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Abstract. The diagnosis of ‘‘intermittent’’ faults in dynamic systems modeled as discrete event systems is
considered. In many systems, faulty behavior often occurs intermittently, with fault events followed by
corresponding ‘‘reset’” events for these faults, followed by new occurrences of fault events, and so forth. Since
these events are usually unobservable, it is necessary to develop diagnostic methodologies for intermittent faults.
Prior methodologies for detection and isolation of permanent faults are no longer adequate in the context of
intermittent faults, since they do not account explicitly for the dynamic behavior of these faults. This paper
addresses this issue by: (i) proposing a modeling methodology for discrete event systems with intermittent faults;
(ii) introducing new notions of diagnosability associated with fault and reset events; and (iii) developing
necessary and sufficient conditions, in terms of the system model and the set of observable events, for these
notions of diagnosability. The definitions of diagnosability are complementary and capture desired objectives
regarding the detection and identification of faults, resets, and the current system status (namely, is the fault
present or absent). The associated necessary and sufficient conditions are based upon the technique of
“‘diagnosers’’ introduced in earlier work, albeit the structure of the diagnosers needs to be enhanced to capture the
dynamic nature of faults in the system model. The diagnosability conditions are verifiable in polynomial time in
the number of states of the diagnosers.
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1. Introduction

Practical experience has shown that detection and isolation of many classes of faults in
dynamic systems can be approached as a problem of state estimation and inferencing for
discrete event systems (Aghasaryan et al., 1998; Benveniste, 2003; Bouloutas, 1990;
Console, 2000; Debouk et al., 2000; Garcia et al., 2002; Jiang and Kumar, 2002; Jiang et al.,
2002; Lafortune et al., 2001; Lamperti and Zanella, 1999; Lin, 1994; Lin et al., 1993; Lunze,
2000; Pandalai and Holloway, 2000; Pencolé, 2000; Pencolé€ et al., 2001; Sampath, 2001;
Sampath et al., 1998, 1995, 1996; Sengupta, 2001; Sinnamohideen, 2001; Westerman et al.,
1998; Hastrudi Zad et al., 1998). In many systems, faulty behavior often occurs
intermittently, with fault events followed by corresponding ‘‘reset’’ events for these faults,
followed by new occurrences of fault events, and so forth. In hardware systems, intermittent
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faults are typically caused by bad electrical contacts (e.g., faulty relays), ‘‘sticky’’
components (e.g., stuck valves), overheating of chips, noisy measurements from sensors,
power surges, and so forth. Intermittent faults occur in software systems as well; consider
for instance exceptions and interrupts that are caused by some unknown ‘‘bugs’’ and that
lead to crashes and reboots. The methodologies used in Aghasaryan et al. (1998),
Benveniste et al. (2003), Bouloutas (1990), Console (2000), Debouk et al. (2000), Garcia
(2002), Jiang and Kumar (2002), Lafortune et al. (2001), Lamperti and Zanella (1999), Lin
(1994), Lin et al. (1993), Lunze (2000), Pandalai and Holloway (2000), Pencolé (2000),
Pencolé et al. (2001), Sampath (2001), Sampath et al. (1998, 1995, 1996), Sengupta (2001),
Sinnamohideen (2001), Westerman et al. (1998) and Hastrudi Zad et al. (1998) assume that
once faults occur, they remain in effect permanently; hence, the terminology *‘failures’’ is
often used for these permanent faults. Furthermore, to the best of our knowledge, diagnostic
methodologies developed in the field of model-based reasoning in artificial intelligence
(which are close in spirit to the discrete event systems methodologies, since they are also
based on qualitative system models) are also geared towards the diagnosis of permanent
faults; see, for example, Darwiche and Provan (1996), Dvorak and Kuipers (1992), Provan
and Chen (1998, 1999), and Williams and Nayak (1996).

Methodologies for diagnosing permanent faults are no longer adequate in the context of
intermittent faults, since they do not account explicitly for the dynamic behavior of these
faults that manifests itself in the form of alternating (unobservable) fault and reset events.
The work in Aghasaryan et al. (1998) and Benveniste et al. (2003) allows intermittent
faults but does not propose a systematic framework for their detection and isolation. The
linear temporal logic approach to failure diagnosis presented in Jiang and Kumar (2002)
may prove a viable approach for detection and isolation of intermittent faults, but this
remains to be explored. The recent work (Jiang et al., 2002) presents a state-based
modeling of faults (and implicitly their resets) and focuses on the diagnosis of the number
of occurrences of faults. Our focus in this paper is different from that in Jiang et al. (2002).
Our main concern is the diagnosis of the current status of the system (i.e., which faults are
present, which faults have never occurred, and which faults are reset). Our principal
contributions in this regard are:

e A novel modeling methodology for discrete event systems with intermittent faults and
their associated reset events.

e A set of four new definitions of diagnosability associated with the fault and reset
events.

e Necessary and sufficient conditions, in terms of the system model and the set of
observable events, for each of the four notions of diagnosability.

We consider untimed models of discrete event systems. The four definitions of
diagnosability are complementary and capture a hierarchy of desired objectives regarding
the detection and identification of faults, resets, and the current system status (namely,
which faults are present, absent, or reset). The associated necessary and sufficient
conditions are based upon the techniques introduced in the diagnoser approach of
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Sampath et al. (1995), albeit the structure of the diagnoser automata needs to be altered to
capture the dynamic nature of faults in the system model. The enhancements to the
‘‘diagnoser approach’’ are due to the introduction of new labels for faults and resets in the
construction of diagnosers, which in turn leads to the consideration of new types of
indeterminate cycles (Sampath et al., 1995) that serve to characterize violations of the four
types of diagnosability. The necessary and sufficient conditions are verifiable in
polynomial time in the number of states of the diagnosers.

This paper is organized as follows. Section 2 first presents some necessary background
and then focuses on the modeling of intermittent faults and on how their dynamic behavior
is captured by three types of labels. Section 3 presents the four notions of diagnosability
that are proposed to thoroughly capture desired objectives in the context of intermittent
faults. Modified diagnosers that explicitly account for the new label types in building state
estimates are described in Section 4. Sections 5 and 6 then develop the four sets of
necessary and sufficient conditions associated with the four notions of diagnosability. A
detailed example of the modeling of intermittent faults and the ensuing system analysis is
given in Section 7. Conclusions appear in Section 8.

2. Modeling of System and Intermittent Faults
2.1. System Model and Assumptions

We assume that the reader is familiar with basic notions in finite-state automata and
regular languages (see, for example, Cassandras and Lafortune, 1999). The system to be
diagnosed is modeled as an automaton

G=(X,Z,0,x) (1)

where X is the state space, X is the set of events, 9 is the partial transition function, and x is
the initial state of the system. Model G accounts for the normal and failed behavior of the
system. The behavior of the system is described by the prefix-closed language L(G)
generated by G. Henceforth, we shall denote L(G) by L. L is a subset of ¥, where X~
denotes the Kleene closure of the set . The language L generated by G is assumed to be
live. This means that there is a transition defined at each state x in X, i.e., the system cannot
reach a point at which no event is possible. The liveness assumption on L is made for the
sake of simplicity. With slight modifications, all the main results of this paper hold true
when the liveness assumption is relaxed (cf. the results in Sampath et al., 1998).

