
Abstract. A stationary object is hidden in location i, i ¼ 1; 2; � � � ;K, with
probability pi. There are M sensors available and each location can be sear-
ched by at most one sensor at each instant of time. Each search of a location
takes one unit of time and is conducted independently of previous searches, so
that a search of location i finds the object, if it is in that location, with
probability ai. After each search of a location a sensor may either continue to
search the same location or switch without any delay to another location. We
determine optimal search strategies that maximize the total probability of
successful search in N units of time, discuss an implementation of an optimal
search strategy, and specify conditions under which the solution can be ob-
tained by a forward induction argument. Finally, we discuss the relationship
to multi-armed bandits with multiple plays.

Key words: Search problem, Multiple sensors, Multi-armed bandits, Gittins
index, Forward induction

1 Introduction – problem formulation

We formulate and investigate the following search problem with multiple
sensors.

Problem (P)

A stationary object is hidden in location i, i ¼ 1; 2; � � � ;K, with probability pi,PK
i¼1 pi ¼ 1. There are M (1 < M < K) sensors available and each location

can be searched by at most one sensor at each instant of time. Each search of
a location takes one unit of time and is conducted independently of previous
searches, so that a search of location i, i ¼ 1; 2; � � � ;K, finds the object, given
that it is in that location, with probability ai, 0 < ai < 1. After each search of
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a location a sensor may either continue to search the same location or switch
without any delay to another location. The information about pi and ai for
each location i, i ¼ 1; 2; � � � ;K, is given in advance. The objective is to find a
search strategy that maximizes the total probability of successful search in N
units of time.

Problem (P) is a discrete search problem because the search space is dis-
crete. Conventional discrete search problems (see [1], [6], [7], [10], [11], [15],
[18], [20], [21]) are formulated as follows: A stationary object is hidden in one
of K locations. The probability that the object is in location i is pi. There
is one sensor available. The probability that the object is found in the j-th
search of location i is aij if the object is in location i. The j-th search of
location i costs cij. When there is no time limitation, the objective is to find a
search strategy that minimizes the expected cost until the object is found (see
[1], [6], [7], [15], [18], [20], [23]). In the case where the maximum allowable time
(or budget) for search is limited two objectives have been considered. The
objective in whereabouts search is to find a search strategy that maximizes the
probability of correctly stating the location that the object is hidden (see [1],
[11], [20], [21]). In other search problems, the objective is to find a search
strategy that maximizes the total probability of successful search (see [1], [10],
[18], [20]).

Discrete search problems other than the conventional ones have been
investigated in [1]–[5], [8], [12]–[14], [16], [18]–[20], [22]. In [12] Kelly investi-
gated a discrete search problem where the object is always found if it is in the
location that is being searched, that is, ai ¼ 1. In [13] Kelly considered a
discrete search problem where a search of location i, i ¼ 1; 2; � � � ;K, detects
the object with probability d given that the object is in location i, that is,
ai ¼ d, and this detection probability d is fixed throughout the conduct of the
search but is not known. Discrete search problems where a penalty (or delay)
is incurred when the sensor switches locations were investigated in [1], [8],
[14], [16], [24]. The discrete search problems when there are more than one
stationary hidden objects have been investigated in [3], [4], [19]; search
problems with a moving object have been investigated in [5], [22].

Discrete search problems investigated so far assume that there is only one
sensor available for conducting search. All problems other than Arkin’s (see
[2]) assume that only one location is searched at each instant of time by the
sensor. In [2] Arkin assumes that only one sensor is available but it can split
its effort among any number of locations. The discrete search problem
investigated by Arkin in [2] is different from Problem (P) in the following
aspects: (i) The number of locations that are searched at each instant of time
is time-varying; more specifically, according to Arkin’s uniformly optimal
strategy, the number of locations searched at each time instant is nonde-
creasing in time; (ii) The detection probability in any location (if the object is
there) depends on the number of locations that are being searched and not on
the location itself; (iii) Arkin’s problem is formulated in continuous time.

