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Abstract. We address the problem of failure diagnosis in discrete event systems with decentralized information.
We propose a coordinated decentralized architecture consisting of local sites communicating with a coordinator
that is responsible for diagnosing the failures occurring in the system. We extend the notion of diagnosability,
originally introduced in Sampath et al. (1995) for centralized systems, to the proposed coordinated decentralized
architecture. We specify three protocols that realize the proposed architecture; each protocol is defined by the
diagnostic information generated at the local sites, the communication rules used by the local sites, and the
coordinator’s decision rule. We analyze the diagnostic properties of each protocol. We also state and prove
conditions for a language to be diagnosable under each protocol. These conditions are checkable off-line. The
on-line diagnostic process is carried out using the diagnosers introduced in Sampath et al. (1995) or a slight
variation of these diagnosers. The key features of the proposed protocols are: (i) they achieve, each under a
set of assumptions, the same diagnostic performance as the centralized diagnoser; and (ii) they highlight the
“performance vs. complexity” tradeoff that arises in coordinated decentralized architectures. The correctness of
two of the protocols relies on some stringent global ordering assumptions on message reception at the coordinator’s
site, the relaxation of which is briefly discussed.
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1. Introduction

Failure detection and isolation is an important task in the automatic control of large complex
systems. In order to guarantee a reliable system performance, the control engineer should
guarantee that the system is running safely within its normal boundaries. Consequently,
the problem of failure diagnosis has received considerable attention in the literature. Many
schemes ranging from fault-tree (Lapp and Powers, 1977) and analytical redundancy (Will-
sky, 1976; Frank, 1990) methods to discrete event system (DES) approaches (Sampath et
al., 1995; Lin, 1994; Bavishi and Chong, 1994; Holloway and Chand, 1994; Boubour et
al., 1997; Cassandras and Lafortune, 1998), model based reasoning (Davis and Hamscher,
1992) and expert systems (Scherer and White, 1987) methods, have been proposed to ap-
proach this problem. For a brief description of these methods and additional references,
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the interested reader is referred to Pouliezos and Stavrakakis (1994) and the introduction
of Sampath et al. (1995).

Almost all of the abovementioned approaches have been developed for systems where
the information used for fault diagnosis is centralized. A notable exception is Holloway
and Chand (1994), where the authors present a distributed fault monitoring method, time
templates. Time templates monitoring is cited to have the advantage of being easily im-
plemented in distributed control architectures. Many systems are decentralized in nature,
for instance, the majority of technological complex systems (computer and communication
networks, manufacturing, process control and power systems, etc.) are informationally
decentralized. In decentralized information systems there are several work stations (deci-
sion makers, controllers, diagnosers) each having access to its own local information. The
stations may communicate and exchange limited information among each other. Since this
information is exchanged in real-time and over channels of limited capacity, there are prop-
agation delays, along with faults and transmission errors. Thus, the information available
to each station is incomplete, delayed, and possibly erroneous. Hence, the approaches to
failure diagnosis mentioned above do not apply directly to informationally decentralized
systems. Consequently, it is important to develop diagnostic methodologies for informa-
tionally decentralized systems. This fact is also recognized in Holloway and Chand (1994)
and Boubour et al. (1997).

In this paper, we investigate failure diagnosis problems in DES under decentralized
information. Having adopted a DES approach to failure diagnosis, we extend the no-
tion of diagnosability, introduced in Sampath et al. (1995) for centralized systems, to
a coordinated decentralized architecture consisting of local sites communicating with a
coordinator that is responsible for diagnosing the failures occurring in the system. We
present three specific protocols that realize the architecture under consideration. A pro-
tocol specifies the diagnostic information generated at each local site, the communica-
tion rules used by the local sites, and the decision rule for failure diagnosis employed
by the coordinator. We present and discuss the diagnostic properties of the suggested
protocols. We state and prove conditions for a language to be diagnosable under these
protocols and provide off-line tests to check the diagnosability property. The on-line
diagnostic process is carried out by the diagnosers introduced in Sampath et al. (1995)
or a slight variation of these diagnosers. The key features of the coordinated decen-
tralized protocols presented in this paper are: first, they perform as well as the central-
ized diagnoser each under a set of assumptions; and second, they highlight the “per-
formance vs. complexity” tradeoff that arises in coordinated decentralized architectures.
The correctness of two of the protocols relies on some stringent global ordering assump-
tions on message reception at the coordinator’s site, the relaxation of which is briefly
discussed.

This paper is organized as follows. In Section 2, we present some preliminary definitions
and results that are critical for the development of the technical results in this paper. We
provide an overview of the coordinated decentralized architecture under consideration in
Section 3. We specify three protocols that realize this architecture in Sections 4, 5, and
6. We describe each protocol in detail; that is, we precisely specify the diagnostic infor-
mation generated at local sites, the communication rules used between the local sites and



COORDINATED DECENTRALIZED PROTOCOLS 35

the coordinator and the coordinator’s decision rule for failure diagnosis. We analyze the
diagnostic properties of each protocol, and discover conditions to ensure diagnosability of
a language under each protocol. We present and discuss the performance vs. complexity
tradeoff highlighted by the three protocols and the relaxation of the ordering assumption
in Section 7. We draw some conclusions and discuss the contribution of the paper in
Section 8.

2. Preliminaries

2.1. The System Model

The system to be diagnosed is modeled as a FSM

G = (X, 6, δ, x0) (1)

whereX is the state space,6 is the set of events,δ is the partial transition function, and
x0 is the initial state of the system. The modelG accounts for the normal and failed
behavior of the system. The behavior of the system is described by the prefix-closed
language (Ramadge and Wonham, 1989)L(G) generated byG. L(G) is a subset of
6∗, where6∗ denotes the Kleene closure of the set6 (Hopcroft and Ullman, 1979).
In this paper we will use the languageL(G), or simply L, and the system interchange-
ably.

Some of the events in6 are observable, i.e., their occurrence can be observed, while
the rest are unobservable. Thus, the event set6 is partitioned as6 = 6o ∪ 6uo where
6o represents the set of observable events and6uo the set of unobservable events. The
observable events in the system may be one of the following: commands issued by the
controller, sensor readings occurring after the execution of those above commands, and
changes in sensor readings. The unobservable events may be failure events or other events
that cause changes in the system state not recorded by sensors (see Sampath, 1995; Sampath
et al., 1996).

Let 6 f ⊆ 6 denote the set of failure events which are to be diagnosed. We assume,
without loss of generality, that6 f ⊆ 6uo, since an observable failure event can be trivially
diagnosed. Our objective is to identify the occurrence, if any, of the failure events, given
that in the traces generated by the system, only the events in6o are observed. In this regard,
we partition the set of failure events into disjoint nonempty sets corresponding to different
failure types

6 f = 6 f 1 ∪6 f 2 ∪ · · · ∪6 f m. (2)

Let 5 f denote this partition. For the motivation of such a partition, the reader is re-
ferred to Sampath et al. (1995) and Sampath et al. (1996). Hereafter, when we write
a failure of typeFi has occurred, we will mean that some event of the set6 f i has oc-
curred.
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2.2. Notation

The empty trace is denoted byε. Let s denote the prefix-closure of any traces ∈ 6∗.
We define‖s‖ to be the length of traces. Whenever we say that there exists a traces of
arbitrarily long lengthhaving a given property, we mean the following: for all integersn,
there existss, such that‖s‖ > n ands possesses the given property. We denote byL/s the
post-language ofL afters, i.e.,

L/s= {t ∈ 6∗ | st ∈ L}. (3)

We define the projectionP: 6∗ → 6∗o in the usual manner (Ramadge and Wonham, 1989)

P(ε) = ε,

P(σ ) = σ if σ ∈ 6o,

P(σ ) = ε if σ ∈ 6uo,

P(sσ) = P(s)P(σ ), s ∈ 6∗, σ ∈ 6. (4)

The inverse projection operatorP−1
L is defined as

P−1
L (y) = {s ∈ L: P(s) = y}. (5)

Let sf denote the final event of traces. We define

9(6 f i ) = {sσ f ∈ L: σ f ∈ 6 f i }, (6)

i.e.,9(6 f i ) denotes the set of all traces that end in a failure event belonging to the class
6 f i . Considerσ ∈ 6 ands ∈ 6∗. We use the notationσ ∈ s to denote thatσ is an event
in the traces. With slight abuse of notation, we write6 f i ∈ s to denote the fact thatσ f ∈ s
for someσ f ∈ 6 f i , or formally,s∩9(6 f i ) 6= ∅. We also define

Xo = {x0} ∪ {x ∈ X: x has an observable event into it}. (7)

Let L(G, x) denote the set of all traces that originate from statex of G. We define

Lo(G, x) = {s ∈ L(G, x): s= uσ,u ∈ 6∗uo, σ ∈ 6o} (8)

and

Lσ (G, x) = {s ∈ Lo(G, x): sf = σ }. (9)

Lo(G, x) denotes the set of all traces that originate from statex and end at the first observ-
able event, whileLσ (G, x) denotes those traces inLo(G, x) that end with the particular
observable eventσ .

The generatorG′ (see Sampath et al., 1995; Sampath, 1995) is the nondeterministic FSM,

G′ = (Xo, 6o, δG′ , x0), (10)
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whereXo, 6o, andx0 are defined as previously, and the transition relation ofG′ is given by
δG′ ⊆ (Xo ×6 × Xo) and is defined as follows:

(x, σ, x′) ∈ δG′ if δ(x, s) = x′ for somes ∈ Lσ (G, x). (11)

It is easy to verify thatL(G′) = P(L) where

P(L) = {t : t = P(s) for somes ∈ L}. (12)

2.3. Definition of Diagnosability

Loosely speaking, a language is said to be diagnosable with respect to a set of observable
events and a failure partition if within a finite delay, the occurrence of any failure can be
detected using the history of observable events. More rigorously, diagnosability is defined
as follows (Sampath et al., 1995; Sampath, 1995):

Definition 1. A prefix-closed and live languageL is said to be diagnosable with respect to
the projectionP and with respect to the partition5 f on6 f if the following holds

(∀i ∈ 5 f )(∃ni ∈ N)(∀s ∈ 9(6 f i ))(∀t ∈ L/s)(‖t‖ ≥ ni ⇒ D)

where the diagnosability conditionD is

(∀w ∈ P−1
L (P(st))) (6 f i ∈ w).

