T, take w~ j) < x~ j) and ~ w~J)= T. (3.19) 
j = l  

This is actually a description of a class of policies, but any such policy will be 
adequate for our purpose. The motivation of policies of this class is provided by 
the properties of optimal discounted policies, as given in theorem 3.8 of [2]. Such 
a policy, applied to {Xn}, induces an {Sn} that will meet our needs. In fact, {Sn} 
is simply the total cost at epoch n, so that the time average of {S,t} becomes the 
time average of the total cost. The state evolution of {Sn} then follows the recursive 
equations 

Yn-I Sn < T, 

Sn+l = S,, + yn_l _ T  S,, > T. (3.20) 

The remainder of this section is devoted to proving that the stated pure policy 
indeed leads to a finite average cost, i.e. 

n 

lim sup ~ E[Sk(X)] < oo, (3.21) 
n . ->  ** k = l 

where S,,(x) is as in (3.17), except that the parameter x now indicates the initial 
number of packets stored at the respective transmitters. For (3.21) to be valid, it 
suffices to demonstrate that 

sup E[Sn (x)] < ~*, 
n 

from which (3.21) follows immediately. 

(3.22) 
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We shall again obtain the desired result by comparing the average cost associated 
with the allocation policy (3.18) and (3.19), and the average waiting time cost for 
a D/G/1 queue. For this purpose, we introduce the notation Wn(x) to denote the 
waiting time for the D/G/1 queue, under the supposition that the zeroeth customer 
undergoes waiting time x. We shall prove that S~(x) and W~(x) are related by 

Wn(x ) < Sn(x ) < Wn(x ) + T (3.23) 

for all n when both receive the same inputs {Y,,}. In addition, we verify that 
E[W~(x)] remains bounded in n by virtue of uniform integrability. 

We use induction to prove (3.23). It is clearly true that (3.23) holds for n = 0, 
where S~(x) and W~(x) are equal. Now assume (3.23) holds for n. In the case 
S~(x) < T, S~ + i(x) = Y~_ i by (3.20). On the other hand, we have (see (3.9)) 

Wn + ~(x) = (Wn(x) + Yn-1 - T) ÷, 

whence 

r , , _~-  r <_ w n+ ~(x) <_(sn(x ) + r n _ ~ -  T) + <_r~_l. 

(3.24) 

The complementary case Sn(x) > t yields 

+ 1 ( x )  - S (x) = w n  + ( x )  - W n ( x )  

by (3.20) and (3.24), so the result (3.23) again follows. 
We now show that {Wn(x)} is uniformly integrable; this implies that 

sup E[W~(x)] < 0~ (3.25) 
n 

for each x. Under the condition p < 1, it was established in [10] and [11] (see also 
[14]) that there is the limit in distribution 

d 
Wn (x) ---> W, (3.26) 

where W does not depend on x. In addition, it is shown in [11] that 

lira E[Wn (0 ) ]  = E[W] < ~ ,  ( 3 . 2 7 )  

with the convergence and the finiteness of E[W] following from the existence of  
a finite second moment for Yn. Then (3.26) (with x = 0), taken together with (3.27), 
implies that {Wn(0)} is uniformly integrable; this follows from lemma 3.4(a). 

To compare Wn(0) and Wn(x), we note that (3.24) can be extended by an easy 
calculation to 
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n-I 1 W n ( x ) = m a x  O, x6o,k + Y~ Y k - ( n - r ) T ' k = O  . . . . .  n - 1  . 
k = r  

(3.28) 

where ~ is the Kronecker delta. We therefore obtain 

W,(x) < Wn(O) + x. (3.29) 

For each x, the uniform integrability of {Wn(0)} conveys the same property to 
{Wn(x)}. Thus, {E[Wn(x)] } satisfies (3.25), and by (3.23) the same must be true for 
{E[Sn(x)]}. Then (3.21) holds also, and our argument is complete. 