To the best of our knowledge, Problem (P) is the first investigation of a
discrete search problem with multiple sensors.

The rest of paper is organized as follows. A solution to Problem (P) and
an implementation of an optimal search strategy are presented in Section 2.
Conditions under which the solution to Problem (P) can be obtained
by forward induction are also presented in Section 2. The relation of
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Problem (P) to multi-armed bandits with multiple plays is discussed in Sec-
tion 3. Conclusions and suggestions for further research appear in Section 4.

2 Analysis

Our analysis proceeds as follows: In Section 2.1 we present a preliminary
result that allows us to restrict attention to a specific class of search strategies
in order to determine a solution to Problem (P). We determine a class of
optimal search strategies for Problem (P) in Section 2.2, and in Section 2.3
we discuss implementation of these strategies. In Section 2.4 we identify
conditions under which the solution to Problem (P) can be obtained by
forward induction.

2.1 A Preliminary Result

We define by pij, i ¼ 1; 2; � � � ;K, j ¼ 1; 2; � � � ;N , the probability that the ob-
ject is found when the jth search of location i is conducted (see Table 1). Since
we assume that each location can be searched by at most one sensor at each
instant of time and N time units are available, the probabilities, pij,
i ¼ 1; 2; � � � ;K, j ¼ N þ 1;N þ 2; � � � ; are of no interest for Problem (P). The
above defined probabilities have the following property:

Lemma 2.1. The probability pij, i ¼ 1; 2; � � � ;K, j ¼ 1; 2; � � � ;N , does not de-
pend on the number of times other locations have been searched before the jth
search of location i is conducted. That is, for i ¼ 1; 2; � � � ;K, we have

pij ¼ piaið1� aiÞj�1; j ¼ 1; 2; � � � ;N : ð1Þ

Proof. See Appendix A. h

As a result of Lemma 2.1 the total probability of successful search in N
units of time depends only on the number of times a strategy searches each
location. Thus, without loss of optimality, we can restrict attention to search
strategies of the form

gðNÞ :¼ ðg1; g2; � � � ; gKÞ; ð2Þ
where gi, i ¼ 1; 2; � � � ;K, denotes the number of searches of location i
according to gðNÞ in N units of time,

0 � gi � N ; ð3Þ

Table 1. Table of the probabilities pij; i ¼ 1; 2; � � � ;K; j ¼ 1; 2; � � � ;N :

Location 1 Location 2 � � � Location K

p11 p21 pK1

p12 p22 � � � pK2

p13 p23 pK3
..
. ..

. ..
. ..

.

p1N p2N � � � pKN
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XK

i¼1
gi ¼ MN : ð4Þ

Note that Eqs. (2) – (4) describe not a single strategy but a set of strategies.
Each strategy in this set has the following feature: it visits location
i; i ¼ 1; 2; � � � ;K, gi times, possibly at different instances during the period
f1; 2; � � � ;Ng.

2.2 An Optimal Strategy for Problem (P)

An optimal search strategy for Problem (P) is characterized by the following
result.

Theorem 2.1. Let L denote the set of MN largest numbers pij, i ¼ 1; 2; � � � ;K,
j ¼ 1; 2; � � � ;N , from Table 1. There exists one search strategy g�ðNÞ defined by

g�ðNÞ :¼ ðg�1; g�2; � � � ; g�KÞ: ð5Þ

g�i ¼
XN

j¼1
IðpijÞ; i ¼ 1; 2; � � � ;K; ð6Þ

IðpijÞ ¼
1; if pij 2 L ,
0; otherwise,

�

ð7Þ

that is optimal for Problem (P).