(A languageL is live if for all s ∈ L, there existsσ ∈ 6 such thatsσ ∈ L.) Note
here that the above definition is only applicable to centralized systems, since it assumes the
availability of all the system information at one (centralized) center or site: there is only
one projectionP that observes the behavior of the system, in addition to a single inverse
projectionP−1

L , and both are used to check the diagnosability conditionD.

2.4. The Diagnoser

The diagnoser is a FSM built from the system modelG. This machine is used to perform
diagnostic when it observes on-line the behavior of the system. We first define the set of
failure labels1 f = {F1, F2, . . . , Fm} where|5 f | = m, and the complete set of possible
labels

1 = {N} ∪ 21 f . (13)

HereN is to be interpreted as meaning normal, whileFi , i ∈ {1,2, . . . , j } as meaning that
a failure of typeFi has occurred. Recall, from Equation 7, the definition ofXo and define

Qo = 2Xo×1. (14)
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The diagnoser forG is the FSM

Gd = (Qd, 6o, δd,q0) (15)

whereQd, 6o, δd, andq0 have the usual interpretation of state space, event set, transition
function, and initial state. The initial state of the diagnoser is defined to be{(x0, {N})}.
The transition functionδd of the diagnoser is constructed in a similar manner to the
transition function of an observer ofG (Hopcroft and Ullman, 1979), with an addi-
tional aspect that includes attaching failure labels to the states and propagating these
labels from state to state. For more information about the construction of the diag-
noser, the reader is referred to Sampath et al. (1995) and Sampath (1995). The state
spaceQd is the resulting subset ofQo composed of the states of the diagnoser that are
reachable fromq0 underδd. Since the state spaceQd of the diagnoser is a subset of
Qo, a stateqd of Gd is of the formqd = {(x1, l1), . . . , (xn, ln)}, wherexi ∈ Xo and
l i ∈ 1.

Next, we provide some definitions that are necessary in order to state the main diagnosabil-
ity result for centralized systems in Section 2.5. For a detailed discussion and interpretation
of this material the reader is referred to Sampath et al. (1995) and Sampath (1995).

Definition 2. (Definition 6-1 in Sampath et al., 1995). A stateq ∈ Qd is said to be
Fi -certain if∀(x, l ) ∈ q, Fi ∈ l .

Definition 3. (Definition 6-3 in Sampath et al., 1995). A stateq ∈ Qd is said to beFi -
uncertain if∃(x, l ), (y, l ′) ∈ q, x not necessarily distinct fromy, such thatFi ∈ l andFi /∈
l ′.

Definition 4. (Definition 7 in Sampath et al., 1995). A set of statesx1, x2, . . . , xn ∈ X is said
to form a cycle inG if ∃s ∈ L(G, x1) such thats= σ1σ2 . . . σn, andδ(xl , σl ) = x(l+1) mod n,
l = 1,2, . . . ,n.

Definition 5. (Definition 8 in Sampath et al., 1995). A set ofFi -uncertain states
q1,q2, . . . ,qn ∈ Qd is said to form anFi -indeterminate cycle if

1) q1,q2, . . . ,qn form a cycle inGd with δd(ql , σl ) = ql+1, l = 1,2, . . . ,n−1,δd(qn, σn) =
q1, σl ∈ 6o, l = 1,2, . . . ,n.

2) ∃(xk
l , l

k
l ), (y

r
l , l̃

r
l ) ∈ ql , xk

l not necessarily distinct fromyr
l , l = 1,2, . . . ,n, k =

1,2, . . . ,m, andr = 1,2, . . . ,m′ such that

a) Fi ∈ l k
l , Fi 6∈ l̃ r

l for all l , k, andr .

b) The sequence of states{xk
l }, l = 1,2, . . . ,n, k = 1,2, . . . ,m, and {yr

l }, l =
1,2, . . . ,n, r = 1,2, . . . ,m′ form cycles inG′ with

(xk
l , σl , xk

l+1) ∈ δG′ , l = 1,2, . . . ,n− 1, k = 1,2, . . . ,m,

(xk
n, σn, xk+1

1 ) ∈ δG′ , k = 1,2, . . . ,m− 1, and(xm
n , σn, x1

1) ∈ δG′ .
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and

(yr
l , σl , yr

l+1) ∈ δG′ , l = 1,2, . . . ,n− 1, r = 1,2, . . . ,m′,

(yr
n, σn, yr+1

1 ) ∈ δG′ , r = 1,2, . . . ,m′ − 1, and(ym′
n , σn, y1

1) ∈ δG′ .

An Fi -indeterminate cycle inGd indicates the presence inL of two tracess1 ands2 of
arbitrarily long length, such that they both have the same observable projection ands1

contains a failure event from the set6 f i while s2 does not.
Finally, the following lemma relates the properties of a diagnoser state to the properties

of the traces in the language.

LEMMA 1 (Lemma 2 in Sampath et al., 1995)

i) Let δd(q0,u) = q. If q is Fi -certain, then∀w ∈ P−1
L (u),6 f i ∈ w.

ii) If a state q∈ Qd is Fi -uncertain, then this implies that∃s1, s2 ∈ L such that6 f i ∈ s1,
6 f i 6∈ s2, P(s1) = P(s2), andδd[q0, P(s1)] = q.

We note here that all of the notation introduced in this subsection and the previous ones
assumes that the set of observable events is6o. Later on, we will be using subsets of6o,
namely6o1 and6o2; the above notation will still be applicable to the subsets of6o, with
the minor change, when necessary, of adding subscripts: a “1” subscript will be used in
notation related to6o1, while a “2” subscript will be used in notation related to6o2. In this
case, we define6o to be6o1 ∪6o2.

2.5. Necessary and Sufficient Conditions for Diagnosability

It is intuitive, based on the definition of diagnosability, the properties of the diagnoser, and
Definition 5, that in order for a language to be diagnosable, the diagnoser should not have
any Fi -indeterminate cycles for all failure typesFi . This condition is stated formally as
follows:

THEOREM1 (Theorem 2 in Sampath et al., 1995)A language L is diagnosable with re-
spect to the projection P and the failure partition5 f on6 f if and only if its diagnoser Gd
satisfies the following condition: there are no Fi -indeterminate cycles in Gd for all failure
types Fi .

3. General Specification of the Problem

3.1. A Coordinated Decentralized Architecture

In decentralized systems, the global system information is distributed at several sites. The
“agents” at different sites may communicate and exchange information in real time, or just
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Figure 1. Coordinated decentralized architecture.

report some or all of their information to a center that, in general, possesses limited knowl-
edge about the system. For each distinct information flow we obtain a distinct decentralized
architecture. In this paper, we restrict attention to a coordinated decentralized architecture
with two local sites communicating with a coordinator. This architecture is depicted in
Figure 1. In this section, we discuss this architecture. We present protocols that realize the
architecture in Sections 4, 5, and 6.

In Figure 1, the top block represents the system model, orG in the notation of Section 2.1.
G models the synchronization of the interaction of all the components that constitute the
system (see Sampath, 1995; Sampath et al., 1996). Each site is composed of two modules:
an observation module and a diagnostic module. The sitei , i ∈ {1,2}, locally observes the
system based on its available sensing capabilities. Therefore, a projectionPi is associated
with site i , wherePi is defined on the set of observable events6oi (note here that6o1 and
6o2 need not be disjoint although sites 1 and 2 may be physically apart). The union of6o1

and6o2 is the set of observable events6o. Sitei locally processes its own observation and
generates its diagnostic information. Both sites communicate some form of their diagnostic
information to the coordinator. The type of information communicated is determined by the
communication rules used by the sites. The task of the coordinator is to process, according
to a prescribed decision rule, the messages received from both sites to infer occurrences of
failures. If a failure is detected by the coordinator, it is broadcast to the failure recovery
module.
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We intend to investigate diagnosability properties of the above architecture under the
following assumptions.

A1 L(G) is live.

A2 G has no cycles of unobservable events with respect to either6o1 or6o2.

A3 L(G) is not diagnosable with respect toPi and5 f on6 f , i = 1,2.

A4 There is reliable communication between the local sites and the coordinator, i.e., all
messages sent from a local site are received by the coordinator correctly and in order.

A5 Messages communicated between the local sites and the coordinator are received in
the order they are sent (globally).

A6 The sets of observable events at each site are common knowledge (Aumann, 1976;
Washburn and Teneketzis, 1984) to all sites.

A7 The two sites are allowed to report to the coordinator only some processed version of
their raw data.

A8 The coordinator does not have a model of the system, that is, it does not know the
dynamics of the system. It has a simple structure; specifically, it has limited memory
and limited processing capabilities.

AssumptionA1 ensures that there are no deadlocks. This assumption can be relaxed
easily as discussed in Sampath (1995) and Sampath et al. (1998). AssumptionA2 ensures
that observations occur with some regularity with respect to bothP1 and P2: since detec-
tion of failures is based on observable transitions of the system, we require thatG does
not generate arbitrarily long sequences of unobservable events with respect to eitherP1 or
P2. AssumptionA3 eliminates the trivial case where even though the observable events
are partitioned, the system is still diagnosable (in a centralized setup) with respect to one
of the projections and the failure partition. In such a case the decentralized architecture
is necessarily diagnosable! AssumptionA5 ensures that the global order of all messages
received by the coordinator is preserved. AssumptionsA4, A6, andA7 are self explanatory.
Finally, AssumptionA8 is consistent with features of hierarchical organizations. Assump-
tionsA1–A8 will be used, even if not explicitly stated, in the derivation of all the results of
this paper, unless otherwise specified.

3.2. Definition of Diagnosability

As noted in Section 2.3, the definition of diagnosability in Sampath et al. (1995) (Definition 1
in this paper) assumes centralization of the available information; hence it is not directly
applicable to coordinated decentralized systems. Moreover, the coordinated decentralized
architecture in Figure 1 represents a class of realizations of the same architecture where
the choice of local diagnostic rules, communication rules, and decision rules, defines one
realization. Therefore, to define diagnosability for coordinated decentralized systems, we
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need to account for the rules used to generate local diagnostic information together with the
associated communication rules and the coordinator’s decision rule for failure diagnosis. In
the proposed coordinated architecture the local agents do not interact with one another; they
only communicate with the coordinator that is assigned the task of detecting and isolating
failures. LetC denote the coordinator’s diagnostic information. For each sample path of
the DES,C is represented by an information set that is protocol-dependent. For instance
in Protocol 3 (cf. Section 6.2.3),C is described by a set of failure labels; in Protocol 2 (cf.
Section 5.2.3),C is described by a diagnoser state. The description ofC in the case of
Protocol 1 is more complex and is presented in Section 4.1.3.