Some of the events in X are observable, i.e., their occurrence can be observed, while the
rest are unobservable. Thus, the event set T is partitioned as ¥ = £ UX,,, where T,
represents the set of observable events and X2, represents the set of unobservable events.
The observable events in the system may be one of the following: commands issued by the
controller, sensor readings immediately after the execution of the above commands, and
changes of sensor readings. The unobservable events may be fault events, reset events, or
other events that cause changes in the system state not recorded by sensors. See Sampath et
al. (1996) for a methodology on how to construct the system model G from models of
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system components and sensor readings. We assume that there does not exist in G any
cycle of unobservable events, i.e., 3 ny e N such that V s,zs, e L, te X}, =|| ¢ || < n, where
|| 7 ]| is the length of trace 7. This assumption ensures that observations occur with some
regularity. Since detection of faults is based on observable transitions of the system, we
require that G does not generate arbitrarily long sequences of unobservable events.

In the context of diagnosis of intermittent faults, let £, =X denote the set of fault
events and let 2, =X denote the corresponding set of fault reset events which should be
diagnosed. In this regard, the set X, is assumed to be composed of m different fault
events, X, = {f},...,f,}, and the set X, is assumed to be composed of the
corresponding resets, X. = {r,...,r,}. Each fault event f; has its corresponding fault
reset event r;, where r; cannot happen until f; occurs at least once. This last assumption
points out the fact that we are dealing with intermittent faults hence each fault event can
potentially be reset; if known permanent faults are present, they can be handled by the
methodology in Sampath et al. (1995). Without loss of generality, we assume that
X,=2,,and X, =X, since an observable fault event or an observable fault reset event
can be diagnosed trivially. The objective is to identify the occurrence, if any, of the fault
events and their corresponding reset events, while tracking the observable events
generated by the system.

The assumptions made above on the system under investigation are required in all the
results of this paper (even if not explicitly stated).

To define diagnosability, we need the following notation. The empty trace is denoted by
¢. Let § denote the prefix-closure of trace s where seX*. We denote by L/s the
postlanguage of L after s, i.e.,

L
—:={teX":stel}
s

We define the projection P: £*—X” in the usual manner (Ramadge and Wonham, 1989)

Ple) =¢

P(o) =0 ifoeX,

P(o) =¢ ifoeX,,

P(sc) = P(s)P(6) where seX* ceX (2)

Thus, P simply ‘‘erases’’ the unobservable events in a trace. The inverse projection
operator P; ! is defined as

Pr'(y) = {seL: P(s) = y} (3)

We will write ¥(f;) to denote the set of all traces of L that end with the fault event f;. That
is,

Y(f) = {sfiel} 4)
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Similarly, we will write W(r;) to denote the set of all traces of L that end with the reset
event 7;. That is,

Y(r;):= {sr;eL} (5)

Consider 6 € X and s e X*. We use the notation ¢ € s to denote the fact that ¢ is an event in
the trace s.
We define

X, = {x,} U{xeX:x has an observable event into it} (6)

Let L(G, x) denote the set of all traces that originate from state x of G. L, (G, x) denotes the
set of all traces that originate from state x and end at the first observable event. L (G, x)
denotes those traces in L, (G, x) that end with the particular observable event g; s, denotes
the final event of trace s. Formally,

L,(G,x) ={seL(G,x): s =uo,ucx,, oceX } (7)
and
L,(G,x) ={seL,(G,x): sy =0} (8)
Finally, we define the non-deterministic automaton
G' = (X,,Z,,06,%) ©)
the generator of the language

L(G") =P(L) ={t:t=P(s) for some seL} (10)

The elements X, X, and x,, are as defined above. The transition relation of G’ is given by
0 € (X, xZ xX,) and is defined as follows:

(x,0,X)€dgy if d(x,s) =x" for some seL,(G,x) (11)

2.2. Modeling of Intermittent Faults

As in Sampath et al. (1995), we use the notion of label to identify special changes in the
status of the system. The labels are symbols that allow us to keep track of the occurrence
of selected events along the system’s evolution. We define the set of non-intermittent
and present fault labels Ap = {F|,F,,...,F,}, the set of reset fault labels Apr =
{FIR FIR ... FIR}  the set of intermittent and present fault labels Apr =
{FIP FIP . FP} and the set A = {N} UAp UApr U Apr.

Next, we define the label function ¢F that will be applied to traces and subtraces in L(G).
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DEFINITION 1 The label function (X : £* —22 is defined as follows. Let w be a trace in X*.
Then

*(w) = {N} Vi (fi € 0)A(r; € ),

and Vie{l,... m},

Fietf(w) if (fiew)n(ri ¢ o),

FiR e (*(w) if 35,5 (0=ss)n[se Pr)|A(fi &5), and
FIP e (®(w) if 3s,5: (@=ss)n[se V()] A (ries) A (r; &)

Hence, if % (w) is {N'}, i.e., ““normal’’, then no event from the set of fault events X, and
no event from the set of reset events X, have occurred along the trace. If /%(w) contains the
label F;, then the fault event f; has occurred along  but the reset event r; has not occurred
along o. If /X (w) contains the label FIR, then both the fault event f; and the reset event r;
have occurred at least one time or possibly multiple times along w, but the last of the two
to have occurred in  is r;. Finally, if #%(w) contains the label FI¥, then both the fault event
f; and the reset event r; have occurred at least one time or possibly multiple times along o,
but the last of the two to have occurred in  is f;.

Figures 1 and 2 illustrate the label function ¢%. Figure 1 shows how the label evolves as a
trace gets extended by the occurrence and re-occurrence of fault and reset events. In Figure
2, the notation (x, {F, Fi¥, F''}) means that along a trace that leads to state x the events
fi:/2, 12,3, r3 have occurred, the event 1, was the last one to occur among f, and r,, and the
event f; was the last one to occur among f; and r;.

N F FIR - FF
Ji ) ri ) fi O
f i i -, i

Figure 1. Label function evolution diagram.

(x, {N]) ', (N} (x, {N)) o, (F. FEEY))
(. {Fy, FR, F{F)) ', {(Fy, Fi*, F{"D (x. IND) @, {FN
(x. {F). F{R, F{} | F), FI® FIP Y G R FRLFPY) W (F{R. EP R

Figure 2. States and label function.
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Remark 1: Let weL(G).

i. If (R(w) = {N}, then F;,FIR FIF ¢ (R(w) for all i.

ii. If F;efR(w) for some i, then N ¢ (R(w), FIR ¢ (R(w), and FIF ¢ (R (w).
iii. If FIReR(w) for some i, then N ¢ (R (w),F; ¢ (R (w), and FI¥ ¢ (R(w).

iv. If FIP e (R(w) for some i, then N ¢ /R (w),F; & (R (w), and FIR ¢ (R (w).