Remark 1 

Before leaving this section, we make the following observation that will be 
used in section 4. From the state transition matrix of  {Sn}, one checks that state zero 
is reachable from any other state; this follows because P0 > 0, as we have already 
mentioned (see (3.14) and (3.16)). Moreover, the finiteness of the long-term average 
cost of  {Sn}, starting from any initial state, implies that the total expected cost to 
reach state zero from state x is finite. 

Remark 2 

Through the use of the inequality (3.22), one also proves that 

E[Sn(x)] < E[Wn(x)] + pT. (3.30) 

For this purpose, consider E[S n + l(x) I Sn(x)]. In the event {Sn(x) < T}, we have from 
(3.20) 

E[Sn+ l(x)ISn(x)] = E(Y,,_ ~) (=pT) .  

On the other hand, in the event {Sn(x) > T}, an application of  (3.20) yields 

E[Sn+ 1(x) l Sn(x)] = Sn(x) + E(Yn- 1) - T, 

so that by the right-hand side inequality of (3.22), 

E[S.+ IS.(x)] -< W.(x) + pT. (3.31) 

Thus, taking expectations of the conditional expectation leads to (3.30). 

Remark 3 

Using more subtle arguments, one shows that E[S,,(x)]-->E(W) + p T  for 
all x. 
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3.3. AN UPPER AND A LOWER BOUND FOR ~Tr(x) 

We shall derive an upper and lower bound for the minimal achievable long- 
term average cost Vr(x). The optimal time-average policy certainly achieves a cost 
at most as high as the one of the pure policy of section 3.2 as defined by 
(3.18)-(3.19). Hence, by remark 2 of  the preceding section, 

~¢r(x) < E(W) + pT. (3.32) 

On the other hand, since under any policy S,, > W,~ (cf. (2.17)), we also obtain 

Vr(x) > E(W). (3.33) 

For completeness, we need an expression for E(W) in terms of  the arrival processes 
statistics. In general, there is no such explicit formula. However, from the bounds 
of  [12] on the waiting time process of  the G/G/I queue, we obtain 

E[(X~=I Yo ( j )  - T)+] 2 < E ( W )  < "~--'~= 1 (~(j))2 
2 ( 1 - p ) r  - - 2 ( 1 - p )  ' (3.34) 

where (o-<J))2 = Var(~CJ)). Combining (3.32), (3.33) and (3.34) leads to 

e[C2J =, roe./)- r)+lz 
2(1 - p)T 

--- Vr(x) - p r ÷  yJ __l(acJ))z 
2(1 - p )  

(3.35) 

Observe that the magnitude of the difference between the bounds of  (3.32) and 
(3.33) tends to infinity as T---> ~. These bounds therefore do not give us any insight 
on the asymptotic behaviour of Vr(x) as T --> ~,,. We are, however, able to solve this 
problem in section 5 using a different approach. 

In summary, the pure policy of this section enables us to conclude that the 
minimal achievable long-term average cost Vr(x) is finite for each phase length T. 
We now move to the next section to show that '~r(x) is achieved by a Markov 
policy. Additionally, we derive qualitative properties of this optimal control strategy. 

4. Existence and properties of time-average optimal policies 

In this section, we establish the existence of an optimal nonrandomized 
stationary strategy for the long-term average cost criterion and derive qualitative 
properties of this optimal control strategy. Throughout this  section, T is arbitrary 
but fixed. To be precise, we seek a pure policy, say 7r, such that 

VT(~r*,X) = inf Vr(~r,x), (4.1) 
~E PT 
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where (cf. (2.10)) 

Vr(~:,x) ~ lira sup ~ Sk , (4.2) 

x = (x (~) . . . . .  x (M)) is the initial system state, S,, = Y.~_ 1X~ j) and Xk (j) is the number 
of packets awaiting transmission at the beginning of phase k at transmitter j. Recall 
that for each j (cf. (2.3)) 

k + l  X ' k - 1  (4.3) 

where w~ j) is the number of packets allocated to transmitter j at phase k. We 
remind the reader that the cost (4.2) represents the long-term average number of 
packets awaiting transmission at the beginning of each phase. Since the long-term 
average cost of holding packets arriving in each phase is constant (cf. (2.9)), there 
is no loss of optimality in restricting attention to the cost (4.2). 