Definition 6. The coordinator’s diagnostic informationC is said to beFi -certain if based
onC, the coordinator is certain that a failure of typeFi has occurred.

We mentioned earlier that a protocol realizes one instance of the coordinated decentralized
architecture of Figure 1. We formalize this notion of protocol as follows:

Definition 7. Within the context of the coordinated decentralized architecture described
in Section 3.1 and depicted in Figure 1, a protocol is defined by the diagnostic information
generated at the local sites, the rules used by the local sites to communicate to the coordinator,
and the decision rule used at the coordinator site.

Using Definitions 6 and 7 we can define diagnosability under a given protocol.

Definition 8. A prefix-closed and live languageL is said to be diagnosable under a protocol,
a set of projectionsP1, P2 and a failure partition5 f on6 f if the following holds

(∀i ∈ 5 f )(∃ni ∈ N)(∀s ∈ 9(6 f i ))(∀t ∈ L/s)(‖t‖ ≥ ni ⇒ C is Fi -certain).

Thus diagnosability, as defined above, requires that the detection of any failure should be
achieved by the coordinator within a finite delay of the occurrence of that failure.

3.3. Objective

Any realization of the coordinated decentralized architecture of Section 3.1 cannot outper-
form the centralized one. Hence, a desirable objective in realizing such an architecture is
to aim at diagnosing all failure types that can be diagnosed by the centralized diagnoser.
Therefore, the design process should determine a failure diagnosis protocol that performs
as well as the centralized diagnoser would. In case this is not feasible, conditions on the
system structure may be found to guarantee that the protocol diagnoses all failure types that
are diagnosed by the centralized diagnoser. Note here that according to Definition 8, the
set of projections and the failure partition are given and fixed; more generally, they could
be included in the protocol. The next three sections describe three protocols that achieve
the above objective.
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4. A Coordinated Decentralized Protocol: Protocol 1

4.1. Specification of the Protocol

In this section, we present a protocol for the preceding coordinated decentralized architecture
that is capable of diagnosing the same types of failures as the ones diagnosed using a
centralized diagnoser. The specification of the protocol is done under AssumptionsA1–
A8 of Section 3.1. Thereafter, we will refer to this protocol as Protocol 1. We begin by
specifying the type of diagnostic information generated at local sites.

4.1.1. Diagnostic Information at Local Sites

The diagnostic information at the local site is generated by the extended diagnoser defined
below. Theextended diagnoserfor G was first introduced in Sampath (1993), and it is the
FSM

Ge
d =

(
Qe

d, 6o, δ
e
d,q

e
0

)
(16)

whereQe
d, 6o, δ

e
d, andqe

0 have the usual interpretation of state space, event set, transition
function, and initial state. The initial state of the extended diagnoser is defined to be
{(x0, {N}), (x0, {N})}. A stateq ∈ Qe

d is of the form

q = {((x1, l1), (x
′
1, l
′
1)), ((x2, l2), (x

′
2, l
′
2)), ((x2, l2), (x

′′
2, l

′′
2)), . . . , ((xn, ln), (x

′
n, l
′
n))}

where each(x, l ) pair is in Qo, i.e., x ∈ Xo and l ∈ 1. A tuple of (x, l ) pairs, say
((x1, l1), (x′1, l

′
1)), has the following meaning:x′1 is a component of a system state estimate

after the occurrence of an observable event andl ′1 is its failure label, whilex1 is the immediate
predecessor state ofx′1 in G′ andl1 is its corresponding failure label. The transition function
δe

d of the extended diagnoser is constructed in a manner similar to the transition function
of the diagnoserGd, with the additional aspect that every state ofG that appears in a
state component ofGd is associated with its immediate predecessor state inG′ (along
the sub-trace of events under consideration) and both states carry their labels; these labels
are attained following the same label propagation rules as in Sampath et al. (1995). The
state spaceQe

d is the resulting subset ofQo × Qo composed of the states of the extended
diagnoser that are reachable fromqe

0 underδe
d. By construction,L(Ge

d) = L(Gd) = P(L).
We illustrate the construction of extended diagnosers in the following example.

Example 1. Consider the system shown in Figure 2 with6 = {a,b, c,d,e, σ },6uo = {σ },
6 f 1 = {σ },6o1 = {a, c,d,e}, and6o2 = {b,d,e}. The extended diagnosersGe

d1 andGe
d2

for this system are shown in Figure 3. Consider the stateq = {(2N,6N), (5N,7N)} in Ge
d1;

q is read as follows: the system is either in state 6 with a normal label, or it is in state 7, also
with a normal label; state 6 has been reached (by an observable event, possibly preceded
by unobservable events) from state 2, while state 7 has been reached (by an observable
event, possibly preceded by unobservable events) from state 5. Now the next observable
event isd: if the system is at state 6, then it transitions into state 8, and since there are no
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Figure 2. The systemG for Example 1.

Figure 3. The extended diagnosersGe
d1 andGe

d2 for Example 1.

failure events along the path from state 6 to state 8 the resulting component of the new state
estimate is(6N,8N); if the system is at state 7, it transitions into state 10 following the
occurrence of the sequenceσd, i.e., a failure of typeF1 has occurred along the path, and
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Figure 4. The diagnoserGd and extended diagnoserGe
d for Example 1.

the resulting other component of the new state estimate is(7N,10F1). Therefore the state
of Ge

d1 is {(6N,8N), (7N,10F1)} after the occurrence of the observable eventd. All other
extended diagnoser states are constructed by following a similar procedure.

We define the state projectionSP: Qo × Qo→ Qo as follows:

q = {((x1, l1), (x′1, l
′
1)), . . . , ((xn, ln), (x′n, l

′
n))}

7→ SP(q) = {(x′1, l ′1), . . . , (x′n, l ′n)}.
(17)

Then, with a slight abuse of notation, we have thatSP(Ge
d) = Gd; hence, one diagnoser

state may be associated with more than one extended diagnoser states. Therefore, an ex-
tended diagnoser state potentially carries more information than a diagnoser state. In the
case of centralized systems,Gd andGe

d are equivalent from the point of view of diagnos-
ability as defined in Definition 1; it is for that reason that prior work (Sampath et al., 1995;
Sampath, 1995; Sampath et al., 1996; Sampath et al., 1998) only considered the simplerGd.

Example 2. Again consider the system shown in Figure 2 with6 = {a,b, c,d,e, σ },
6uo = {σ }, 6 f 1 = {σ }. The diagnoserGd and extended diagnoserGe

d for this system are
shown in Figure 4. We can see that the transition structure ofGe

d refines that ofGd. In
particular, state 6N of Gd is associated with states(4N,6N) and(8N,6N) in Ge

d since
SP((4N,6N)) = SP((8N,6N)) = 6N.
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We define theunobservable reachof an extended diagnoser state as follows.

Definition 9. Letq = {((x1, l1), (x′1, l
′
1)), . . . , ((xn, ln), (x′n, l

′
n))} be a state of the extended

diagnoserGe
d j , j ∈ {1,2}. Define the set

Sj (q) =
{
s ∈ (6\6oj )

∗: s ∈ Lσ (G, x′k) for someσ ∈ 6oi ,

i ∈ {1,2}\{ j }, and somek ∈ {1, . . . ,n}} .
Then the unobservable reach ofq with respect to6\6oj is defined as follows:

U Rj (q) = {q} ∪
⋃

s∈Sj (q)

{((ys, ls), (y
′
s, l
′
s))}

where (i)y′s is the successor of somex′k, k ∈ {1, . . . ,n}, after sub-traces ∈ Sj (q), (ii) ys

is the immediate predecessor alongs of y′s in G′, and (iii) ls, l ′s are the failure labels
corresponding toys, y′s obtained by propagating the labell ′k of x′k according to the label
propagation function defined in Sampath et al. (1995).

The unobservable reach appends to the components of each state of the extended diagnoser
Ge

d j some additional components (along with failure labels and predecessors) that may have
been reached following an additional event or a sequence of events that are not observable
by the local sitej . Note here that in the above definition,ys may not be equal tox′k. Also
note that while we callU Rj (q) the unobservable reach ofq with respect to6\6oj , its
definition stipulates that the sub-traces that are used to generate it end with an event in6oi ,
the other set of observable events.

Example 3. Consider the system discussed in Example 1. The extended diagnosersGe
d1

andGe
d2 associated with the projectionsP1 and P2 are shown in Figure 3. Consider the

stateq = {(1N,3N), (1N,4N)} in Ge
d2. To compute the unobservable reach ofq with

respect to6\6o2, we first find the setS2(q) = {a, c,ac}. The successors of state 3 after
sub-tracesa andac are 5 and 7, respectively, while the successor of state 4 after sub-trace
c is 6. Therefore,U R2(q) = {(1N,3N), (1N,4N), (3N,5N), (5N,7N), (4N,6N)}. All
state labels areN since there were no failure events along any sub-trace. Note here that
although state 7 is a successor of state 3 along the sub-traceac, the immediate predecessor
of 7 in G′ (not pictured) is state 5, so the corresponding tuple (after adding the failure labels)
is (5N,7N).

To provide the necessary and sufficient conditions of diagnosability in terms ofGe
d, we

need the following definitions.

Definition 10. A stateq ∈ Qe
d is said to beFi -certain if∀(x, l ) ∈ SP(q), Fi ∈ l .

Definition 11. A stateq ∈ Qe
d is said to beFi -uncertain if∃(x, l ), (y, l ′) ∈ SP(q), x not

necessarily distinct fromy, such thatFi ∈ l andFi 6∈ l ′.
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Definition 12(Definition 1 in Sampath, 1993). A set of statesq1,q2, . . . ,qn ∈ Qe
d is said

to form a cycle inGe
d if the following is true:

δe
d(ql , σl ) = q(l+1), l = 1,2, . . . ,n− 1, andδe

d(qn, σn) = q1

for some observable eventsσi , i = 1, . . . ,n.