2.3. Recurrent Faults
We define and motivate the notions of X -recurrent and X,-recurrent languages.
DEFINITION 2 X-recurrence and X,-recurrence

a. Aprefix-closed and live language L is said to be Xs-recurrent with respect to the set of
Jault events X, and the set of reset events X, if the following holds:

VfieX;ie{l,...,m}, In;eN such that
L

[VseP(f)] (Vte —> [l 2|l > n=r et (12)
s

b. A prefix-closed and live language L is said to be X .-recurrent with respect to the set of
Jault events Xy and the set of reset events X, if the following holds:

VrieX. ie{l,...,m},3n;eN such that

) <Vte ?)[n (> n=fed (13)

The above notions are motivated by the following considerations. We are concerned with
the dynamic behavior of discrete event systems where failure and reset events occur
continuously along any path of the systems’s evolution; such a behavior is ensured by X-
recurrence and X -recurrence. These notions imply that fault and reset events occur with

[z ' 1z n;
(a) Z_, -recurrence (b) Z,-recurrence

Figure 3. X;-recurrence and X,-recurrence.
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some regularity along any possible behavior of the system; as will be seen in Section 5,
such regularity allows the diagnosis of these events. That is, X-recurrence (respectively,
2, -recurrence), along with some other conditions (identified in Section 5), ensure that
there are instances where we are sure that certain faults are present in (respectively, absent
from) the system.

3. Notions of Diagnosability

Intermittent faults are dynamic, that is, they can repeatedly occur and reset. This feature
renders their diagnosis considerably more complicated and intricate than the diagnosis of
permanent failures. The notion of diagnosability proposed in Sampath et al. (1995) for
permanent failures relies on the fact that the status of faults remains fixed after their
occurrence. In systems with intermittent faults, the fault’s status evolves along with the
system’s evolution. Consequently, the notion of diagnosability proposed in Sampath et al.
(1995) does not capture all the key issues associated with the diagnosis of intermittent
faults. Since intermittent faults are dynamic, one can imagine several different notions of
diagnosability, each providing a different amount of information about the status of faults.
Ideally, one would want to detect the existence of instances where the status of faults
(present or reset) is precisely known. A weaker notion of diagnosability would require that
one may want to ensure detection of the occurrence of a fault, or detection of a fault’s
reset, without necessarily identifying any instance where the status of the fault is precisely
known. These considerations motivate the definition of four types of diagnosability. Two
of these types are related to the occurrence of intermittent faults; their ‘‘dual’’ notions are
related to the reset of intermittent faults.

The first two notions of diagnosability, Type-P and Type-R, assert the presence of a fault
or the absence of an intermittent fault at a specific instance.

DEFINITION 3 Type-P diagnosability

A prefix-closed and live language L is said to be Type-P diagnosable with respect to
projection P, the set of fault events X, and the set of reset events X, if the following holds:

[Vie{0,...,m}](Tn;eN)[Vse ¥ (f)] (Vte %) [l ¢ || > n;= Dp]

where the diagnosability condition Dp is
3t <t:welP; 'P(st)] = [F,eR(w)] v[FF et®(w)]

Type-P diagnosability, where P stands for present, implies that after a fault occurs along
the system’s evolution it is possible to identify an instance where, based on the available
information, we are certain that the fault is present in the system. Such an instance is
depicted in Figure 4. We use the label F¥ to denote either F; or FIF.



DIAGNOSIS OF INTERMITTENT FAULTS 179

'y

wy

lI”1

(e

/

All traces that have the same prajection as st” must have the label F, i.e., F,or F,-’"

Figure 4. Type-P diagnosability.

DEFINITION 4 Type-R diagnosability
A prefix-closed and live language L is said to be Type-R diagnosable with respect to
projection P, the set of fault events X, and the set of reset events X, if the following holds:

Vie{o,...,m}|(3n,eN)[¥se ¥(r;)] (Vte %) [l 711> n;= Dy

where the diagnosability condition Dy is
3 <t:welP; 'P(st)] = [FRef(w)]

Type-R diagnosability, where R is to be interpreted as meaning reset, implies that after a
fault reset occurs along the system’s evolution, it is possible to identify an instance where
we are certain that the fault is absent in the system. Such an instance is illustrated in
Figure 5.

The following notions of diagnosability are weaker than Type-P and Type-R, as they
allow the detection of the occurrence of a fault or the detection of a fault’s reset without
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Ly
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All traces that have the same projection as s¢’ must have the label f'"-m

Figure 5. Type-R diagnosability.

necessarily identifying any instances where the status of the fault (present or reset) is
precisely known.

DEFINITION 5 Type-O diagnosability

A prefix-closed and live language L is said to be Type-O diagnosable with respect to
projection P, the set of fault events X, and the set of reset events X, if the following holds:

L
[Vie{0,...,m}](In;eN)[Vse ¥(f)] (Vte —) [l £ 1| > n;=Dy)
s
where the diagnosability condition D, is
welP; 'P(st)] = [Fielf(w)] v [FReR(w)] v [FIF e R (w)]

Type-O diagnosability, where O stands for occurrence, has the following
meaning. Suppose that fault f; occurs along the system’s evolution. Then, after at most
n; events, it is possible to identify the occurrence of f;. This means that all possible system
behaviors (i.e., all possible sequences of events in the system) which are compatible with
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1>, Zi

All traces that have the same projection as st must have the label F,-O. ie., F;or F;Wm' FJ-”’

Figure 6. Type-O diagnosability.

the information available after n; further events contain the fault event f;. However, Type-
O diagnosability does not guarantee perfect knowledge of the status of the fault event f; at
any stage. This means that along some of the possible traces f; may be reset, along some
others f; may reset and reoccur more than once, yet along some others f; may never be
reset. This fact is depicted in Figure 6. For the sake of convenience, the label F l-O shall be
used to denote either F;, FIR, or FIF.

Type-I diagnosability, where I is to be interpreted as meaning intermittent, is in some
way the dual notion of Type-O diagnosability.

DEFINITION 6 Type-I diagnosability
A prefix-closed and live language L is said to be Type-1 diagnosable with respect to
projection P, the set of fault events X, and the set of reset events X, if the following holds:

[Vie{0,...,m}](In,eN)[Vse ¥(r,)] (Vte Ii) (Il ]| > n;= D]
s
where the diagnosability condition Dy is
we [P. 'P(st)] = [FIRet®(w)] v [FIF e (R (w))]

It is possible to give an interpretation of Type-I diagnosability similar to that of Type-O
diagnosability. For the sake of convenience, the label F/ shall be used to denote either F/R
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Il = n; j

All traces that have the same projection as s must have the label z‘*f i.e., P'}'Rm F,-”]

Figure 7. Type-I diagnosability.

or FIP. The key difference between the two notions is the following. In Type-O
diagnosability, one can assert the occurrence of a fault event f;, but one cannot be certain as
to whether or not f; has reset, or whether f; has reset and reoccurred once or many times. In
Type-I diagnosability, one can assert the occurrence and reset of a fault event f;, but one
cannot be certain as to whether or not f; has reoccurred once or many times. This fact is
depicted in Figure 7. The above difference illustrates the duality between these two
notions of diagnosability.