We shall prove the existence of time-average optimal policies and investigate 
their qualitative properties based on the following results: (1) the properties of the 
total expected discounted infinite horizon cost of [2], (2) the properties of the 
Markov chain induced by the pure policy of the previous section, and (3) the work 
of Sennott [18] on average cost optimal stationary policies. 

We first summarize the properties of the minimal achievable total expected 
discounted cost and the properties of the optimal discounted policies as given in [2]. 
For 0 < fl < 1, the total expected fl-discounted cost incurred by a policy ~r is given 
by 

Vfl(~,x)  A=Ex~[~=lfln-lSn+l]. (4.4) 

Let 

Vf(x )  ~= inf V#(zr, x) (4.5) 
~t~ Pr 

be the minimal achievable total expected fl-discounted cost when the initial system 
state is x. In [2], the authors study the properties of the discounted value function 
Vii(x) and of the optimal policies that attain the infimum (4.5). It is shown in [2], 
lemma 2.2, lemma 3.1, eqs. (3.8) and (3.16), respectively, that V#(x) has the following 
properties: 

(P1) 
(P2) 

For every state x and discount factor fl, VtJ(x) is finite. 

V/J(x) is non-decreasing in x; that is, for each i, VIJ(x + e~) > V#(x), where e i 
is an M-component row vector with 1 in the ith entry and zeroes in all the 
other entries. 
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(P3) Vii(x) satisfies the optimality equation of  dynamic programming 

Vfl(x) = min{L(x, w) + flE[V#([Y + x - w]+)]} =~ min G#(x,  w) ,  (4.6) 

where A a {(w(1), w (g))~  Z ff EM=Iw (i) T}, Y a ( y ( 1 )  - -  = . . . ,  . = = , . . . ,  y ( M ) ) ,  

Y(J) denotes the random sequence {Yn(J)}n=o, and L(x, w) is the expected cost 
per phase, i.e. L(x, w) = yM= iE[(y(j) + x(j) _ w(j))+]. 

The properties of  the fl-discounted optimal policies are as follows (see [2], 
theorem 3.8, lemma 3.6). Let x be the initial system state and a ~ ~M__.I x(J); then 

(P4) if  oc_> T, any decision rule w ( x ) E  A such that w(O(x)<_ x (t) for each l is 
optimal, i.e. Vii(x) = G/~(x, w(x)); 

(P5) if a < T, there exists an optimal decision rule w(x) ~ A such that w(O(x) > x (0 
for each l, i.e. V/~(x)= G~(x, w(x)). 

Property (P4) assures that for a large number of messages, the slots are allocated 
so that each one will carry a packet, none of them being "empty" and hence possibly 
wasted. By similar reasoning, property (P5) assures that the slots are allocated so 
that all the queued messages that are known to the receiver are transmitted and 
hence the number of wasted slots is minimized. 

We now verify that assumptions 1 -3  of [18] which ensure the existence of 
an average cost optimal stationary policy are satisfied. Assumption 1 is exactly 
property (P1). From property (P2), V/J(x) - V/J(O) > O, so that assumption 2 is met. 
To verify assumption 3 without irreducibility conditions, we need to show that for 
every x = (x (1) . . . . .  x (M)) there exists non-negative M(x) < ~ such that 

V/J(x) - V/J(O) <_ M(x), (4.7) 

and that there exists an allocation rule w(x) such that 

~ P x y  (w(x))M(y) < o~, (4 .8)  
y 

where pxy(w(x)) is the probability of a transition from x to y under the allocation 
scheme w(x). For every x, let w(x) = (wO)(x) . . . . .  w(M)(x)) be the allocation of slots 
under the stationary policy of section 3.2, as defined by (3.18)-(3.19). Let cx0 be 
the expected cost of a first passage from x to zero under this policy. While cx0 
depends on t ,  by remark 1 at the end of section 3.2, Cxo < ** for every x even in 
the worst case, which is fl equals 1. Starting from state x, suppose now that we apply 
policy w(x) until we reach state zero and then we continue according to an optimal 
policy afterwards. We then incur a cost of  no more than Cxo + V#(0). Since any 
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optimal policy is at least as good as the one employed above, it must be that 
Vfl(x) < Cxo + VI3(O). Letting M(x) = Cxo for every x, (4.7) is then satisfied. In addition, 
under policy w(x), we have 