Definition 13(Definition 2 in Sampath, 1993). A set of(xi , l i ) pairs, where(xi , l i ) ∈ Qo,
i = 1,2, . . . ,n, is said to form a matched cycle inGe

d if ∃qi ∈ Ge
d, i = 1,2, . . . ,n, such

that:

((xi , l i ), (xi+1, l i+1)) ∈ qi+1, i = 1,2, . . . ,n− 1, and((xn, ln), (x1, l1)) ∈ q1.

Note that the existence of such a set of(xi , l i ) pairs has the two following implications
(from the construction procedure ofGe

d):

1. qi , i = 1,2, . . . ,n, form a cycle inGe
d.

2. xi , i = 1,2, . . . ,n, form a cycle inG′.

Definition 14(Definition 3 in Sampath, 1993). A set of statesq1,q2, . . . ,qn ∈ Qe
d forming

a cycle ofFi -uncertain states inGe
d is said to form anFi -indeterminate cycle inGe

d if the
following hold:

1. ∃ a set of(xj , l j ) ∈ SP(qj ), j = 1,2, . . . ,n, forming a matched cycle inGe
d, with

Fi ∈ l j , j = 1,2, . . . ,n,

and

2. ∃ a set of(yj , l ′j ) ∈ SP(qj ), j = 1,2, . . . ,n, forming a matched cycle inGe
d, with

Fi 6∈ l ′j , j = 1,2, . . . ,n.

Next we state a result that relates the existence ofFi -indeterminate cycles inGe
d to the

existence ofFi -indeterminate cycles inGd.

PROPOSITION1 Consider a system G, its diagnoser Gd, and its extended diagnoser Ge
d.

Then there are Fi -indeterminate cycles in Gd if and only if there are Fi -indeterminate cycles
in Ge

d.

Proof: Sufficiency(⇐). Ge
d has Fi -indeterminate cycles. Consider a set of statesqk,

k = 1, . . . ,n, that form anFi -indeterminate cycle inGe
d. We claim that the set of states

{p1, . . . , pm} = SP({q1, . . . ,qn}), m ≤ n, forms anFi -indeterminate cycle inGd. (Note
here thatm ≤ n since, as discussed earlier, one diagnoser state may be associated with
more than one extended diagnoser states.) The claim can be established as follows: by as-
sumption, there exist two sets of states of the form(xj , l j ), (yj , l ′j ) ∈ SP(qj ), j = 1, . . . ,m
such thatFi ∈ l j , but Fi 6∈ l ′j (cf. Definition 14). Hence the cycle of states{p1, . . . , pm}
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in Gd is an Fi -uncertain cycle. Moreover, by the implications of Definition 13, the sets
{xj } and{yj } form cycles inG′. Therefore the resulting cycle inGd is Fi -indeterminate by
Definition 5.

Necessity(⇒) Gd hasFi -indeterminate cycles. From Definition 5, there exist two tracess
ands′ in L(G), such thatP(s) = P(s′), Fi 6∈ s, Fi ∈ s′ ands, s′ are arbitrarily long. Since
L(G) is a regular language, then the fact thats, s′ are arbitrarily long implies that the system
will loop in a cycle, say A (respectively B) ifs (respectivelys′) is executed. Corresponding
to A (respectively B) there exists a cycle of pairs (xj , l j ) (respectively (yj , l ′j )) in Qo, j = 1,
. . ., n. Moreover, sinceP(s) = P(s′) (xj , l j ) and (yj , l ′j ), j = 1, . . . ,n, belong to the same
set of states{q1, . . . ,qn} in Ge

d; hence they form matched cycles inGe
d. By the implications

of Definition 13 the states{q1, . . . ,qn} in Ge
d form a cycle, and the fact thatFi 6∈ l j but

Fi ∈ l ′j implies that the cycle isFi -indeterminate.

Based on Proposition 1 and Definition 1 we provide a test to check the diagnosability of
a language in terms of the extended diagnoserGe

d:

THEOREM21 A prefix-closed and live language L is diagnosable with respect to the projec-
tion P and the failure partition5 f on6 f if and only if its extended diagnoser Ge

d satisfies
the following condition: there are no Fi -indeterminate cycles in Ged for all failure types Fi .

Proof: The proof is a direct consequence of Definition 1 and Proposition 1.

Having presented the type of diagnostic information generated at the local sites, along
with some of its properties, we next define the communication rules used by the diagnosers.

4.1.2. Communication Rules

To define the communication rules, we first note that right after the occurrence of an event
that is observable only by one site, sayi , the state of the extended diagnoser at sitej 6= i does
not contain the true system state. Therefore, for the purpose of communicating information
from a local site to the coordinator, we need to augment the state of the extended diagnoser
with some additional information, the unobservable reach. We define the communication
rulesCR := (CR1,CR2) as follows:

• [CRi] , i = 1,2: After the agent at sitei observes an eventσ ∈ 6oi , it communicates to
the coordinator the corresponding stateqi of its extended diagnoserGe

di , its unobservable
reachU Ri (qi )with respect to6\6oi , and a status bit,SBi , that takes the valuesSBi = 1
whenσ ∈ 6oj , j ∈ {1,2}, j 6= i , or SBi = 0 whenσ 6∈ 6oj .

4.1.3. Decision Rule

The decision rule of the coordinator consists of two components: (1) a rule according to
which its information is updated; and (2) a rule according to which failure occurrences are
declared and broadcast to the failure recovery module.
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As stated earlier, the coordinator declares that a failure of typeFi has occurred when its
diagnostic informationC is Fi -certain (cf. Definition 6). To specify the information update
rule we first need to define the following operators (Definitions 15 and 16).

Definition 15. Let q1 = {((x1, l1), (x′1, l
′
1)), . . . , ((xn, ln), (x′n, l

′
n))} andq2 = {((y1, l1),

(y′1, l
′
1)), . . . , ((ym, lm), (y′m, l

′
m))} belong toQo × Qo. We denote by∩i

e, i ∈ {L , R} the
intersection scheme that acts onq1 andq2, and we define it as follows:

q1 ∩i
e q2

4= {((z, l ), (z′, l ′)) ∈ Qo × Qo: (z′, l ′) = (x′i , l ′i ) = (y′j , l ′j ) for somei, j,
i ∈ {1,2, . . . ,n}, j ∈ {1,2, . . . ,m},and(z, l ) = (xi , l i ) if i = L , otherwise(z, l ) =

(yj , l j )}.

This intersection scheme is a regular intersection of the components of the two system
state estimates along with their failure labels. However, the intersection applies to the
components corresponding to the current system state estimates and not to their immediate
predecessors. The components ofq1 ∩i

e q2 corresponding to the immediate predecessors
are determined by operatori . The intersection scheme∩i

e introduced by Definition 15 is
illustrated by the following example:

Example 4. Let q1 = {(6N,8N), (7N,10F1)} and q2 = {(3N,11N), (3N,10F1),
(4N,8N)}. To computeq1 ∩L

e q2 we find the common components in the two current
system state estimates, namely 8N and 10F1, and we append the predecessors of 8N and
10F1 in q1 to the states to getq1∩L

e q2 = {(6N,8N), (7N,10F1)}. Similarly,q1∩R
e q2 =

{(4N,8N), (3N,10F1)}.

The second operator we introduce is another intersection scheme, and is defined as follows:

Definition 16. Let q1 = {((x1, l1), (x′1, l
′
1)), . . . , ((xn, ln), (x′n, l

′
n))} andq0 = {((y1, l1),

(y′1, l
′
1)), . . . , ((ym, lm), (y′m, l

′
m))} belong toQo × Qo. We denote by∩c the intersection

scheme that acts onq1 andq0, and we define it as follows:

q1 ∩c q0
4= {((z, l ), (z′, l ′)) ∈ Qo × Qo: (z, l ) = (xi , l i ) = (y′j , l ′j ), for somei, j,

i ∈ {1,2, . . . ,n}, j ∈ {1,2, . . . ,m}, and(z′, l ′) = (x′i , l ′i )}.

The intersection scheme∩c is illustrated by the following example:

Example 5. Let q1 = {(6N,8N), (7N,10F1)} and q0 = {(4N,6N)}. q1 ∩c q0 =
{(6N,8N)} since the component 10F1 of q1 was reached from the component 7N which
is not present inq0.

In addition to the above operators, we need to describe the structure of the coordinator
before we precisely specify its information update rule. In addition to the registerC where
the coordinator stores its current diagnostic information, eight supplementary registers are
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Table 1.Information update rule at the coordinator site (Protocol 1).

Last report received from Ge
d1

SB SB1 C NewSB NewSB1old NewSB2old

DR1 0 0 (R1 ∩i
e R4) ∩c Cold 0 1 0

DR2 0 1 Wait 1 Unmodified Unmodified
— 1 0 Impossible — — —

DR3 1 1 (R1 ∩i
e R2) ∩c Cold 0 1 1

Last report received from Ge
d2

SB SB2 C NewSB NewSB1old NewSB2old

DR4 0 0 (R2 ∩i
e R3) ∩c Cold 0 0 1

DR5 0 1 Wait 1 Unmodified Unmodified
— 1 0 Impossible — — —

DR6 1 1 (R1 ∩i
e R2) ∩c Cold 0 1 1

thei superscript in∩i
e depends on the current values of the flip-flopsSB1old andSB2old,

not shown in this table

used for storing messages and previous relevant values necessary for the update of its
information. These registers are:R1, R2, R3, R4, Cold, SB, SB1old, and SB2old. R1
and R2 hold the latest states ofGe

d1 and Ge
d2, respectively,R3 and R4 hold the latest

unobservable reaches ofGe
d1 andGe

d2, respectively,Cold holds the previous coordinator
diagnostic information,SBspecifies whether the last observed event is observed by both
sites (1) or not (0) andSB1old, SB2old provide necessary information to compute the new
coordinator diagnostic information.

The information update rule is given in Table 1. The rule picks one of the actions
DR1–DR6 depending on the available information, i.e., which site observed the last and
previous to the last events, and who sent the last message to the coordinator.