As Type-P and Type-R are stronger notions of diagnosability than Type-O and Type-I,
respectively, we would expect that Type-P (respectively, Type-R) diagnosability implies
Type-O (Type-I) diagnosability. This is indeed true, and it is a direct consequence of the
above definitions.

PROPOSITION 1
i. Type-P diagnosability = Type-O diagnosability.
ii. Type-R diagnosability = Type-I diagnosability.
Figure 8 summarizes the results of Proposition 1 and the implications of the various

notions of diagnosability. Table 1 summarizes the labels introduced in this section and in
Section 2.
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DIAGNOSE Fault Reset
Presence Type-P Diagnosability Type-R Diagnosability
Past Occurrence Type-O Diagnosability Type-1 Diagnosability

Figure 8. Different notions of diagnosability.

Table 1. Table of labels.

Label Meaning

F; Fault presence without reset occurrence
FIF Fault presence after reset occurrence
FIR Fault reset

F9 Fault occurrence (F; or FIf or FIF)

F! Reset occurrence (FIF or FIF)

Ff Fault presence (F; or FI")

Remark 2: The various notions of diagnosability introduced in this section are natural
extensions of the notion of diagnosability for permanent faults introduced in Sampath et al.
(1995). Intermittent faults evolve dynamically along with the system’s evolution. The
diagnosability notions introduced here are suitable for dealing with the diagnosis of faults
that evolve dynamically. The primary objective is to determine conditions necessary and
sufficient to ensure Type-P and Type-R diagnosability. We also wish to determine
conditions necessary and sufficient to guarantee the weaker notions of Type-O and Type-I
diagnosability.

4. The Diagnoser

The notion of a diagnoser automaton was originally introduced in Sampath et al. (1995).
A diagnoser automaton, or simply diagnoser, serves two purposes: (i) on-line detection
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and isolation of permanent faults by observing the system behavior; and (ii) off-line
analysis of the diagnosability properties of the system regarding permanent faults. The
latter is based on an examination of the structure of the diagnoser in order to determine
the presence or absence of certain types of cycles termed indeterminate cycles. It turns
out that diagnosers are still at the core of the methodology presented in this paper for
detecting and isolating intermittent faults, albeit their structure needs to be modified to
account for the dynamics of intermittent faults captured by the labeling rules presented in
Section 2.2. We denote the modified diagnosers by G%, but continue to refer to them as
diagnosers for ease of reading.
The diagnoser G% for G is an automaton

GR = (QdﬂzovédJCIO) (14)

where Q,,Z,,d,, and ¢, have the usual interpretation. Its initial state g, is defined to be
{(x9, {N})}. The transition function d, is defined in the same way as in Sampath et al.
(1995), but under the new label propagation function LPX defined below. The state space
Q, is composed of the states of the diagnoser that are reachable from ¢, under J,.
Therefore, a state g, of G§ is of the form

qa = {(x17£1)7 SRR (xnvgn)}

where x; € X, and ¢; € A. Consequently, any label ¢; is of the form ¢; = {N} or ¢, = A\{N},
where /; satisfies the following conditions:

i. if (F;et;) then (FIR ¢¢,) and (FIF ¢¢;)
ii. if (FIRet,) then (F; ¢4;) and (FIF ¢¢,)
iii. if (FIPe,) then (F; ¢¢;) and (FIR ¢¢,)

Since faults evolve dynamically the rules governing label propagation are different from
those of Sampath et al. (1995). These rules are specified by the label propagation function
LPR, which is defined as follows.

DEFINITION 7 The label propagation function is denoted by LPX. LPR: X x A x Z;—>A.
Given xeX,, LeA, and seL,(G,x), LPX propagates the label { over s starting from x

and following the dynamics of G and the rules of the label function ¢R. It is defined as
follows:

i, LPR(x,0,s) = {N} if Vi, ({={N})A(f &s)A(r &s);

i. Yie{l,...,m},
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F,eLPR(x,0,s) if 1. (Fel)n(r; & s), or
2 (FREOAFT ¢0A(fes) A (1, #9),
FReLPR(x,(5) if 1. (FRel)n[eh(s) = (N} v £(s) = {F%}],
2. [(Fiel)v (FFet)] ntR(s) = {FX}, or
3. £ ={N}ALR(s) = {FI},
FPeLPR(x,(;s) if 1. (FPel) nA[fR(s) = (N} v £F(s) = {F,} v

5 (s) = {F"}],
2. (Ffe)nll"(s) = {Fi} v£"(s) = {FI"}], or
[ ={N} v £={F}]nt"(s) = {Fi"}

Note that Definition 7 is consistent with Definition 1. The behavior of LPF is illustrated
below by four different cases (not exhaustive). Let X' € S(x, o) with 6(x, sg) = x" and let ¢/
be the label associated with x’ obtained by propagating ¢ associated with x:

a. if £ = {N} and s contains no fault events, then the label ¢ is also {N}.

b. if ¢ = {F; F;,Fi’} and s contains no fault events, then the label ¢ is also {F;, F;, F{" }.

c. if £={N} and s contains fault events f;, f;, f;, and reset events r;, r, with the reset

event 7; and the fault event f; being the last ones to occur among {f;,r;} and {f;, .},

respectively, then ¢’ = {F,, Fi*, F['}.

d. if £ = {F;,FI*,F{"} and s contains the two fault events f; and f;, and the two reset

events r; and ry, then £ = {F[X, F}P | Fif F,}.

We state a few properties of the diagnoser that follow directly from its construction.
Property 1: Let ge Q,. Then
(x1,41), (x5, 65)eq <= sy, 5,€L
such that
Sip>Sop € Xy, 0(xg,81) = X1, 0(Xg,82) = X,
and
P(sy) = P(s,)

Property 2: Let q,,q,€0Q, and s€ X" such that (x,,¢;)€qy, (x2,4) €qa,d4(q1, P(s)] =
q,- Then
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(F? & b)) = (FY ¢4,)

Property 3: Let ¢q,,q,€Q; and seX* such that (x,¢,)eq,, (x,4)€Eq,
04141, P(s)] = q,. Then

(Fi & b)) = (Fi & 4))

In summary, the diagnoser G% is constructed as follows. Let the current state of the
diagnoser be ¢, and let the next observed event be ¢. The new state of the diagnoser ¢, is
computed via the following three-step process:

1. For every state estimate x in ¢q;, compute the reach due to o, given by
S(x,0) = {0(x,s0): seX;, and 6(x, so) is defined in G}.

2. Letx' e€S(x,0) with d(x, so) = x’. Propagate the label ¢ associated with x according to
Definition 7 to obtain the label ¢’ associated with x'.