) ]I, 0 1 Cxo = max ~_~x(J),T - T + E ( Y o )  + pxy(w(x))cyo , 
j = l  

(4.9) 

where the first term in [ . . .  ] on the RHS of (4.9) is the instantaneous cost incurred 
when in state x. Since Cxo < ~', then the second term in [ . . .  ] on the RHS of (4.9) 
is finite. As M ( y )  = Cyo for every y, (4.8) is then satisfied. 

We next construct a stationary allocation policy f that is a limit point of  a 
sequence of optimal allocation policies {ffl~ } associated with a sequence of  discount 
factors {fin} ~ 1; indeed, starting with a sequence fl ~ 1, we shall be able to 
choose a subsequence such that f=f/3,  for all n. By the lemma on p. 628 of  [18], 
we already know that a convergent subsquence of {ffl~} exists, and from the theorem 
on the same page, it follows from assumptions 1-3 in [18] that the limit of f is 
a time-average optimal allocation. 

To prove that all the allocation policies f#~ can be chosen to be the same, it 
suffices to demonstrate that there exists a finite set of  allocation strategies among 
which the optimal strategy may be chosen for all/3 < 1. Since the action space A 
can consist of no more than M T elements when all T slots are allocated, the set of  
all possible allocations on any finite subspace of  the state space Z~ is necessarily 
finite. Thus, the restriction of optimal policies to the subspace {x • x ~ Z M+, a < MT}  
is finite. On the other hand, for any x ~ Z M such that tx> MT,  there exists a first + 

index i such that its ith component xi satisfies xi >- T. For this x, (P4) indicates that 
an optimal allocation is w(x) = Te i, where e i is the unit vector along component i; 
moreover, the same allocation is optimal for any 13 < 1. 

With the application of the quoted results from [18], together with the finiteness 
of  the set of optimal allocation strategies, we obtain: 

THEOREM 4.1 

Every sequence of  discount factors fl converging to unity has a subsequence 
{fin} such that the corresponding optimal stationary allocation policies {f/~n} satisfy 

f=flJn for all n. This stationary allocation policy f is average cost optimal with 
average cost 

g = lim (1 - f l ) V f l ( x ) ,  (4.10) 

where the limit does not depend on x. Furthermore, f satisfies properties (P4) and 
(PS) of  the optimal discounted policies, as well as the properties found in sections 
4 and 5 of  [2] f o r M = 2 .  [] 
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5. An asymptotically optimal stationary policy 

In this section, we study the asymptotic behaviour of the queueing system as 
a function of the phase length T. We remind the reader that we do not incorporate 
the waiting cost of packets arriving within a phase in the cost function. A cost is 
incurred only when packets awaiting service at the beginning of  a phase are not 
transmitted. We exhibit the existence of  a stationary nonrandomized strategy under 
which the long-term average number of  queued packets at the beginning of  each 
phase converges to zero as T tends to infinity. This strategy is defined only for large 
values of T, and depends only on T and the average arrival processes rates. It is 
described in words as follows. There is a T O such that for each T > T O : allocate to 
each transmitter at each phase of the decision process some fixed number of slots 
that is higher than the average number of arrivals per phase. 

Briefly recall that {~!J), i > 0}, the number of arrivals per slot at transmitter 
j, is an i.i.d, sequence with finite mean &(J). To avoid unstable behaviour, we require 

M 

X (j) < 1, 
j = l  

E[({IJ))2] < ~ ,  1 < j_< M. 