The rationale behind the actionsDR1 to DR6 can be summarized as follows. Once a
message from one diagnoser, sayGe

d1, reaches the coordinator after the occurrence of an
observable event, the state of that diagnoser should contain the true system state. Moreover,
if the message says that the event is not observed by the other site (site 2), the current
unobservable reach of the diagnoserGe

d2 also contains the true system state. Consequently,
the logical action is to intersect the state ofGe

d1 with the unobservable reach ofGe
d2 using the

intersection scheme∩i
e (the bitsSB1old andSB2old specify the value ofi in∩i

e: if SB1old = 1,
theni = L, that is you append the predecessors from the state ofGe

d1; otherwisei = R),
and then intersect the result with the old coordinator diagnostic information, using the
intersection scheme∩c, to generate the new coordinator diagnostic information. The last
intersection is needed to eliminate the possibility of including any illegal behavior in the
coordinator diagnostic information. In case the event is also observed by site 2, the state of
Ge

d2 contains the true system state. Therefore, the logical action in this case is to intersect
the states of the diagnosersGe

d1 andGe
d2 by applying the∩i

e intersection, and then refine
the result by applying the intersection scheme∩c as discussed earlier. Note here that before
performing any update of the coordinator diagnostic information, the current coordinator
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diagnostic information is saved into the registerCold for later use. Also, the flip-flops are
modified once the update of the coordinator diagnostic information is completed. At reset,
R1andR2are initialized with the initial states ofGe

d1 andGe
d2, respectively, andR3andR4

hold the initial unobservable reaches ofGe
d1 andGe

d2, respectively.
Note that the coordinator is not aware of the rationale described above when it updates its

diagnostic information and when it declares that a failure of a certain type has occurred. The
coordinator simply executes the operations∩i

e, ∩c, updates all of its registers, and declares
the occurrence of failures according to the decision rule described above.

In summary, the registers of the coordinator are updated according to the information
update rule presented in Table 1. OnceC, the coordinator’s diagnostic information isFi -
certain, the coordinator broadcasts to the failure recovery module that a failure of typeFi

has occurred.

4.2. Diagnostic Properties of Protocol 1

The diagnostic properties of Protocol 1 are summarized by Theorem 3, the proof of which
is based on the following proposition.

PROPOSITION2 Let q1, q2, and q be the states of the extended diagnosers Ge
d1, Ge

d2, and Ge
d,

respectively, after the system executed the trace s= s1aub, where a,b ∈ 6o (= 6o1∪6o2),
u ∈ 6∗uo. Denote by qold the state of Ged after the execution of s1a. Then the following is
true:

1. if b∈ 6o1 ∩6o2 then

(i ) q = (q1 ∩L
e q2) ∩c qold, if a ∈ 6o1

(i i ) q = (q1 ∩R
e q2) ∩c qold, otherwise

2. if b∈ 6o1\6o2 then

(i ) q = (q1 ∩L
e U R2(q2)) ∩c qold, if a ∈ 6o1

(i i ) q = (q1 ∩R
e U R2(q2)) ∩c qold, otherwise

3. if b∈ 6o2\6o1 then

(i ) q = (U R1(q1) ∩L
e q2) ∩c qold, if a ∈ 6o1

(i i ) q = (U R1(q1) ∩R
e q2) ∩c qold, otherwise.

Proof:

Proof of 1. We first note that

SP(q) ⊆ SP(qi ) ⊆ SP(U Ri (qi )), i = {1,2}. (18)
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The first inclusion is true since the set of observable events6oi is a subset of the original set
of observable events6o andb ∈ 6o1 ∩ 6o2, and the second inclusion is true by definition
(cf. Definition 9). In case(i ) we have

(q1 ∩L
e q2) ∩c qold = (q1 ∩c qold) ∩L

e q2 (19)

(q1 ∩c qold) = q. (20)

(19) follows from the definition of the intersection operators∩c and∩L
e . (20) is obtained as

follows: by definition,q1∩c qold gives all state estimate tuples inq1 that are reached by the
observable eventb. Sinceb is the next observable event aftera in s andSP(q) ⊆ SP(q1)

by (18),q1∩c qold is the state of the diagnoserGe
d which isq by definition. Combining (19)

andSP(q) ⊆ SP(q2) from (18) we obtainq = (q1 ∩L
e q2) ∩c qold. To prove case(i i ), we

note that by Definition 15 we can writeq1 ∩L
e q2 = q2 ∩R

e q1. So by exchanging the roles
of q1 andq2, and using the same arguments as in case(i ) we haveq = (q1 ∩R

e q2) ∩c qold.

Proof of 2. We note first that

SP(q) ⊆ SP(q1) andSP(q) ⊆ SP(U R2(q2)). (21)

The inclusions are true since the set of observable events6oi is a subset of the original set
of observable events6o andb ∈ 6o1\6o2. The proof of case(i ) proceeds in the same way
as the proof of 1− (i ) with the minor modification of usingU R2(q2) instead ofq2. To
prove(i i ) we have

(q1 ∩R
e U R2(q2)) ∩c qold = q1 ∩R

e (U R2(q2) ∩c qold) (22)

(U R2(q2) ∩c qold) = q. (23)

(22) follows from the definition of the intersection operators∩c and∩R
e . (23) is obtained

as follows: by definition,U R2(q2) ∩c qold gives all state estimate tuples inU R2(q2) that
are reached by the observable eventb. This is true by Definition 9:U R2(q2) may include
state estimate tuples{(x, l ), (x′, l ′)} whose current statex′ may be reached by a sequence
of observable events and not only by one observable event, like in the case of the eventb;
however in such a case the predecessor statex is by definition the immediate predecessor of
x′ in G′, and this predecessor does not belong to anySP(xi ), wherexi ∈ qold. Sinceb is the
next observable event aftera in sandSP(q) ⊆ SP(U R2(q2))by (21),U R2(q2)∩cqold is the
state of the diagnoserGe

d which isq by definition. Combining (22) andSP(q) ⊆ SP(q1)

from (21) we obtainq = (q1 ∩R
e U R2(q2)) ∩c qold.

Proof of 3. Exchange the roles ofq1 andU R1(q1)with q2 andU R2(q2), respectively, and
proceed as in the proof of 2.

Proposition 2 can be used to prove the main result concerning the diagnostic properties
of Protocol 1.
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THEOREM3 (i) The coordinator’s diagnostic information C under Protocol 1 is the same
as the state of the centralized extended diagnoser Ge

d.
(ii) Protocol 1 achieves the same diagnostic performance as a centralized diagnoser.

Proof: (i ) We prove part(i ) by induction on the number of observable events (in6o =
6o1 ∪6o2) in the traces.

Basis of induction: Let|P(s)| = |b| = 1. In this caseCold = {(x0, N), (x0, N)} by
assumption, wherexo is the initial state of the system. Moreover, by assumption bothGe

d1
andGe

d2 have the same initial state{(x0, N), (x0, N)}. If b ∈ 6o1 ∩6o2 thenq1 = q2 = q
by the construction of the diagnosers. Thereforeq1 ∩i

e q2 = q andq ∩c Cold = q by
definition. If b ∈ 6o1\6o2 thenq1 = q by construction andq ⊆ U R2(q2) as discussed
earlier in the proof of Proposition 2. Therefore,q1 ∩i

e U R2(q2) = q, andq ∩c Cold = q
by definition. The proof of the case whenb ∈ 6o2\6o1 is symmetric to the case where
b ∈ 6o1\6o2.

Induction step: The proof of the induction step is provided by Proposition 2 since by
AssumptionsA4 andA5 every message is received in the order it was sent.
(i i ) From part(i ) and the specification of the coordinator’s decision rule it follows

that Protocol 1 achieves the same diagnostic performance as a centralized diagnoser.

Note that, according to AssumptionA8, the coordinator has no knowledge of the system
model, and has limited memory and limited processing capabilities. Yet, if the coordinator
has the memory and processing capabilities required by the decision rule described in
Section 4.1.3, it can diagnose the same types of failures as a centralized diagnoser; by
receiving the extended diagnoser states (and unobservable reaches) and using the rules
∩i

e, i = L , R and∩c the coordinator, in essence, can keep track of the state of the system
in the same way as the centralized diagnoser. Consequently, it has the same diagnostic
properties as the centralized diagnoser.

4.3. Necessary and Sufficient Conditions for Diagnosability

In Section 4.2, we showed that the information update rule that is used at the coordinator site
is reconstructing the centralized diagnoser state. Consequently the necessary and sufficient
conditions for diagnosability with respect to Protocol 1 can be stated with respect to the
centralized diagnoser as follows:

THEOREM4 A live and prefix-closed language L is diagnosable with respect to Protocol 1,
the set of projections P1, P2 and the failure partition5 f on6 f if and only if the diagnoser
Gd does not have Fi -indeterminate cycles for all failure types Fi .

Proof: Sufficiency(⇐). SupposeGd does not haveFi -indeterminate cycles. Then by
Proposition 1,Ge

d does not haveFi -indeterminate cycles. Consider a tracest ∈ L(G) such
thats ∈ 9(6 f i ), andt is long enough, i.e.,‖t‖ > n, wheren can be arbitrarily large. Then,
by assumption, st ′, t ′ ∈ t does not lead to anFi -indeterminate cycle inGe

d. Consequently,
an argument similar to the one used in the proof of Theorem 2 in Sampath et al. (1995)
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Table 2.Illustration of the application of Protocol 1.

Event R1 R3 R2 R4 Cold C

ε (1N,1N) (1N,1N),
(1N,3N)

(1N,1N) (1N,1N),
(1N,2N)

(1N,1N) (1N,1N)

a (1N,2N),
(1N,5N)

(1N,2N),
(1N,5N),
(2N,4N)

(1N,1N) (1N,1N),
(1N,2N)

(1N,1N) (1N,2N)

b (1N,2N),
(1N,5N)

(1N,2N),
(1N,5N),
(2N,4N)

(1N,3N),
(1N,4N)

(1N,3N),
(1N,4N),
(3N,5N),
(5N,7N),
(4N,6N)

(1N,2N) (2N,4N)

c (2N,6N),
(5N,7N)

(2N,6N),
(5N,7N)

(1N,3N),
(1N,4N)

(1N,3N),
(1N,4N),
(3N,5N),
(5N,7N),
(4N,6N)

(2N,4N) (4N,6N)

d (6N,8N),
(7N,10F1)

(6N,8N),
(7N,10F1)

(3N,11N),
(3N,10F1),
(4N,8N)

(3N,11N),
(3N,10F1),
(4N,8N)

(4N,46) (6N,8N)

shows thatGe
d will enter anFi -certain state within a finite number of steps, sayn′i . This

implies by Theorem 3 that the coordinator’s diagnostic informationC will be Fi -certain
within a finite number of steps equal ton′i . Therefore,L(G) is diagnosable with respect to
Protocol 1.