Proof. Without any loss of optimality, restrict attention to search strategies
gðNÞ, satisfying (2)–(4), and denote by

P gðNÞ :¼ Probðobject is found in N units of time under strategy gðNÞÞ:
ð8Þ

Then, from Lemma 2.1 it follows that for any gðNÞ in the above class of
strategies

P gðNÞ ¼
XK

i¼1

Xgi

j¼1
pij: ð9Þ

Therefore,

P g�ðNÞ ¼
XK

i¼1

Xg
�
i

j¼1
pij; ð10Þ

Consider any search strategy g0ðNÞ :¼ ðg01; g02; � � � ; g0KÞ (in the above
mentioned class of strategies) that is different from g�ðNÞ, that is, there are at
least two distinct locations i; j 2 1; 2; � � � ;K such that g�i 6¼ g0i, g�j 6¼ g0j. Since

P g0ðNÞ ¼
XK

i¼1

Xg0i

j¼1
pij ð11Þ
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and (6)–(7) are true, it follows that

P g�ðNÞ � P g0ðNÞ: ð12Þ
The proof of the theorem will be complete if we can demonstrate that there
exists at least one g�ðNÞ, described by (5) – (7), that is a feasible strategy. For
that matter, we first note that because of Lemma 2.1 the probabilities pij,
i ¼ 1; 2; � � � ;K, are monotone decreasing in j; so, if pij0 is in the set L, all pij,
j < j0, are also in L. Furthermore, in Section 2.3 we show that there is an
implementation of g�ðNÞ that satisfies the following constraint: at most one
sensor is allocated to each location at each instant of time. Hence g�ðNÞ is
feasible. h

2.3 Implementation of an Optimal Search Strategy

The result of Theorem 2.1 characterizes an optimal search strategy for
Problem (P) but does not provide enough information about the implemen-
tation of such a strategy. This happens because the result of Theorem 2.1
does not explicitly specify how to deal with the requirement that at most one
sensor can be allocated to each location at each instant of time. Indeed, a
search strategy specified only by (5) – (7) is not necessarily feasible for
Problem (P) as the following example shows.

Example 2.1. Consider Problem (P) with K ¼ 3, N ¼ 3 and two sensors.
Suppose g�ð3Þ ¼ ð2; 2; 2Þ. The implementation of g�ð3Þ that assigns the two
sensors to locations 1 and 2 for the first two units of time is not feasible for
Problem (P).

The following procedure leads to an implementation of an optimal search
strategy g�ðNÞ :¼ ðg�1; g�2; � � � ; g�KÞ that is described by Theorem 2.1 and is
feasible for Problem (P).

An Implementation of an optimal search strategy g�ðNÞ. Let
RðNÞ :¼ ðrN

1 ; r
N
2 ; � � � ; rN

K Þ :¼ g�ðNÞ; ð13Þ

RðtÞ ¼ ðrt
1; r

t
2; � � � ; rt

KÞ: ð14Þ
Define

lðtÞ :¼ M largest numbers in RðtÞ: ð15Þ
Start at t ¼ N ; for t ¼ 2; 3; � � � ;N , allocate a sensor to location i if rt

i 2 lðtÞ and
set

rt�1
i ¼ rt

i � 1; if rt
i 2 lðtÞ ,

rt
i ; otherwise.

�

ð16Þ

At t ¼ 1 allocate the sensors to the M locations with r1i ¼ 1.
The above procedure implements the search strategy g�ðNÞ.

Proof. It suffices to show that the above procedure leads to the following
inequalities:

rt
i � t; i ¼ 1; 2; � � � ;K; and t ¼ 1; 2; � � � ;N ; ð17Þ
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XK

i¼1
Iðrt

i ¼ tÞ � M ; t ¼ 2; � � � ;N ; ð18Þ

and

XK

i¼1
Iðr1i ¼ 1Þ ¼ M ; ð19Þ

where, for all t ¼ 1; 2; � � � ;N ,

Iðrt
i ¼ tÞ ¼ 1; if rt

i ¼ t ,
0; otherwise .