(5.1) 

(5.2) 

Choose A,t -/) > xcj) for each j, such that Y.j~ lXt j) < 1, and let 

To ~ M ] (5.3) 

where [-xl is the smallest integer not less than x. Consider the allocation scheme 

I < j<M.  (5.4) 

Under the specific strategy considered here, the assignment of slots does not depend 
on the information state x. The assignment does vary with the phase length T, which 
is the parameter we are studying in this section. With this in mind, we shall refer 
to w(J)(T), rather than to wO)(x) we used in referring to fixed T and an arbitrary 
policy. The allocation scheme (5.4) is well defined for T > T O and satisfies 

w(J)(T) > ~IJ)T> ~.(J)T, 1 < j<M,  VT> To. (5.5) 

Indeed, (5.5) is implied by (5.4), and as [A.~J)TI< ~.~J)T + 1, we then obtain using 
(5.3) 

M 

E w(J)(T) < T, forall T >  To. (5.6) 
j = l  
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By the strong law of large numbers, the number of  arrivals at transmitter j is 
about $())T for sufficiently large T. In addition, since strategy (5.4) allocates invari- 
ably more than $(/)T slots to transmitter j, it is then intuitive that the mean queue 
size of  transmitter j tends to be empty at the beginning of each phase whenever 
T is sufficiently large. To be precise, under the allocation scheme (5.4) with the 
phase length fixed at T, let x(nJ)(T, x (j)) be the state of transmitter j at epoch n, 
where x (j) ~= X]J)(T) is the initial state. The number of  packets arriving during 
phase n at transmitter j will be denoted by Y,(J)(T). Our goal is to prove the following 
theorem. 

THEOREM 5.1 

For each initial system state {X(/)(T) = x (j), 1 _<j < M}, we have 

V j, I < j < M ,  lim lim 1 ~ ( r- , . .  n-, n E[X J)(T,x(J))] = 0. (5.7) 
0" k = l  

Remark 

Since we prove (5.7) separately for each transmitter, we will omit the 
superscript j throughout the proof of theorem 5.1 for simplicity. We will reference 
each transmitter individually only when making a formal statement such as in a 
theorem, lemma, or corollary. 

The main idea behind the proof of theorem 5.1 is that as T ~ .o, E[Xn(T" x)] 
converges to zero uniformly in n for each initial state x. To establish the latter, we 
introduce an auxiliary random walk W,(T, x) that is equal in distribution to Xn(T, x) 
and show that: 

(i) supna2{Wn(T, x)} ---> 0 almost surely as T---~ ,,o. 

(ii) {supna2{Wn(T, x)}, T >  To} is uniformly integrable. 

Statements (i) and (ii) then ensure that E[sup,>2{Wn(T, x)}] converges to zero 
as T--->oo, and this also entails that limr._,**supn~2{E[Wn(T,x)]} =0.  Since 
X,(T, x) d= Wn(T ' x), the last assertion then implies that the expected number of 
packets awaiting transmission at the beginning of each phase converges uniformly 
to zero at T---> oo, that is, lim r ~**sup,, > 2 {E[Xn(T, x)] } = 0. This result then immediately 
entails the assertion of theorem 5.1. We shall next proceed to prove (i) and (ii). 

Under the allocation scheme (5.4), the system state equations (2.3) are expressible, 
following an induction step, as 

X,,+l (T,x) = max Y n _ k ( T ) - i w ( T ) + x S ( n - i )  "O<i<_ n , 
~.k=l  

(5.8) 
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where by convention the sum on the RHS of (5.8) is zero when i = 0. Introduce the 
auxiliary random process 

{ } Wn+l(T,x)=max ~ Y k _ l ( T ) - i w ( T ) + x S ( n - i ) ' O < i < n  , (5.9) 
k = l  

and note that since {Yk(T), k>0}  is an i.i.d, sequence, Xn(T, x)~-Wn(T, x). This 
technique of substituting a random walk is a well-known approach to G/G/1 queues, 
as in Lindley [14]. Our first result is that Wn(T, x) converges uniformly to zero 
w.p.1 as T---> ~, and this entails convergence to zero in probability of X~(T, x) for 
each n > 2 as T ---> ,,~. Remark that for the proof of this result, we only require that 
assumption (5.1) be met. 