Necessity(⇒). We prove the contrapositive. Assume thatGd does enter aFi -indeterminate
cycle. Then by Proposition 1Ge

d enters anFi -indeterminate cycle. This implies that the co-
ordinator’s diagnostic informationC, which is equal to the centralized diagnoser state, will
remainFi -uncertain for an arbitrarily long number of steps. Hence,L is not diagnosable
with respect to Protocol 1.

We conclude this section with an example that illustrates the application of Theorem 4.

Example 6. Consider again the system shown in Figure 2 with6 = {a,b, c,d,e, σ },
6uo = {σ }, 6 f 1 = {σ }, 6o1 = {a, c,d,e}, and6o2 = {b,d,e}. The diagnoserGd

for this system is shown in Figure 4. The only cycle whose states carry failure labels is
{10F1,9F1}; however its states areF1-certain; hence there are noF1-indeterminate cycles,
and by Theorem 4 the system is diagnosable by Protocol 1.

Table 2 illustrates the application of Protocol 1 when the system executes the trace
abcd. For instance, after the message from site 2 regarding the occurrence of eventb
reaches the coordinator and all operations are performed we haveSB = 0, SB1old = 0
and SB2old = 1 (the bitsSB, SB1old, and SB2old are not shown in the table for space
limitation). Once the message regarding the occurrence of the eventc reaches the co-



COORDINATED DECENTRALIZED PROTOCOLS 55

ordinator, the following occurs: since the event is only observed by site 1 and since
SB = 0, actionDR1 is taken; therefore, the currentC = (2N,4N) is saved intoCold,
and sinceSB1old = 0 then C = (R1 ∩R

e R4) ∩c Cold = ({(2N,6N), (5N,7N)} ∩R
e

{(1N,3N), (1N,4N), (3N,5N), (5N,7N), (4N,6N)}) ∩c (2N,4N) = {(4N,6N),
(5N,7N)} ∩c (2N,4N) = (4N,6N). The registersSB, SB1old and SB2old are set to
0, 1, 0, respectively. The next observable event isd and it is observed by both sites;
assume that the report from site 2 about the occurrence of eventd, reaches the coordi-
nator before the one form site 1. Once the report from site 2 reaches the coordinator,
action DR5 is executed, i.e.,SB is set to 1, becauseSB = 0. When the report from
site 1 reaches the coordinator, actionDR3 is executed, which means thatC = (R1 ∩L

e
R2) ∩c Cold = ({(6N,8N), (7N,10F1)} ∩L

e {(3N,11N), (3N,10F1), (4N,8N)}) ∩c

(4N,6N) = {(6N,8N), (7N,10F1)}∩c(4N,6N) = (6N,8N). The registersSB, SB1old

andSB2old are set to 0, 1, 1, respectively.
We emphasize the need to incorporate∩c andCold in the decision rule to guarantee the

performance of Protocol 1. For that matter, consider that the system has just executed
the traceabcd. The last row of Table 2 describes the content of all the registers at the
coordinator site after all messages related to the occurrence of eventd have reached the
coordinator site. If we computeC by only using∩i

e, i = L , R, i.e.,C = R1∩L
e R2 we getC =

{(6N,8N), (7N,10F1)}, which clearly is not equal to the state of the centralized diagnoser
(6N,8N). However, if we incorporate∩c in the decision rule we indeed reconstruct the
state of the centralized diagnoser. The operator∩c eliminates in an extended diagnoser state
all current state estimates whose predecessor state estimates are not current state estimates
in the old coordinator state. Since∩c is used after the occurrence of every observable event,
then by an inductive argument one can visualize that we are “memorizing” the past. In
other words, it is not sufficient to retain a one-step memory as provided by the extended
diagnoser; rather, a “n-step” memory, wheren represents the length of the observed trace,
is needed, and that is achieved by incorporating∩c in the decision rule.

4.4. Discussion

We first note that the partitioning of observable events does not affect the diagnostic capa-
bilities of Protocol 1: irrespective of the partitioning of the set of observable events6o, as
long as the centralized diagnoser is capable of identifying all failure types, so is Protocol 1,
and vice-versa. This is a direct consequence of Theorem 3.

Having demonstrated that Protocol 1 is capable of diagnosing all failure types that are
diagnosed by a centralized diagnoser, one may ask the following question: Is it possible to
replace the extended diagnosersGe

d1 andGe
d2 by the diagnosersGd1 andGd2, respectively,

while maintaining the same fundamental structure, i.e., the same functional form of the
communication rules and the coordinator’s decision rule (with the obvious modifications
dictated by the change from extended diagnosers to diagnosers) so that the resulting protocol
achieves the same diagnostic performance as Protocol 1? The following example shows
that a modification such as the above does not lead to a protocol with the same diagnostic
capabilities as Protocol 1.
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Figure 5. The local diagnosers for Example 1.

Example 7. Consider the system discussed in Example 1 and shown in Figure 2 with
6 = {a,b, c,d,e, σ }, 6uo = {σ }, 6 f 1 = {σ }, 6o1 = {a, c,d,e}, and6o2 = {b,d,e}.
We showed in Example 6 that this system is diagnosable with respect to Protocol 1. Con-
sider now the following protocol, say Protocol 2: the diagnosersGd1, Gd2 (cf. Figure 5)
replaceGe

d1, Ge
d2, respectively. The fundamental structure, i.e., the functional form of the

communication rules and the coordinator’s decision rule remain the same as in Protocol 1.
The modifications resulting from replacingGe

d1, Ge
d2 with Gd1, Gd2, respectively, lead to

the following rules: the diagnosers at the local sites communicate their states, their un-
observable reaches and a status bit (as in Protocol 1) to the coordinator. The coordinator
declares that a failure of typeFi has occurred when its diagnostic information C isFi -
certain (cf. Definition 6); it broadcasts this decision to the failure recovery module. The
coordinator’s information update rule results from the information update rule of Proto-
col 1 by replacing∩i

e with the regular set intersection and eliminating∩c. We will give
a detailed description of this protocol in the next section. Assume now that the system is
executing the traceabcdede. . .; thenGd1 andGd2 are looping simultaneously in the cycles
{(8N,10F1), (6N,9F1)} and{(8N,10F1,11N), (6N,9F1,12N)}, respectively. More-
over these cycles areF1-indeterminate in their respective diagnosers: traces2 s= abc(de)∗

ands′ = bacσ(de)∗ both lead to the two cycles (sinceP1(s) = P1(s′) = ac(de)∗ and
P2(s) = P2(s′) = b(de)∗) andσ , the failure of typeF1, belongs tos′ while it does not
belong tos. Under Protocol 2, the coordinator is not able to differentiate between the two
traces: the state of the coordinator is either (8N,10F1), after the occurrence of the event
d, or (6N,9F1), after the occurrence of the evente, and this continues indefinitely. We
refer to such problem as the “ordering problem” in untimed DES, since using the available
diagnostic information, the coordinator is not capable of “ordering” the events in tracess
ands′, i.e., whether the event that occurred first isa or b. In Protocol 1, this problem was
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solved by the use of the diagnostic information generated by extended diagnosers at the
local sites and the decision rule of the coordinator presented in Section 4.1.3.

Since the above example shows that the objective of diagnosing all failure types that are
diagnosed using the centralized diagnoser cannot be achieved using Protocol 2, one may
seek conditions on the system modelG under which this objective can be met. This is
discussed in the next section.

5. A Second Coordinated Decentralized Protocol: Protocol 2

5.1. Objective and Assumptions

In this section we present a protocol, called Protocol 2, that has the following features: (i) it
employs diagnosers at the local sites (instead of extended diagnosers); (ii) it maintains the
same functional form of the communication and decision rules as in Protocol 1; (iii) under
certain conditions, identified below, it achieves the same performance as the centralized
diagnoser.

To identify conditions under which Protocol 2 achieves the same performance as the
centralized diagnoser, we introduce the notions ofstate-ambiguousandfailure-ambiguous
traces with respect to the projectionsP1 and P2. State-ambiguous traces are defined as
follows.

Definition 17. A traces∈ L(G) is said to be state-ambiguous with respect to the projections
P1 andP2 if there exist two traces,s′ ands′′ in L(G) such thats′ ands′′ are arbitrarily long,
not necessarily distinct, and the following is true:

1. P1(s) = P1(s′) but P(s) 6= P(s′),

2. P2(s) = P2(s′′) but P(s) 6= P(s′′),

3. s′ ands′′ share the same failure properties, i.e., a failure of typeFi , i ∈ {1, . . . ,m},
belongs tos′ if and only if a failure of typeFi (not necessarily the same failure event)
belongs tos′′.

This definition says that the tracess, s′ ands, s′′ can be distinguished under the projection
P; howevers ands′ are not distinguishable underP1 while s ands′′ are not distinguishable
underP2. Furthermore,s′ ands′′ have similar failure properties. Thereafter when we refer
to a trace as being state-ambiguous, the projectionsP1 andP2 will be understood from the
context. The concept of “state-ambiguous traces” is illustrated by the following example.

Example 8. Consider the system of Example 1 shown in Figure 2. The set of events is
6 = {a,b, c,d,e, σ }, andσ is the only unobservable and failure event.6o1 = {a, c,d,e}
and6o2 = {b,d,e}. If we consider the tracess = bacσ(de)∗ ands′ = s′′ = abc(de)∗,
thens is state-ambiguous since (1)P1(s) = P1(s′) = ac(de)∗ but P(s) = bac(de)∗ 6=
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abc(de)∗ = P(s′), (2) P2(s) = P2(s′′) = b(de)∗ but P(s) = bac(de)∗ 6= abc(de)∗ =
P(s′′) and (3)s′, s′′ being equal share the same failure properties. Example 11, presented
in Section 5.3, provides another example of a state-ambiguous trace wheres′ 6= s′′.

Failure-ambiguous traces are defined as follows.