�

ð20Þ

First, note that (17) and (18) are true for t ¼ N because of the formulation of
Problem (P).

Assume that (17)–(18) are true for t; we want to prove that they are also
true for t � 1, t > 1. The inequalities (17), (18) at t imply that all rt

i ¼ t are in
the set lðtÞ. Consequently, because of (16) we get

rt�1
i � t � 1; ð21Þ

for all i ¼ 1; 2; � � � ;K. Furthermore,

XK

i¼1
Iðrt�1

i ¼ t � 1Þ � M ; ð22Þ

must hold, because if the opposite is true then

XK

i¼1
rN

i ¼
XK

i¼1
g�i > MN ð23Þ

must hold and (4) is violated. At t ¼ 1 we have, as a result of (21) and (22),

r1i � 1 ð24Þ
for all i ¼ 1; 2; � � � ;K, and

XK

i¼1
Iðr1i ¼ 1Þ � M ð25Þ

If

XK

i¼1
Iðr1i ¼ 1Þ < M ð26Þ

is true, then

XK

i¼1
rN

i ¼
XK

i¼1
g�i < MN ð27Þ

will hold and (4) is violated. Consequently, at t ¼ 1

XK

i¼1
Iðr1i ¼ 1Þ ¼ M : ð28Þ

6 N.-O. Song, D. Teneketzis



Therefore, the above described procedure implements an optimal search
strategy, specified byTheorem 2.1; furthermore, it satisfies the requirement that
at most one sensor can be allocated to each location at each instant of time. h

In the above procedure, locations determined by lðtÞ; t ¼ 1; 2; � � � ;N , may
not be uniquely defined. In such a case any choice of M locations that cor-
respond to the M largest numbers in RðtÞ will lead to an implementation of an
optimal search strategy.

2.4 Is Forward Induction Optimal for Problem (P)?

Consider now the strategy gI that allocates, at each instant of time, the
sensors to the locations with the M highest probabilities of detection. A
question that naturally arises at this point is the following. Is gI always an
optimal search strategy for Problem (P)? The following example shows that
gI is not always optimal. Denote by gIðNÞ the search strategy gI for the
N -horizon problem (N -fixed).

Example 2.2. Consider Problem (P) with K ¼ 3, N ¼ 3 and two sensors.
Suppose

p1 ¼ 0:3; a1 ¼ 0:3
p2 ¼ 0:5; a2 ¼ 0:15
p3 ¼ 0:2; a3 ¼ 0:4

The probabilities pij, i ¼ 1; 2; 3, j ¼ 1; 2; 3, are given in Table 2.
An optimal search strategy for this problem is given by

g�ð3Þ ¼ ð2; 3; 1Þ ð29Þ
and the corresponding probability that the object is found in three units of time
under g�ð3Þ is

P g�ð3Þ ¼ 0:4259375: ð30Þ
The search strategy gIð3Þ searches locations 1 and 3 at time 1, locations 1 and

2 at time 2, and locations 2 and 3 at time 3. The probability that the object is
found in 3 units of time under gIð3Þ is

P gI ð3Þ ¼ 0:41975: ð31Þ
Consequently, gIð3Þ is not an optimal search strategy.

Therefore, it is worthwhile investigating the conditions under which gIðNÞ
is optimal.

We consider first Problem (P) with fixed finite horizon N . The following
result provides a condition necessary and sufficient guarantee the optimality
of gIðNÞ for the abovementioned problem.

Table 2. The probabilities pij; i ¼ 1; 2; 3; j ¼ 1; 2; 3 for Example 2.2.

Location 1 Location 2 Location 3

p11 = 0.09 p21 = 0.075 p31 = 0.08
p12 = 0.063 p22 = 0.06375 p32 = 0.048
p13 = 0.0441 p23 = 0.0541875 p33 = 0.0288
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Theorem 2.2. The search strategy gIðNÞ is optimal for Problem (P) with fixed
finite horizon N iff the following condition C1 holds:

C1. gIðNÞ selects the MN largest numbers among the probabilities pij,
i ¼ 1; 2; � � � ;K, j ¼ 1; 2; � � � ;N .