THEOREM 5.2 

For each initial system state {xtJ)(T) = x Cj), 1 <j < M}, we have 

Vj, 1 <j< M, sup{Wn(J)(T,x(J))} + 0 w.p.las  T--+,~. (5.10) 
n ~ 2  

Proof 
V(m+l)r ~k, where {~k}, the number of arrivals per slot, is Write Yn (T) = "-"k =m r+ 1 

an i.i.d, sequence with E(¢1)= &, and define the i.i.d, zero mean sequence 

zk ~ Ck -X. (5.11) 

Expression (5.9) is then equivalent to 

{ } W,,+ l ( r , x ) =  m a x  ~ Zk + i [ Z r - w ( r ) l + x ~ ( n - i ) " 0 < - i ~ _  n . 
k = l  

Let 

#=T>O,  

(5.12) 

(5.13) 

{ 1 .T 
A(T)(v) ___a CO" rn"T ~ Zk(cO) > , 

k = l  

Tx a= m i n { i ~ N : i > m a x {  T° ~ } }  

(5.14) 

(5.15) 

By (5.12) and straightforward algebra, we obtain 
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V T >  Tx, 
n_, ] 

{o~'Wn+l(r ,x ,o~)>O}c[iU=lA~T)(2#)  A(nT)(#)c U ~.)A(iT)(#). 
i = l  

(5.16) 

From (5.16), we obtain 

L m > T  k=l  

and the right-hand side goes to zero as T ---> ~, by the strong law of large numbers. 
However, since Wn(T, x)> 0, (5.10) is then established. [] 

An immediate consequence of (5.10) is that the number of packets awaiting 
transmission at the beginning of each phase converges to zero in probability as the 
phase length increases indefinitely. 

COROLLARY 5.3 

For each initial system state {x~J)(T)= x (j), 1 < j  <M}, we have 

k/j, 1 < j < M ,  x(nJ)(T,x(J)) P--~ O, ~/n> 2, as T---> ~ .  (5.19) 

Proof 
By an earlier remark, Xn(T, x)d=wn(T, X), SO that for any Bore1 set B, 

PIXy(T, x ) e  B] = P[Wn(T, x ) e  B]. In addition, since for each n, almost sure 
convergence of {Wn(T, x)} entails convergence in probability of {W~(T, x)} as T---> o,,, 
(5.19) immediately follows from (5.10). [] 

We next show that the random variables {sup,,u2{W,(T,x)}, T ~  To} are 
dominated by an integrable random variable, which then implies (cf. lemma 3.4(c)) 
that they are uniformly integrable. Recalling (5.11), we first write Wn+I(T, x), as 
given by (5.12), under the equivalent form 

W,,+ l ( r , x )  --- max ~k - i w ( r )  + x~(n - i) : 0 <- i <- n . (5.20) 

We next introduce the auxiliary random process 

Wn+I (T ,x )~  max ~ ~ k - i ~ , l T + x t ~ ( n - i ) : O < i <  n , (5.21) 
k = l  
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and note that as w(T) > ~qT (cf. (5.5)), we have the simple relationship 

Wn+ 1 (T,x)  < Wn+ 1 (T,x) .  

Our aim is to prove the following. 

(5.22) 

LEMMA 5.4 

For each initial system state {xI (J ) (T)  = x (j), 1 <j  < M}, we have 

Vj, I<_j<_M, VT>-To, sup{Wn(J)(T,x(J))} 
n>_2 

-< sup {~"n(J)(1,0)} + x  (j). 
n > 2  

Furthermore,  E[supn a2 {lTV~nJ)(1, 0)}] < ~,. 