3. Let g, be the set of all (x',¢') pairs computed following the previous steps, for each
(x,£) in gq,.

Figure 9 presents an example of the construction of a diagnoser. The set of observable
events in X, = {a, §, 1}. They are two faults types, F, and F,, with corresponding fault
and reset events {f;,r,} and {f,,r,}, respectively. The initial state of G% is {(1,{N})},
denoted by 1N in the figure for the sake of simplicity. Similar compact notation is used in
all the figures in this paper. The effect of the new label propagation function LPR, as
compared to the function LP in Sampath et al. (1995), manifests itself when state 8 is first
reached after observed trace of3, yielding the label FI¥ due to the r, transition between

SYSTEM G X

DIAGNOSER (;;’f

—~ w F{2nsF, }—i—{ 3N 8FIRF, }—’\—{ INSFPER |
A .

[5

Figure 9. Diagnoser construction.
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states 5 and 6. As the system settles in the cycle 5-6-7-8-9-10-5, the diagnoser will
alternate between the states {(2, {N}), (5, {F/F,FI})} and {(3,{N}), (8, {FIF,FIf'})}.

5. Necessary and Sufficient Conditions for Type-P and Type-R Diagnosability

We present necessary and sufficient conditions for a language L to be Type-P diagnosable
or Type-R diagnosable.

5.1. Preliminaries

We define the notions of F¥(FIF)-certain states, F¥ (FI®)-uncertain states, and F? (FIF)-
indeterminate cycles in a way similar to Sampath et al. (1995).

DEFINITION 8

~

A state qe Q, is said to be F¥-certain if V(x,l) e q,FF .
2. A state geQy is said to be FR-certain if V(x,¢)eq, FIR e .

3. A state geQ, is said to be FF-uncertain if 3(x,0), (y,¢')eq, such that F¥ el and
FP ¢/

4. A state geQy is said to be FiR-uncertain if 3(x, 1), (y,¢') eq, such that F'R e ¢ and
FIR ¢

We will say that a state is non-F7-certain if it is not F}-certain; note that non-F7}-certain
does not imply F7-uncertain.

DEFINITION 9 A set of states x;,X,, . ..,x, €X is said to form a cycle in G if 3se L(G, x,)
such that s = 6,0, ...0, and 6(x;,0¢) = X(p4 mod £ = 1,2, ;1.

DEFINITION 10 F?-indeterminate cycle
A set of non-FF-certain states q,,qs, . .. ,q, € Q4, with at least one Ff-uncertain state, is
said to form an FF-indeterminate cycle if the following condition (C1) is satisfied.

Cl. States ¢,¢,...,4,€0Q, form a cycle in GR with 0,(q,,0,) =q, 1
u=1,...,n—1,8,(¢,,0,) = q, where 6,€X,,u=1,...,n.

Considering the states ¢;, ¢y, ...,q,€Q,,3 (¥, ) eq,,u=1,...,n,andk=1,...,m
such that:

(FFedt) for some u and k
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and the sequence of states {x*}, u=1,...,n,k=1,...,m, forms a cycle in G’ with
; t J =1 - Lk=1
(Xus Ous Xy 1)) €0y u=1,...,n—1, N
k k+1
(X, 0, % ") €dg,  k=1,....m—1
and

(x:zrl?Gnax}) eaGM

DEFINITION 11 FR-indeterminate cycle
A set of non-F'R-certain states qy,qs, . . . ,q, € Qq, with at least one FIR-uncertain state, is
said to form an F'R-indeterminate cycle if the following condition (C2) is satisfied.

C2. States ¢;,¢,...,q,€0Q, form a cycle in GX with 6,(q,,0,) =q, 1, u=1,
coo,n—1,0,(q,,0,) =q where 6,€X,,u=1,...,n.

Considering the states q,,¢y, - -.,¢,€Q0,,3 (x5, Keq,,u=1,....,n,andk =1,...,m
such that:

(FIR e k) for some u and k

and the sequence of states {x*},u=1,...,n,k =1,...,m, forms a cycle in G’ with

(xl,j,au,x’{uﬂ))eéc/, u=1,....n—1,k=1,....m

k 1
(&, o, bt edy, k=1,....m—1
and
1
(le7o-n7xl)€50’

The proof of the following result is straight forward and therefore omitted.

PROPOSITION 2 [f a language L is Xy-recurrent and X,-recurrent, then every cycle in any
system model G, such that ¥ (G) = L, has the following properties:

1. The cycle contains the fault event f; iff it contains the reset event r;.

2. Consider any trace o = s;5,55 in L where s\ €X*, s;€X", and 3Ix|,x,,...,
X, €X,5,€L(G,xy), ;= (0,0,:0,)" 010, o, and 6(x;00) = X(¢+1)mod n»
0=1,2,....,n, p<mn, and mn,peN (ie., s, directly enters a cycle in the state
transition diagram G and completes at least one loop of this cycle). If f; € s, thenf; € s,
and r;€s, (i.e., any cycle that occurs after the occurrence of a fault necessarily
contains the fault and the reset).
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5.2. Main Results

The following assumptions (A1) and (A2), together with ;- and X, -recurrence (equations
(12) and (13)), are critical for the development of necessary and sufficient conditions to
ensure Type-P and Type-R diagnosability.

Al. Yo =sy's, €L, s;, s,€X, neN, st fi,riey,y satisfies the following:
Y = Yifiy20,y3rys Where 6, €2, yi, y4€X7, vy, y3€(Z, UZ,)\{fisri}-

A2. Yo =sy's, €L, sy, s,€X", neN, st fi,r;ey,y satisfies the following:
Y = Y1riy20,y3fiya where 6, € Xy, yi, ya €%, ya, y3€(Z, UZ,)\{firi}-

Assumption (A1) [resp.(A2)] implies that for any cycle in G, there exists at least one
observable event between at least one pair (f;,r;)[resp.(r;, f;)]- This excludes the
possibility of having a cycle with only unobservable events between all pairs
(fisr)[(r;, f;)], which would have prevented the label Fi¥'[resp.F/R] from appearing in
the corresponding cycle of the diagnoser G and therefore prevented the detection of any
instance where the fault [resp.reset] is present.

The results that follow provide conditions necessary and sufficient to ensure Type-P and
Type-R diagnosability.

THEOREM 1| Type-P diagnosability

Consider the language L generated by automaton G. Assume that L is Xy and %,-
recurrent and satisfies (Al). L is Type-P diagnosable iff there are no FF-indeterminate
cycles in the diagnoser GX.