Proof. According to Theorem 2.1, gIðNÞ will be an optimal search strategy
for Problem (P) with (fixed) horizon N iff it selects locations so that the
corresponding probabilities of detection are the MN largest numbers among
pij, i ¼ 1; 2; � � � ;K, j ¼ 1; 2; � � � ;N . h

Note that Condition C1 of Theorem 2.2 guarantees the optimality of the
search strategy gIðNÞ for Problem (P) with a fixed horizon N , but it does not
necessarily guarantee that the truncation of gIðNÞ to the first k steps
(k ¼ 1; 2; � � � ;N � 1), denoted by gI

kðNÞ, gives an optimal search strategy for
the k-horizon problem, as the following example shows:

Example 2.3. Consider Problem (P) with K ¼ 3, N ¼ 3 and two sensors.
Suppose

p1 ¼ 0:3; a1 ¼ 0:3
p2 ¼ 0:41; a2 ¼ 0:2
p3 ¼ 0:29; a3 ¼ 0:3

The probabilities pij, i ¼ 1; 2; 3, j ¼ 1; 2; 3, are given in Table 3.
An optimal search strategy for this problem is given by

g�ð3Þ ¼ ð2; 2; 2Þ: ð32Þ
The search strategy gIð3Þ searches locations 1 and 3 at time 1, locations 1

and 2 at time 2, and locations 2 and 3 at time 3. Hence,

gIð3Þ ¼ ð2; 2; 2Þ; ð33Þ
therefore, gIð3Þ is optimal. However, the truncation of gIð3Þ to the first two
steps, is

gI
2ð3Þ ¼ ð2; 1; 1Þ ð34Þ

while an optimal search strategy for the 2-horizon problem, according to
Theorem 2.1, is

g�ð2Þ ¼ ð1; 2; 1Þ: ð35Þ
Consequently, Condition C1 does not guarantee the optimality of gI for Prob-
lem (P) with any horizon N.

Next we investigate conditions under which the search strategy gI is
optimal for Problem (P) with any horizon N , N ¼ 1; 2; � � �. If such conditions

Table 3. The probabilities pij; i ¼ 1; 2; 3; j ¼ 1; 2; 3, for Example 2.3.

Location 1 Location 2 Location 3

p11 = 0.09 p21 = 0.082 p31 = 0.087
p12 = 0.063 p22 = 0.0656 p32 = 0.0609
p13 = 0.0441 p23 = 0.05248 p33 = 0.04263
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exist an optimal search strategy for Problem (P) can be obtained by forward
induction.

The following result provides a condition necessary and sufficient to
guarantee the optimality of the search strategy gI for Problem (P) with any
horizon N .

Theorem 2.3. The search strategy gI is optimal for Problem (P) with any
horizon N iff the following condition C2 holds:

C2. Consider any time t, t ¼ 1; 2; � � �, and let giðt�1Þ denote the number of times
location i, i ¼ 1; 2; � � � ;K, has been searched up until time t � 1 (including
time t � 1) according to gI . Consider the M largest numbers among
pijiðtÞ; i ¼ 1; 2; � � � ;K; jiðtÞ ¼ giðt�1Þ þ 1. These numbers are also the M
largest numbers among piji ; i ¼ 1; 2; � � � ;K; ji ¼ giðt�1Þ þ 1; � � � ; t.

Proof. Sufficiency: Suppose Condition C2 holds. This condition ensures that
for every t, t ¼ 1; 2; � � �, the search strategy gIðtÞ selects the Mt largest numbers
among pij, i ¼ 1; 2; � � � ;K, j ¼ 1; 2; � � � ; t. Hence according to Theorem 2.1,
for every t, t ¼ 1; 2; � � �, the search strategy gIðtÞ is optimal for Problem (P).