(5.23) 

Proof 

Let us first define 

W(T,x)~= sup{W n(T ,x )} ,  
n_>2 

(5.24) 

~'(T,x) =~ sup ~ (r,x)}. 
n_>2 

(5.25) 

By (5.21), we obtain 

W , T + l ( 1 , x ) = m a x  ~ k - i ~ l + x S ( n - i ) ' O < i < n T  
k = l  

{i t -> max ~ ~k - iAq + xtS(n-  i) • i ~ {0, T, 2T, ... .  nT} 
k = l  {,T } 

= m a x  ~ ~ k - i ~ i T + x t 3 ( n - i ) ' O < _ i S n  
k = l  

= W,+ 1 (T,x).  (5.26) 

Combining (5.22) and (5.26), we obtain W n ÷ I(T, x) < ff'nr ÷ l(1, x). Recalling (5 .24)-  
(5.25), the latter inequality then entails 
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W(T,x) < ~'(1,x).  (5.27) 

Since x > 0, we obtain from (5.21) 

(iT } 
VT, Vx, Vn, ~-vn(r,x)<max ~ ~ k - i Z l T + x ' O < i < n  

k=l  

= W n (T,O)+x, (5.28) 

so that invoking (5.25), we obtain W(1, x) < W(1, 0) + x. This result together with 
(5.27) yields (5.23). Furthermore, by [11], theorem 5, the negative drift of the 
random walk underlying {l~n} and (5.2) ensure that if'O, 0) is integrable. [] 

From lemma 3.4(c) and lemma 5.4, we then deduce that {W(T, x), T> To} is 
uniformly integrable. This result and the almost sure convergence to zero of W(T, x) 
as T--4 0% imply the following (cf. lemma 3.4(a)). 

THEOREM 5.5 

For each initial system state {xtJ)(T) = x (j), 1 <_j <_ m}, we have 

Vj, I <_j<_M, :im~E[ sup{Wn(J)(T'x(J))}] (5.29) 

An immediate consequence of theorem 5.5 is that the expected number of 
untransmitted packets at the beginning of each phase converges uniformly to zero 
as the phase length tends to infinity. 

COROLLARY 5.6 

For each initial system state {xtJ)(T)= x (j), 1 <_j <-m}, we have 

Vj, 1 < j < M ,  lim sup{E[X(nJ)(T,x(J))]}=O. T~** n>2 
Proof 

The proof is immediate by (5.29) and the inequality 

sup{E[X. CT, x)]} = sup{E[W n (T,x)l t  <- E[sup(Wn (T,x)}]. n>2 n>2 kn>2 

(5.30) 

(5.31) 
[] 

The proof of theorem 5.1 (cf. (5.7)) is now a direct consequence of (5.30). 
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Remark 

Suppose that we generalize assumption (5.2) to 

E[(~IJ)) m+z] < oo, for some integer m > 1, 1 < j <  M. (5.32) 

Applying theorem 5 of [9] to i ( 1 ,  0), we obtain that E l i " ( 1 ,  0)] < ~,. This observation 
and the majorization of Wk(T, x) by ( i f ( l ,  0 )+  x) k for positive values of k (cf. 
(5.23)), then imply that the family {Wk(T, x), T>  To} is uniformly integrable for 
each k, 0 < k < m. This result and the almost sure convergence to zero of W(T, x) 
as T--4,,,, then entail that limr~**E[Wk(T,x)] = 0  for each k, O < k < m .  By the 
inequality for positive k 

k 

sup{EtX~(T,x)]} = sup{E[wnk(T,x)]} < E [  sup{W n (T,x)}] , (5.33) 
n_>2 n_>2 Ln>_.2 / 

we deduce that for each k, 0 < k < m, the kth moment of the number of  unsent 
packets at the beginning of each phase converges uniformly to zero as the phase 
length tends to infinity, that is limr~,sup,,,_,2{E[X~(T, x)} = 0. Suppose now that 
we generalize the cost function, sayf(xn), to a polynomial of the number of untransmitted 
packets at the beginning of each phase xn satisfying: (1)f(0)  = 0, and (2) the degree 
of  f is at most m. Then using (5.33), we have the following generalization of  
theorem 5.1. 