Proof:

e Necessity:

We must prove that if the language L is Type-P diagnosable then there are no F7-
indeterminate cycles. We prove the contrapositive, namely, that if there are F7-
indeterminate cycles in the diagnoser G% then the language L is not Type-P
diagnosable. Assume there exist states ¢;,¢,,...,q,€0, that form an F?-
indeterminate cycle and d,(g;,0;) = q(i+1) mod n- Consider the sequence of state
components (xX, ¢\Yeq,,u=1,...,n,k =1,...,m with meN, that forms a cycle in
G' with Ff e (%, for some u” € {1,...,n} and some k" € {1, ..., m}. By Definition 10 a
sequence of states with the above feature exists. Also Definition 10 directly implies
that ¢q,¢,,...,q, are non-Ff -certain states with at least one Ff -uncertain state. In
other words, there exists at least one state g,,,u’ € {1,...,n}, such that (x’;:, éﬁﬁ) €qy
and FP e,k e{1,...,m}. Then we have

u'

o(xk ska)zx/{uH), u=1,....n—1Lk=1,....,m

ruTu

o ke ) =Xt k=1,....m—1

n
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and
S, 0,) = x!
where
skeL(G,x*) and ske X’
By Proposition 2, since F e (X, f. e sk for some ue {1,...,n} and ke {1,...,m}. Let

se¥(f;) such that
d(xg,s) =15

Let teL/s be arbitrarily long such that d,(q,st) = q,,u€{l,...,n}, and let v be a
subtrace of st such that d,(q,»,v) = q,»,u" €{1,...,n}. Note that the presence of the
subtrace v implies that the events contained in v, and therefore in st, cycle at least once
between states ¢, to g,, of the diagnoser. Pick any # < . Then d,(qq, st') = g,, for some
ue{l,...,n}. Since ¢,,q,,...,q, are non-Ff-certain states, V¢, 3we P, '[P(s!')]
such that F¥ ¢¢R(w). Therefore, the chosen s violates the definition of Type-P
diagnosability. Hence L is not Type-P diagnosable.

Sufficiency:
We must prove that if there are no FF-indeterminate cycles then the language L is
Type-P diagnosable. We prove the contrapositive, namely, that if the language L is not

Type-P diagnosable then there exists at least one F/-indeterminate cycle. Assume that
the language L is not Type-P diagnosable. Then, from Definition 3, this implies that

[Bie{0,...,m'}|(VneN)[Fse ¥(f)] (Elte ’5) [l £11 > n; A D] (15)

where the ‘‘non-diagnosability’’ condition —D is
Ve <t:3we P 'P(st)|(FF &R (w)) (16)

Consider the above seP(f;). Since G and G¥ are finite-state automata and L is X~
recurrent and X .-recurrent, we can find n; in equations (12) and (13) such that if
|| 7 ||> n; then the following five properties hold (see Figure 10).

i. fiet

ii. st leads to a cycle in G’ through state components x%, where
(k Myeg,u=1,...,n,and k = 1,...,m, form a cycle in G’ with
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no Fr.ncc]“tilill states

p . by equation (16)

F -uncertain

t"‘i" 'F::') € dqy C)-’C]E
re 1k it inGj

i o

[I72 |l where [l73 1] <22 | <]

Guaranteed b RN
Defin, 2 o = {y€ Q:.I’ qy € Q:.f
l lGuur&mteed by choice of n;
% | f :
sl 5 . g
: ; :
Given in equation (1 5)5 Il

llll=n;

A

Given in equation (15)

Figure 10. The sufficiency part of the proof of Theorem 1.

(X 0 X 4 1)) €01, u=1,....n—1k=1,....,m
(&, 0,5 edg, k=1,....m—1

and
()d'tnvo—mxi) E5G’

iii. st leads to a corresponding cycle in GR, that is, there exist states
4192, - - - 4, € Qy that form a cycle in G¥ with

04(qp0,) =q,.1,u=1,...,n—1, and
04(q,,0,) =q; where 6, €2, u=1,...,n

iv. Because of (A1), there exists a prefix s} of st such that:
o J(xp,st)) =k e{l,...,n},Ke{l,...,m}, where (xX,¢5) eq, and
o Flelk

v. As aresult of (Al), there exists a prefix st; of st such that:
e 1) is a prefix of st), ie., | 4 |I<| & 1] ¢ ],
o 3(xg,5t5) = 6(xg, st;) = x¥, where (x5, ¢5) e g, and

!

P o gk
o F el
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Thus state g,, is Ff-uncertain. Furthermore, equation (16) directly implies that none of the
states ¢y,4,, - - .,q, are F'-certain. Therefore the cycle ¢y,¢,,...,q,€0, is an Ff-
indeterminate cycle. u

THEOREM 2 Type-R diagnosability

Consider the language L generated by automaton G. Assume that L is Xy~ and X,-
recurrent and satisfies (A2). L is Type-R diagnosable iff there are no F'R-indeterminate
cycles in the diagnoser GX.

The proof of Theorem 2 is omitted as it is similar to that of Theorem 1.

COROLLARY 1 Suppose that L is Xy~ and Z,-recurrent and satisfies (A1), (A2), and
equations (12) and (13). Then L is Type-P diagnosable iff it is Type-R diagnosable.

Proof: Assume that L is not Type-P diagnosable. Then there exists a set of states
41,42, - - - 1 q, € Q, that form an FF-indeterminate cycle. By Proposition 2, (A1) and (A2),

41,42, - - - +q, s also a set of non-F/R-certain states with at least one F/R-uncertain state.
Furthermore since Ff eé{j forsome u and k,u=1,...,n,and k = 1,...,m, then F{R eﬁﬁl,
for some u', k',u' = 1,...,n,k' = 1,..., m. Therefore, the states ¢;,¢,, .- .,q,€Q, form

an F/R-indeterminate cycle. Hence L is not Type-R diagnosable.
By arguments similar to the above we can show that if the system is not Type-R
diagnosable then it is not Type-P diagnosable. |

Remark 3: Corollary 1 is not true if Assumption (A1) or (A2) is relaxed.

We conclude this section by observing that Assumptions (A1) and (A2), along with the
%,- and X, -recurrent assumptions, are only sufficient but not necessary in the proofs of
Theorems 1 and 2, respectively. We record this observation in the following corollary.

COROLLARY 2 Consider the language L generated by automaton G.

i. There are no F'*-indeterminate cycles in GX if L is Type-P diagnosable.
ii. There are no F'R-indeterminate cycles in G if L is Type-R diagnosable.
5.3. Examples Illustrating the Results

Figures 11 and 12 present examples of systems with X~ and X, -recurrent languages that
satisfy all assumptions, including (A1) and (A2). The system in Figure 11 is neither Type-
P diagnosable nor Type-R diagnosable. The set of states 5, 7 and 9, 11 both form cycles in
G’ (not shown in figure). States ¢, and ¢, in G, which respectively include 7, 11 and 5, 9
as components, form a cycle in GX.

In the system of Figure 12, states ¢;,¢,, and g3 form a cycle in GX and are non-F?-
certain. State g, is the only F¥-uncertain state of the cycle. However, there are no cycles in
G’ corresponding to the sequence of state components 10—-12—-13. Therefore, there are no
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SysTEM G
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Figure 11. Example of a system that is not Type-P and not Type-R diagnosable.
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Figure 12. Example of a Type-P and Type-R diagnosable system.