Necessity: Suppose the search strategy gI is optimal for Problem (P) for all
t, t ¼ 1; 2; � � �, but Condition C2 is not satisfied for all t, t ¼ 1; 2; � � �. Let s be
the first instant Condition C2 is not satisfied. Then gIðsÞ does not select the
largest Ms numbers among pij, i ¼ 1; 2; � � � ;K, j ¼ 1; 2; � � � ; s. If g�ðsÞ is an
optimal search strategy for Problem (P) satisfying the conditions of Theo-
rem 2.1, then, because of (8) and (9)

P g�ðsÞ > P gI ðsÞ ð36Þ
and this contradicts the optimality of the search strategy gI for all t. h

The results of Theorems 2.2 and 2.3 show that under certain conditions
the solution of Problem (P) gI is of an ‘‘index type.’’ This is further explained
in the next section where the relationship between Problem (P) and multi-
armed bandits with multiple plays is explored.

3 Relation of Problem (P) to Multi-Armed Bandits with Multiple Plays

Problem (P) can be viewed as a finite-horizon deterministic multi-armed
bandit with multiple plays and discount factor equal to one (see [9], [17], [18])
as follows. Each location is associated with an arm of a multi-armed bandit;
thus, there are K arms. At time t, t ¼ 1; 2; � � � ;N , the state of the i-th arm,
i ¼ 1; 2; � � � ;K, is

xiðtÞ ¼ giðt�1Þ; ð37Þ
where giðt�1Þ denotes the number of times arm i has been played up until time
t � 1, including time t � 1 (i.e. giðt�1Þ denotes the number of times location i
has been searched up until time t � 1). M arms (M > 1) are played at each
instant of time. If arm i is played at time t a reward

R
�
xiðtÞ

�
¼ piaið1� aiÞxiðtÞ ð38Þ
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is obtained and the arm moves to state

xiðt þ 1Þ ¼ xiðtÞ þ 1 ¼ giðt�1Þ þ 1: ð39Þ
If arm i is not played at time t, no reward is obtained from this arm and the
arm’s state remains ‘‘frozen’’, i.e.

xiðt þ 1Þ ¼ xiðtÞ ¼ giðt�1Þ: ð40Þ
The objective is to determine an allocation policy to maximize the reward

R ¼
XN

t¼1

X

i2kðtÞ
R
�
xiðtÞ

�
; ð41Þ

where kðtÞ denote the set of M arms being played at time t.
The Gittins index [9] for each arm is achieved at time 1, because, for all

arms, the numbers

pij ¼ piaið1� aiÞj�1; j ¼ 1; 2; � � � ; ð42Þ
which give the sequence of rewards obtained from playing arm i,
i ¼ 1; 2; � � � ;K, form a strictly decreasing sequence in j.

For the above problem, define the Gittins index rule to be the allocation
policy according to which the arms with the M highest indices are being
played at each instant of time. Thus, the Gittins index rule coincides with the
search strategy gI . Consequently, the following results hold:

Theorem 3.1. Under Condition C1 of Theorem 2.2, the Gittins index rule is
optimal for Problem (P) with fixed finite horizon N.

Theorem 3.2. Under Condition C2 of Theorem 2.3, the Gittins index rule is
optimal for Problem (P)with any horizon N.

Remark. It is known that the Gittins index rule is, in general, not optimal for
the multi-armed bandit problem with multiple plays [17]. The results in [17]
provide conditions sufficient to guarantee the optimality of the Gittins index
rule for the general multi-armed bandit problem with multiple plays and
discount factor strictly less than one. The results here (Theorem 3.2) are for
the undiscounted problem and are particularly simple because the index is
always achieved at time 1 for all arms.