T H E O R E M  5.7 

Let the cost function at transmitter j, f(J), be a polynomial of  the number of  
untransmitted packets at the beginning of each phase. If the degree o f f  C j) is at 
most m, andf(J)(0) = 0, then for each initial system state {XtJ)(T) = x C j), 1 <j  < M}, 
we have under assumption (5.32) 

n 

Vj, 1 < j < M ,  lim lira 1 ~ E{fCj)[x(j)(T,  xCj))]} = 0 .  (5.34) 
T---~** ...)** n n k = l  

We conclude this section by a discussion of the following open problem. In 
the derivation of  the zero asymptotic cost as T ---) ,,0, we neglected the holding costs 
of  arrivals within the phase. When these costs are incorporated in the cost function 
per phase, one would like to study the behaviour of the minimal long-term average 
cost as a function of the phase length T. This will then lead to an optimal design 
of the phase length, a problem of practical importance. 

Theorem 5.7 states that, by an appropriate choice of  n:, the first term VT(~, X) 
of the total cost Wr(~r, x) in (2.8) can be made to go to zero at T ~ 0-. However, 
the second term grows with T, independently of any allocation policy choice 7¢. It 
follows that there exists at least one optimal T, that is, one phase length that 
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minimizes the total cost. Our results on the behaviour of  Vr(z, x) do not reveal the 
form of  this function, so we cannot guarantee that the optimality on T is unique, 
nor can we suggest how such an optimal T is to be calculated. For example, if we 
could prove (as we conjecture) that the optimal cost rOt(x) is monotone in T, the 
uniqueness of  the optimal T is obvious, and some trial-and-error scheme might be 
suitable for its determination. 

6. Flow control with priorities 

Priorities among the messages at the respective M transmitters are often 
discussed in the context of  different types of  transmissions, such as voice and data. 
We shall discuss optimal flow control allocation policies with priorities in a future 
paper. At this juncture, we shall limit ourselves to some simple generalizations 
involving priorities. 

In our model, priorities appear in terms of weighting factors c (j) for the 
various transmitters. Thus, as a direct extension of (2.8), we write 

n M - T + I  M 

W;(z 'x )=l imsupn- l  Z • c(JlEx~[X~J)]+ 2 Y~ c(J)A'(J)" 
n - - - ~  k= l  j = l  j = l  

(6.1) 

If we define 

c __a minc(J) and ~ ~ maxc (/) 

we obtain 

c_wr(n,x) <- w (n,x) (6.2) 

It follows that none of the results on system stable behaviour are changed. 
The conditions of  theorem 3.3 on instability, and the stability of  the allocation 
policy of  section 3.2 remain unaffected. In section 3.3, the upper and lower bounds 
are modified in an obvious manner that we shall not detail here. Moreover, the 
asymptotic values of the two types of  costs as T ---> ~ are as indicated in section 5 
without any change in the applicable arguments. Indeed, the only modification 
comes in section 4, since properties (P4) and (P5) may no longer hold. We then 
obtain a weaker version of theorem 4.1. There is still a limiting allocation policy f as 
a pointwise limit of a subsequence of the f/~. This policy continues to satisfy 
(4.10), but one must be content with lesser properties than (P4) and (P5). 

7. Conclusions 

In this paper, we have shown that for each phase length T, optimal pure 
policies exist for the average cost criterion under the conditions: (1) the traffic 
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intensity is less than unity, and (2) the intensity of the arrival stream has finite 
second moment. We also proved that these time-average optimal strategies have the 
same properties as those derived in [2] for optimal discounted strategies. This result 
is of practical importance since: (1) the time-average cost criterion is a more natural 
setting for flow control problems, and (2) these qualitative properties are very 
useful in the search for optimal time-average policies. Finally, we proved that in 
the absence of costs accrued by messages within the phase, there exists a policy 
such that the time-average cost tends toward zero as the phase length T ~ ~. We 
believe that this result is a first step in understanding the system behaviour as a 
function of the phase length T when the holding costs of messages arriving within 
the phase are incorporated in the cost function. Our ultimate goal in this direction 
is to determine the optimal value of the phase length T. This is a difficult problem 
that we have reserved for possible future publication. 
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