FP-indeterminate cycles and the language L is Type-P diagnosable. By Corollary 1 it is
also Type-R diagnosable.
6. Necessary and Sufficient Conditions for Type-O and Type-I Diagnosability

We present necessary and sufficient conditions for a language L to be Type-O diagnosable
or Type-I diagnosable.
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6.1. Preliminaries

DEFINITION 12

1. A state ge Qy is said to be FO-certain if V(x,0) e q,F? L.
2. A state geQ, is said to be Fl-certain if V(x,l) e q, FleX.

3. A state geQy is said to be F?-uncertain if (x,£), (y,¢') €q, such that F? el and
FO ¢/

4. A state qeQy is said to be Fl-uncertain if 3(x,?), (y,¢')eq, such that F'el and
Fl ¢

DEFINITION 13 F?-indeterminate cycle

A set ofFiO-uncerlain states 41,4z, - - - ,q, € Q4 is said to form an Fio-indeterminate cycle if

the following condition (C3) is satisfied.

C3. States ¢,¢,-..,9,€0, form a cycle in G¥ with 6,(q,,0,) =q, 1, u=1,

cooy,n—1,0,4(q,,0,) =q, where 6,€Z,,u=1,...,n. .
Considering the states qy,qs,---,q,€Q4 35, &), v b)) eq,u=1,....,n k=1,
...,myand r = 1,...,m such that:

[(FO ety n(FO ¢0y)), for all u,k,and r (17)
and the sequences of states {xX},u=1,....n,k=1,...,m, and {y.},u=1,...,
n,r=1,...,m, form cycles in G’ with

(xﬁ,au,xlguﬂ))eéc,, u=1,....n—1,k=1,....m

(o, T Yedg, k=1,....m—1
and

(leao-mx{)eéG’
and

(y;;’auayzu+l))€5G’7 MZI,...,U—I,I"Zl,...,ml

(y;7o-n7y]i+1)65G’7 ril,"'amlfl
and

(y:?aanvy%)eéG"
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DEFINITION 14 Fl-indeterminate cycle
A set of Fl-uncertain states q,,qs, . . ., q, € Qy is said to form an F'-indeterminate cycle if
the condition (C4) is satisfied.

C4. The same as (C3) with the exception that clause (17) is replaced by the following:

[(Flet®) A (F! ¢2})] for all u,k,and r (18)

6.2. Main Results

The results that follow provide necessary and sufficient conditions to ensure Type-O and
Type-I diagnosability.

THEOREM 3 Type-O diagnosability
Consider the language L generated by automaton G. L is Type-O diagnosable iff there are
no F9-indeterminate cycles in the diagnoser GX.

Proof:

e Necessity:
We prove that if a language L is Type-O diagnosable then there are no F¢-indeterminate

cycles. By contradiction, assume there exist states ¢, ¢, - . .,q, €0, such that they
. . 2 -

form an F?-indeterminate cycle and 0,(q;, ;) = (i 1) mod n- L€t (b, £4), (Vi £) €

u=1,....n,k=1,...,myand r = 1,...,m', with m,m eN, form corresponding

cycles in G’ with F? e ¢ and F? ¢, Then we have
o, ska,) :x](‘u+1>7 u=1,....n—1Lk=1,....m

o sk =Xt k=1,....m—1

and

and
5(y2;7§;;0-u):yzu+1)7 u:1,...,n—1,r:1,...,m/
SV Sho) =yi" r=1,..,m =1

and

s, Sy e,) =y

where
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skeL(G,x}),5,eL(G,Y,)
and

Sﬁ’ 3;; € Z::O
Since (x},£1), (v}, £1) €4y, 350,59 €L such that (xo,s9) = x1, 3(vp,5) = yi and
P(sy) = P(5,) from Property 1. Furthermore, F¥ € ¢} implies that f; es,, and FO ¢,
means that f; ¢5, and f; ¢5, for all u,r.

Consider the two traces

_ 1 1 1 2 2 2 m m m km!
w = SO(SIO'IS2027 e 3 8,0,851018209,...,8,0,,...,8510152072,...,8, O'n)
~ o~~~ ~l 2 _ 2 ~2 ~m' _ ~m’ ~m’ km
@ =35,(51015,00,...,8,0,810,550,,...,5:0,,-..,8] 0,55 0p,...,5"a,)

for arbitrarily large k. Then weL, @ €L, P(w) = P(®) = P(s,)(0,0, . ..5,)"™", and

F9 e R(w) since f; € w, while FY ¢ R (®) since f; ¢ @. Let se s, be such that se ¥(f;),
and let 7€ L/s be such that w = st. By choosing k to be arbitrarily large, we can get
|| # || > nfor any given ne N. Furthermore @ € P, '[P(st)] and FO & (R (@) since f; & d.
Therefore, the chosen s violates the definition of Type-O diagnosability. Hence L is not
Type-O diagnosable.

Sufficiency:

We prove that if there are no F ,-O—indeterminate cycles then the language L is Type-O
diagnosable. Assume that the diagnoser G does not have any F?-indeterminate cycle,
i=1,2,...,m. Forany F?, pick any s L such that s e W (f;) and let §(x,, s) = x. Pick
any t, € Ly(G,x). Since we assume there are no cycles of unobservable events in G,
there exists ny € N such that || ¢, ||< ng. Let 5(xy, st;) = x, and correspondingly in GX,
let 8,[qo, P(st;)] = q;. Then (x,¢,)eq, and F¥ e¥,.

We distinguish two cases: (I) g; is F ,-O—certain and (II) ¢, is F ,Q-uncertain.

Case I: Suppose ¢, is F' ,-O—certain. Then, by Definition 12,
(YwePy [P(st))F? e (o)

Hence L is diagnosable for FY with n; = n,. Since this is true for any F?, L is
diagnosable.

Case II: Suppose ¢, is F iO—uncertain. Consider any (z, £) € ¢; such that F' iO € /. We shall
then refer to z as an *‘x-state’” of ¢,. Likewise, if (z/, ') € ¢, such that FY ¢¢', then we
shall denote 7/ as a ‘‘y-state’”” of ¢;. We have assumed that there are no F9-
indeterminate cycle in GX. Recalling the definition of an F¢-indeterminate cycle, this
assumption means that one of the following is true: (i) there are no cycles of F iO-
uncertain states in Gﬁ , or (ii) there exists one or more cycles of F io-uncertain states
41,9, - - - 1 q, in GX but corresponding to any such cycle in G&, there do not exist two
sequences {x*} and {y.},u =1,2,...,n, and k,reN such that both of them form
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cycles in G' ({x*} is composed of ‘‘x-states’ of g,, and {y",} is composed of ‘‘y-
states’” of ¢,,u = 1,2,...,n, cf. Definition 13).

i. Suppose that there are no cycles of FiO—uncertain states in GX. Then every F?—
uncertain state will lead to an F' iO-certain state in a bounded number of transitions
by Property 2 of label propagation.

ii. Suppose that there exists a cycle C of F9-uncertain states ¢, ¢, . . . ,q, in Gk. We
show that whenever a fault happens, i.e., when the true state of the system is an
““x-state’’, it is not possible to loop for arbitrarily long in this cycle in GX and
thereby never detect the fault.