4 Conclusion

We formulated a search problem with multiple sensors. We determined
optimal search strategies for this problem, discussed an implementation of an
optimal search strategy, and specified conditions under which an optimal
search strategy can be obtained by forward induction.

A critical assumption in the problem formulated in this paper is that the
sensors can move instantaneously from one location to another. In reality,
when a sensor switches between different locations a delay is incurred. Thus,
search problems with switching delays are worth investigating. The inclusion
of switching delays drastically changes the nature of search problems. The
resulting problems are considerably more difficult than the corresponding
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ones without switching delays. To the best of our knowledge, there are no
analytical results for search problems with multiple sensors and switching
delays presently available.
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Appendix A

Proof of Lemma 2.1. For i ¼ 1; 2; � � � ;K; j ¼ 1; 2; � � � ;N ; t ¼ 1; 2; � � � ;N , define
the following events:

Aði; jÞ := the object is found when the jth search of location i is conducted,
Acði; jÞ := the object is not found when the jth search of location i is con-

ducted,
Tij := the time that the jth search of location i is conducted,
OðiÞ := the object is in location i,
Sði; tÞ := the object is found when location i is searched at time t,
Scði; tÞ := the object is not found when location i is searched at time t,
Uiðt1; t2Þ := unsuccessful search of locations other than location i during time

interval ½t1; t2Þ. For any t1 < t2 the time interval ½t1; t2Þ is, by definition, the
set of times ft1; t1 þ 1; � � � ; t2 � 2; t2 � 1g.

Then, we have

pi1 ¼ P
�
Aði; 1Þ

�

¼
XN

t¼1
P
�
Aði; 1Þ

�
� Ti1 ¼ t

�
P
�
Ti1 ¼ t

�

¼
XN

t¼1
P
�
OðiÞ; Sði; tÞ;Uið1; tÞ

�
P
�
Ti1 ¼ t

�

¼
XN

t¼1
P
�
Sði; tÞ

�
� OðiÞ;Uið1; tÞ

�
P
�
OðiÞ;Uið1; tÞ

�
P
�
Ti1 ¼ t

�
: ðA:1Þ

Since each search is conducted independently

P ½Sði; tÞ
�
� OðiÞ;Uið1; tÞ� ¼ ai ; ðA:2Þ

and furthermore,

P ½OðiÞ;Uið1; tÞ� ¼P ½OðiÞ�

¼ pi: ðA:3Þ
Because of (A.2) and (A.3), (A.1) gives

pi1 ¼ piai

XN

t¼1
P ½Ti1 ¼ t� ¼ piai : ðA:4Þ

Search with multiple sensors 11



In general, for j ¼ 2; 3; � � � ;N , we have

pij ¼P
�
Aði; jÞ

�

¼
XN

tj�1þ1
tj¼

XN�1

tj�2þ1
tj�1¼

� � �
XN�jþ1

t1¼1
P
�
Aði; jÞ;Acði; j� 1Þ; � � � ;Acði; 1Þ

�
� Ti1 ¼ t1;

� � � ; Tiðj�1Þ ¼ tj�1; Tij ¼ tj
�
P
�
Ti1 ¼ t1; � � � ; Tiðj�1Þ ¼ tj�1; Tij ¼ tj

�

¼
XN

tj�1þ1
tj¼

XN�1

tj�2þ1
tj�1¼

� � �
XN�jþ1

t1¼1
P
�
OðiÞ; Sði; tjÞ; Scði; tj�1Þ; � � � ; Scði; t1Þ;

Uið1; t1Þ; � � � ;Uiðtj�2; tj�1Þ;Uiðtj�1; tjÞ
�
P
�
Ti1 ¼ t1; � � � ;

Tiðj�1Þ ¼ tj�1; Tij ¼ tj
�

¼
XN

tj�1þ1
tj¼

XN�1

tj�2þ1
tj�1¼

� � �
XN�jþ1

t1¼1
P
�
Sði; tjÞ

�
� OðiÞ; Scði; tj�1Þ; � � � ; Scði; t1Þ;