Definition 18. A trace s∈ L(G) is said to be failure-ambiguous with respect to the
projectionsP1 and P2 and the failure typeFi if there exist two traces,s′ ands′′ in L(G)
such thats′ ands′′ are arbitrarily long, not necessarily distinct, and the following is true:

1. P1(s) = P1(s′) but P(s) 6= P(s′),

2. P2(s) = P2(s′′) but P(s) 6= P(s′′),

3a. Fi ∈ s but Fi 6∈ s′.

3b. Fi ∈ s but Fi 6∈ s′′.

4. s′ ands′′ share the same failure properties, i.e., a failure of typeFj , j ∈ {1, . . . ,m},
j 6= i , belongs tos′ if and only if a failure of typeFj (not necessarily the same failure
event) belongs tos′′.

A failure-ambiguous traces is also state-ambiguous. However, not every state-ambiguous
trace is failure-ambiguous since for that to be trues′ ands′′ should not share the same failure
typeFi with s. Therefore, by definition, we have that the class of failure-ambiguous traces is
a subset of the class of state-ambiguous traces. Thereafter when we refer to a trace as being
failure-ambiguous, the projectionsP1 and P2 and the failure typeFi will be understood
from the context. The concept of “failure-ambiguous traces” is illustrated by the following
example.

Example 9. Consider the system of Example 1 shown in Figure 2. The set of events is
6 = {a,b, c,d,e, σ }, andσ is the only unobservable and failure event.6o1 = {a, c,d,e}
and6o2 = {b,d,e}. If we consider the tracess= bacσ(de)∗ ands′ = s′′ = abc(de)∗, then
s is failure-ambiguous since we showed in Example 8 thats is state-ambiguous and moreover
s′ = s′′ exhibit only normal behavior whiles has a failure of typeF1 (conditions 3a, 3b).
Example 11, presented in Section 5.3, provides another example of a failure-ambiguous
trace wheres′ 6= s′′.

We will study the performance of Protocol 2 under AssumptionsA1–A8 (cf. Section 3.1)
and one of the following additional assumptions.

A9 There are no state-ambiguous traces inL(G).

A9′ There are no failure-ambiguous traces (with respect to all failure types) inL(G).

The study of the performance of Protocol 2 under the set of assumptionsA1–A9 is
performed for the purpose of comparing its performance to that of Protocol 1. The study of
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the performance of Protocol 2 under the set of assumptionsA1–A8 andA9′ is performed for
the purpose of comparing its performance to that of Protocol 3, introduced later in Section 6.

5.2. Specification of the Protocol

In this section, we present in detail Protocol 2, a protocol that realizes the coordinated
decentralized architecture presented in Section 3.1. The specification of the protocol is
done under the AssumptionsA1–A8 of Section 3.1.

5.2.1. Diagnostic Information at Local Sites

We begin by specifying the type of diagnostic information generated at local sites. Since
diagnosers are implemented at local sites, then the diagnostic information available at each
site is provided by the state of the diagnoser. The state information is refined by the
unobservable reachwhich is defined as follows.

Definition 19. Let q = {(x1, l1), . . . , (xn, ln)} be a diagnoser state. Define the set

Sj (q) =
{
s ∈ (6\6oj )

∗: s ∈ Lσ (G, xk) for someσ ∈ 6oi , i ∈
{1,2}\{ j }, and somek ∈ {1, . . . ,n}} .

Then the unobservable reach ofq with respect to6\6oj is defined as follows:

U Rj (q) = {q} ∪
⋃

s∈Sj (q)

{(ys, ls)}

where (i)ys is the successor of somexk, k ∈ {1, . . . ,n}, after sub-traces ∈ Sj (q), and (ii)ls
is the failure label corresponding toys, obtained by propagating the labellk of xk according
to the label propagation function defined in Sampath et al. (1995).

The unobservable reach of a diagnoser at a state represents all possible states where the
system may be after the execution of a trace in the language. Note that by definition the
diagnoser state only represents those states that are reached following an observable event;
the unobservable reach appends to the diagnoser state the states that are reached through
unobservable events following that observable event up to an event observable by the other
site. The following example illustrates the concept of unobservable reach of a diagnoser
state.

Example 10. Consider the system discussed in Examples 1 and 8. The diagnosersGd1

andGd2 associated with the projectionsP1 andP2 are shown in Figure 5. We assume that
the state of diagnoserGd2 is q = {3N,4N} and compute the unobservable reach ofq with
respect to6\6o2. We first find the setS = {a, c,ac}. The states that are reached from
states 3 and 4 are: state 5 through eventa, state 6 through eventc, and state 7 through the
sequence of eventsac. Therefore,U R2(q) = {3N,4N,5N,6N,7N}. All states carry the
normal label N since there were no failure events along any sub-trace inS.
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Table 3.Information update rule at the coordinator site (Protocol 2).

Last report received from Gd1 Last report received from Gd2

Rule SB SB1 C New SB Rule SB SB2 C New SB

DR1 0 0 R1 ∩ R4 0 DR4 0 0 R2 ∩ R3 0

DR2 0 1 Wait 1 DR5 0 1 Wait 1

– 1 0 Impossible - – 1 0 Impossible -

DR3 1 1 R1 ∩ R2 0 DR6 1 1 R1 ∩ R2 0

5.2.2. Communication Rules

To define the communication rules, we first note that right after the occurrence of an event
that is observable only by one site, sayi , the state of the diagnoser at sitej 6= i does
not contain the true system state. Therefore, to efficiently communicate information to the
coordinator, each local site must augment the state of its diagnoser with some additional in-
formation, the unobservable reach. We define the communication rulesCR := (CR1,CR2)
as follows:

• [CRi] , i = 1,2: After the agent at sitei observes an eventσ ∈ 6oi , it communicates to
the coordinator the corresponding stateqi of its diagnoserGdi , its unobservable reach
U Ri (qi ) with respect to6\6oi , and a status bit,SBi , that takes the valuesSBi = 1
whenσ ∈ 6oj , j ∈ {1,2}, j 6= i , or SBi = 0 whenσ 6∈ 6oj .

5.2.3. Decision Rule

The decision rule of the coordinator consists of two components : (1) a rule according to
which its information is updated; and (2) a rule according to which failure occurrences are
declared and broadcast to the failure recovery module.

To specify the information update rule we first describe the structure of the coordinator.
The coordinator has five registers, (R1, R2, R3, R4, SB), besides the registerC that holds
its diagnostic information. The five registers are used to store incoming messages from
the local sites and previous relevant values necessary for the update of its information.
R1 and R2 hold the latest states ofGd1 andGd2, respectively,R3 and R4 hold the latest
unobservable reaches ofGd1 andGd2, respectively, andSBspecifies whether to apply the
information update rule to the available information in the registers(SB= 0) or wait for the
next incoming message (SB= 1). At reset,R1andR2are initialized with the initial states
of Gd1 andGd2, respectively, whileR3andR4hold the unobservable reaches of the initial
state ofGd1 andGd2, respectively. The registerSB is initially set to 0. The information
update rule is specified in Table 3. Based on the available information, the rule picks one
of the actionsDR1–DR6. The rationale behind the actions is the following: to computeC
we intersect the states of the diagnosers if both sites have observed the last event. In case
the true system state is not in the diagnoser state (since the last observable event was not
seen by the diagnoser), we use the unobservable reach of the diagnoser instead of its state
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in the intersection with the other diagnoser’s state. We finally note that the coordinator is
not aware of the rationale behind its actions; it simply updates its information and declares
the occurrence of failures according to the decision rule described above.

The coordinator declares that a failure has occurred when its diagnostic informationC is
Fi -certain (cf. Definition 6).

5.3. Diagnostic Properties of Protocol 2

5.3.1. Diagnostic Properties of Protocol 2: No State-Ambiguous Traces

The diagnostic properties of Protocol 2, if there are no state ambiguous traces inL(G), are
summarized by Theorem 5, whose proof is based on the following proposition.

PROPOSITION3 Let q1, q2, and q be the states of the diagnosers Gd1, Gd2, and Gd, re-
spectively, after the system executed the trace s= s1a, where a∈ 6o. If there are no
state-ambiguous traces in L(G), then we have the following:

1. q= q1 ∩ q2 if a ∈ 6o1 ∩6o2.

2. q= q1 ∩U R2(q2) if a ∈ 6o1\6o2.

3. q= U R1(q1) ∩ q2 if a ∈ 6o2\6o1.

Proof:

Proof of 1. We first note that

q ⊆ qi , i = {1,2}. (24)

The inclusion is true since the set of observable events6oi is a subset of the original set of
observable events6o, anda ∈ 6o1 ∩6o2. From (24) we have that

q ⊆ q1 ∩ q2. (25)

Next we show that

q1 ∩ q2 ⊆ q. (26)

To prove (26) we proceed by contradiction. Assume that there exists(x, l x) ∈ Qo such that

(x, l x) ∈ q1 ∩ q2 but (x, l x) 6∈ q. (27)

By construction we know thatδ(x0, s) 6= x since if x were the true system state then we
should have(x, l x) ∈ q. The fact thatδ(x0, s) 6= x implies that there exists a statey ∈ X
such thatδ(x0, s) = y and (y, l y) belongs toq, q1 andq2, wherel y is the failure label
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associated with traces. Therefore, there exist tracess′, s′′ in L(G), s′, s′′ not necessarily
distinct, such that

δ(x0, s
′) = x,

δd1(q01, s
′) = q1,

P1(s) = P1(s
′),

δ(x0, s
′′) = x,

δd2(q02, s
′′) = q2,

P2(s) = P2(s
′′). (28)

Moreover,s′, s′′ share the same failure properties since the label associated with statex
alongs′ ands′′ is the same (and equal tol x in our notation). In addition since(x, l x) 6∈ q,

δd(q0, s
′) = q′ 6= q, δd(q0, s

′′) = q′′ 6= q. (29)

From Equation 29 it follows that

P(s) 6= P(s′) andP(s) 6= P(s′′). (30)

From (27), (30) and the fact thats′, s′′ share the same failure properties it follows thats is a
state-ambiguous trace. Hence, by contradiction (26) is true. From (25) and (26) it follows
that

q = q1 ∩ q2. (31)

Proof of 2. We first note that

q ⊆ q1, andq ⊆ U R2(q2). (32)

The first inclusion is true as argued in the proof of1, and the second follows from the
definition of the unobservable reach (cf. Definition 19) sincea 6∈ 6o2. The remaining of
the proof proceeds as in1 with the minor change of replacingq2 with UR2(q2).