Pick any ‘‘y-state’’ y, €q,, and let the corresponding label beﬁu. Since F9 ¢ lZ,, the
pair (y,,¢,) €q, could only have resulted from a pair (y,_,%¢,_,)€q,_; such that
F 10 ¢ gk 1> because of Property 2. That is the ‘‘y-state’’ y, cannot be a successor of
any ‘‘x-state’’ x, _, along the corresponding trace in G’. Thus, by backward induction,
we can always build a cycle of states in G’ involving some or all of the ‘‘y-states’” of

qu,u=1,2,... n These ‘‘y-states’’ then constitute the sequence y/,. Since the cycle
of F9-uncertain states ¢y, ¢, ...,q, is not F%-indeterminate, there does not exist a
cycle in G’ involving the ‘‘x-states’” of ¢,,u = 1,2, ..., n. Hence, if we pick any ‘‘x-

state’’ x,, in state g, in the cycle C, then a sufficient long trace p e L(G, x,,), guaranteed
by the liveness assumption, will leave the cycle C of F io-uncertain states, and will lead
to an F?-certain state. |

THEOREM 4 Type-I diagnosability
Consider the language L generated by automaton G. L is Type-I diagnosable iff there are
no Fl-indeterminate cycles in the diagnoser G%.

The proof of Theorem 4 is similar to that of Theorem 3 and is therefore omitted.

7. A Pump-Valve-Controller Example

Consider a small system consisting of mechanical components: a pump, a valve, a controller,
and one flow sensor. For the sake of simplicity we assume that the pump and the controller do
not fail. The valve has two intermittent fault modes, namely, a stuck- and unstuck-closed
fault mode (labelled F7}) and a stuck- and unstuck-open fault mode (labelled F3).

In order to construct the complete model G, we first need to form the parallel
composition (Pump || Valve || Controller) of the individual component models; see
Figure 13. The initial states are POFF (Pump OFF), VC (Valve Closed), and C1 (Controller
State #1). The meaning of the events and their observable or unobservable status are
shown in Table 2. The second step is to combine the sensor map with the synchronized
component models (Pump || Valve || Controller) and obtain the complete model G. The
flow sensor takes either the value F, indicating flow, or the value NF, indicating no flow.
The global sensor map is listed in Table 3. This table represents the sensor mapping of the
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Table 2. Event list.

CONTANT ET AL.

C_P: Close_Pump (observable)

O_P: Open_Pump (observable)

NL: No Load (observable)

L: Load (observable)

C_V: Close_Valve (observable)

S_C: Stuck_Closed (unobservable)
V_C: Valve_Closed (unobservable)
US_C: UnStuck_Closed (unobservable)

O_V: Open_Valve (observable)

S_O: Stuck_Open (unobservable)
V_O: Valve_Open (unobservable)
US_O: UnStuck_Open (unobservable)

Table 3. Global sensor map.

PON,VC,e) = NF

PON,X1,e) = NF
PON, SC, ) = NF
=NF

PON,VC,, o) = NF
PON, X5, )

I
f(
f(
f(PON,X3,e)
I
f(
f(POFF e, 0)

= NF
= NF

CONTROLLER

NL

Figure 13. Component models.
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INDETERMINATE CYCLE | INDETERMINATE CYCLE 2

Figure 14. Portions of diagnoser GX showing the indeterminate cycles.

states obtained in the parallel composition (Pump || Valve || Controller). Each state is
therefore composed of three ordered state components, for the respective states of the
pump, valve, and controller. The symbol e represents any possible state of the given
component. The resulting G was obtained using the UMDES-LIB' software and has 64
states; it is not depicted here. The next step is to construct the diagnoser G% for G. This is
done using UMDES-LIB; Gf has 104 states. By inspecting G, we test the four
diagnosability conditions defined in this paper. This analysis shows that there are only two
indeterminate cycles in GX and they are both F/¥-indeterminate cycles. Figure 14 and
Tables 4 and 5 describe the two portions of the diagnoser GX that contain the F-
indeterminate cycles. We draw the following conclusions:

o The system is Type-O and Type-I diagnosable since neither F io_ nor Fl-indeterminate
cycles exist.

e No FP-indeterminate cycles exist in GX,i = 1,2. Based on Theorem 1 we need to
verify if certain assumptions are satisfied in order to conclude about Type-P
diagnosability. The language L is X,- and X.-recurrent and Assumption (Al) is
satisfied for both fault types. Therefore the system is Type-P diagnosable.

e Based on Corollary 2 (ii) the fault of type 2 is not Type-R diagnosable since there exist
FIR-indeterminate cycles in GX. Due to the absence of FR-indeterminate cycles, we
need to check for the assumptions mentioned in Theorem 2 in order to conclude about
Type-R diagnosability. Assumption (A2) is violated for both fault types and thus
despite the absence of F!R-indeterminate cycles, no conclusion can be drawn about
Type-R diagnosability for faults of type 1.
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Table 4. Description of diagnoser states involved in indeterminate cycle 1.

State Number Concatenation of the Component States

62 {(poft,x4,c2)FIF | (poft,s0,c2)FIF | (poff,vci,c2)FiR}
66 {(pon,x4,c3)FY, (pon,so,c3)F}

42 {(pon,so,c)F¥}

47 {(pon,so,c5)F{}

52 {(pon,x4,c6)F}

57 {(poff,x4,cFIF}

Table 5. Description of diagnoser states involved in indeterminate cycle 2.

State Number Concatenation of the Component States
103 {(poft,x4,c2)FIRFIF (poff,s0,c2)FIRFIF | (poff,vci,c2) FIRFIR}
104 {(pon,x4,c3)FIRFIF  (pon,so,c3)FRFIF}
90 {(pon,so,c4)F’1RF12P}
96 {(pon,so,c5)FRFI}
99 {(pon,x4,c6)F'RFIF}
101 {(poft,x4,cT)FRFFY

8. Conclusion

Intermittent faults are dynamic in nature, i.e., they can occur, reset, and reoccur repeatedly
during a system’s operation. They are distinctly different from permanent faults which
never reset after they occur. Therefore, system models that capture permanent failures and
existing methodologies for diagnosis of permanent failures are not appropriate for
modeling and diagnosis of intermittent faults.

We proposed a method for modeling intermittent faults and their resets in the context of
discrete event system models. We defined notions of diagnosability that provide
information about the status of intermittent faults at different levels of detail. Finally,
we developed, via conditions that are necessary and sufficient to ensure different notions
of diagnosability, a methodology for diagnosis of intermittent faults.

Our investigation has revealed that: (i) diagnosis of intermittent faults is a problem
considerably more intricate than the diagnosis of permanent failures; and (ii) the
philosophy and approach to diagnosis of permanent failures developed in Sampath et al.
(1995) is powerful and generic, as evidenced by the nature of the results of this paper.
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Notes
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