Uið1; t1Þ; � � � ;Uiðtj�2; tj�1Þ;Uiðtj�1; tjÞ
�
P
�
Scði; tj�1Þ

�
� OðiÞ;

Scði; tj�2Þ; � � � ; Scði; t1Þ;Uið1; t1Þ; � � � ;Uiðtj�2; tj�1Þ;Uiðtj�1; tjÞ
�

� � � P
�
Scði; t1Þ

�
� OðiÞ;Uið1; t1Þ; � � � ;Uiðtj�2; tj�1Þ;Uiðtj�1; tjÞ

�

P
�
OðiÞ;Uið1; t1Þ; � � � ;Uiðtj�2; tj�1Þ;Uiðtj�1; tjÞ

�
P
�
Ti1 ¼ t1; � � � ;

Tiðj�1Þ ¼ tj�1; Tij ¼ tj
�
: ðA:5Þ

Since each search is conducted independently

P
�
Sði; tjÞ

�
�OðiÞ; Scði; tj�1Þ; � � � ; Scði; t1Þ;Uið1; t1Þ;

Uiðtj�2; tj�1Þ;Uiðtj�1; tjÞ
�
¼ ai; ðA:6Þ

P
�
Scði; tj0 Þ

�
�OðiÞ; Scði; tj�2Þ; � � � ; Scði; t1Þ;Uið1; t1Þ; � � � ;Uiðtj0�1; tj�1Þ;

Uiðtj�1; tjÞ
�
¼ 1� ai; j0 ¼ 1; � � � ; j� 1; ðA:7Þ

and furthermore,

P
�
OðiÞ;Uið1; t1Þ; � � � ;Uiðtj�2; tj�1Þ;Uiðtj�1; tjÞ

�
¼P
�
OðiÞ

�

¼pi: ðA:8Þ
Because of (A.6) – (A.8), (A.5) gives

pij ¼ piaið1� aiÞj�1
XN

tj�1þ1
tj¼

XN�1

tj�2þ1
tj�1¼

� � �
XN�jþ1

t1¼1

P
�
Ti1 ¼ t1; � � � ; Tiðj�1Þ ¼ tj�1; Tij ¼ tj

�

¼ piaið1� aiÞj�1: ðA:9Þ

12 N.-O. Song, D. Teneketzis



References

[1] Ahlswede R, Wegener I (1987) Search problems. John Wiley & Sons, Chichester
[2] Arkin VI (1964) A problem of optimum distribution of search effort. Theory Prob.

Applications 9:159-160 (English translation)
[3] Assaf D, Zamir S (1985) Optimal sequential search: a Bayesian approach. Ann. Statist.

3:1213–1221
[4] Assaf D, Zamir S (1987) Continuous and discrete search for one of many objects.

Operations Research Letters 6:205–209
[5] Assaf D, Sharlin A (1994) Dynamic search for a moving target. J. Appl. Prob. 31:438–457
[6] Black WL (1965) Discrete sequential search. Information and control 8:159–162
[7] Chew MC (1967) A sequential search procedure. Ann. Math. Statist. 38:494–502
[8] Gilbert EN (1959) Optimal search strategy. SIAM 7:413–424
[9] Gittins JC (1989) Multi-armed bandit allocation indices. John Wiley & Sons, Chichester
[10] Kadane JB (1968) Discrete Search and the Neyman-Pearson Lemma. J. Math. Anal. and

Appl. 22:156–171
[11] Kadane JB (1971) Optimal whereabouts search. Operations Research 19:894–904
[12] Kelly FP (1982) A remark on search and sequencing problems. Math. Oper. Res 88:422–432
[13] Kelly FP (1982) On optimal search with unknown detection probabilities. J. Math. Anal.

and Appl. 88:422–432
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