Proof of 3. We first note that

q ⊆ q2, andq ⊆ U R1(q1). (33)

The first inclusion is true as argued in the proof of1, and the second follows from the
definition of the unobservable reach (cf. Definition 19) sincea 6∈ 6o1. The remaining of
the proof proceeds as in1 with the minor change of replacingq1 with UR1(q1).

Proposition 3 is used to prove the main result concerning the diagnostic properties of
Protocol 2 if there are no state-ambiguous traces inL(G).
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THEOREM5 If there are no state-ambiguous traces in L(G), we have the following:
(i) The coordinator’s diagnostic information C under Protocol 2 is the same as the state

of the centralized diagnoser Gd.
(ii) Protocol 2 achieves the same diagnostic performance as the centralized diagnoser.

Proof: The proof of(i ) is a direct consequence of Proposition 3 since every message
is received in the order it was sent (by AssumptionsA4 andA5). From part(i ) and the
specification of the coordinator’s decision rule, it follows that Protocol 2 achieves the same
diagnostic performance as the centralized diagnoser.

A consequence of Proposition 3 and Theorem 5 is the ability to save on communication (by
skipping messages) while maintaining the same diagnostic performance. This is explained
in detail in Section 5.5.

5.3.2. Diagnostic Properties of Protocol 2: No Failure-Ambiguous Traces

In this section, we study the performance of Protocol 2 if there are no failure-ambiguous
traces inL(G). Based on the “failure-ambiguous traces” concept we have the following
proposition.

PROPOSITION4 Let q1, q2, and q be the states of the diagnosers Gd1, Gd2, and Gd, re-
spectively, after the system executed the trace s= s1a, where a∈ 6o. If there are no
failure-ambiguous traces (with respect to failure type Fi ) in L(G), then we have the follow-
ing:

1. If a ∈ 6o1 ∩6o2 then q is Fi -certain if and only if q1 ∩ q2 is Fi -certain.

2. If a ∈ 6o1\6o2 then q is Fi -certain if and only if q1 ∩U R2(q2) is Fi -certain.

3. If a ∈ 6o2\6o1 then q is Fi -certain if and only if U R1(q1) ∩ q2 is Fi -certain.

Proof:

Proof of 1. From (25) we have thatq is Fi -certain ifq1∩q2 is Fi -certain. We need to prove
thatq is Fi -certain only ifq1∩ q2 is Fi -certain. We proceed by contradiction. Assume that
q is Fi -certain butq1 ∩ q2 is not. Assume thatδ(x0, s) = x. By construction there exists
(x, l x), (y, l y) ∈ Qo, Fi ∈ l x, Fi 6∈ l y such that

(x, l x), (y, l y) ∈ q1 ∩ q2 but (y, l y) 6∈ q. (34)

Therefore, there exist tracess′, s′′ in L(G), s′, s′′ not necessarily distinct, such that

δ(x0, s
′) = y,

δd1(q01, s
′) = q1,

P1(s) = P1(s
′),
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δ(x0, s
′′) = y,

δd2(q02, s
′′) = q2,

P2(s) = P2(s
′′). (35)

Moreover,s′, s′′ share the same failure properties since the label associated with statey
alongs′ ands′′ is the same (and equal tol y in our notation). In addition since we know
thatq is Fi -certain andFi 6∈ l y, thens, s′ ands, s′′ do not share the failure propertyFi .
Moreover, since(y, l y) 6∈ q we have that

δd(q0, s
′) = q′ 6= q, δd(q0, s

′′) = q′′ 6= q. (36)

From (36) it follows that

P(s) 6= P(s′) andP(s) 6= P(s′′). (37)

From (34), (37) and the facts thats′, s′′ share the same failure properties ands, s′ ands, s′′

do not share the failure typeFi it follows thats is a failure-ambiguous trace (with respect
to failure typeFi ). Hence, by contradictionq is Fi -certain only ifq1 ∩ q2 is Fi -certain.

Proof of 2. From (32) we have thatq is Fi -certain ifq1 ∩U R2(q2) is Fi -certain. We need
to prove thatq is Fi -certain only ifq1 ∩U R2(q2) is Fi -certain. The proof proceeds as in1
with the minor change of replacingq2 with U R2(q2).

Proof of 3. From (33) we have thatq is Fi -certain ifU R1(q1)∩q2 is Fi -certain. We need
to prove thatq is Fi -certain only ifU R1(q1) ∩ q2 is Fi -certain. The proof proceeds as in1
with the minor change of replacingq1 with U R1(q1).

Proposition 4 is used to prove the main result concerning the diagnostic properties of
Protocol 2 if there are no failure-ambiguous traces inL(G).

THEOREM6 If there are no failure-ambiguous traces in L(G), Protocol 2 achieves the
same diagnostic performance as the centralized diagnoser.

Proof: The proof is a direct consequence of Proposition 4 (since every message is received
in the order it was sent by AssumptionsA4 andA5) and the specification of the coordinator’s
decision rule it.

5.3.3. Discussion

Theorem 5(i) states that the coordinator’s diagnostic information is equal to the centralized
diagnoser state if there are no state-ambiguous traces inL(G). However, for the purpose
of failure diagnosis this is not necessary. To diagnose all failure types the coordinator’s
diagnostic information should beFi -certain (after the occurrence of a failure of typeFi ) if
and only if the centralized diagnoser state isFi -certain, without the need of having the two
entities equal. This has been established if there are no failure-ambiguous traces inL(G).
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Figure 6. The system (left) and centralized diagnoser for Example 11.

Since absence of failure-ambiguous traces is less restrictive than absence of state-ambiguous
traces, the result of Theorem 6 is stronger than that of Theorem 5.

Although for the purpose of failure diagnosis it is more appropriate to study the perfor-
mance of Protocol 2 if there are no failure-ambiguous traces inL(G), Theorem 5 is used
to compare the performance of Protocol 2 with that of Protocol 1. Theorem 3 states that
irrespective of the system structure, Protocol 1 reconstructs the state of the centralized diag-
noser and hence performs as well as the centralized diagnoser. Therefore, the performance
of Protocol 2 is inferior to that of Protocol 1 since reconstructing the state of the centralized
diagnoser and performing as well as the centralized diagnoser is conditioned on the fact
that there are no state-ambiguous traces.

The following example shows that if the system contains state-ambiguous or failure-
ambiguous traces the results of Propositions 3 and 4 are not, in general, true.

Example 11. Consider the system shown in Figure 6. The set of events is6 =
{a,b, c,d,e, σ, σ1}, 6uo = {σ, σ1}, 6o1 = {a,b,d}, 6o2 = {a, c,e} and6 f 1 = {σ1}.
The traces= abσ1c(de)∗ is state/failure-ambiguous since (1)P1(s) = P1(aσb(de)∗) but
P(s) 6= P(aσb(de)∗), (2) P2(s) = P2(aσc(de)∗) but P(s) 6= P(aσc(de)∗), (3)aσb(de)∗

andaσc(de)∗ share the same failure properties (here both traces do not have failure events),
(4) s has a failure of typeF1 while aσb(de)∗ and aσc(de)∗ exhibit only normal be-
havior. The diagnosersGd1 and Gd2 are shown in Figure 7. If the system executes
the traceabσ1c(de)∗ then after the occurrence of the eventd, R1 = (5F1,8N) andR4 =
(4F1,7N,5F1,8N). Therefore, by applying actionDR1 (sinced is observed by site 1 only) the
coordinator’s diagnostic informationC is equal toR1∩ R4 = q1∩U R2(q2) = (5F1,8N).
Along the same trace, after the occurrence of eventd the centralized diagnoser state is
q = 5F1 which is neither equal toC nor has the same diagnostic properties asC. Thus
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Figure 7. The diagnosersGd1 (left) andGd2 for Example 11.

the presence of state/failure-ambiguous traces shows that the results of Propositions 3 and
4 are not, in general, true.

The next example shows that the “state-ambiguous trace” (“failure-ambiguous trace”)
condition is not necessary for Proposition 3 (respectively 4) to be true.

Example 12. Consider the system shown in Figure 8. The set of events is6 =
{a,b, c,d,e, σ, σ1}, 6uo = {σ, σ1}, 6o1 = {a,b,d}, 6o2 = {a, c,e} and6 f 1 = {σ1}.
The traces= abσ1c(de)∗ is state/failure-ambiguous since (1)P1(s) = P1(aσb(de)∗) but
P(s) 6= P(aσb(de)∗), (2) P2(s) = P2(aσc(de)∗) but P(s) 6= P(aσc(de)∗), (3)aσb(de)∗

andaσc(de)∗ share the same failure properties (here both traces do not have failure events),
(4)shas a failure of typeF1 whileaσb(de)∗ andaσc(de)∗ exhibit only normal behavior. The
diagnosersGd1 andGd2 are shown in Figure 9. If the system executes the traceabσ1c(de)∗

then after the occurrence of the eventd, R1 = (5F1,8N) andR4 = (4F1,9N,5F1,10N).
Therefore, by applying actionDR1 (sinced is observed by site 1 only) the coordinator’s
diagnostic informationC is equal toR1∩R4 = q1∩U R2(q2) = 5F1. Along the same trace,
after the occurrence of eventd the centralized diagnoser state isq = 5F1= q1∩U R2(q2)

and by definition it has the same diagnostic properties asC. Consequently, the condi-
tion on state/failure-ambiguous traces in Propositions 3 and 4 is only sufficient for these
propositions to be true.
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Figure 8. The system (left) and centralized diagnoser for Example 12.

Figure 9. The diagnosersGd1 (left) andGd2 for Example 12.

5.4. Necessary and Sufficient Conditions for Diagnosability

The results of Section 5.3 imply that if there are no failure-ambiguous traces inL(G), the
necessary and sufficient conditions for diagnosability with respect to Protocol 2 can be
stated with respect to the centralized diagnoser as follows.
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THEOREM7 If there are no failure-ambiguous traces in L(G), a live and prefix-closed
language L is diagnosable with respect to Protocol 2, the set of projections P1, P2 and the
failure partition5 f on6 f if and only if the diagnoser Gd does not have Fi -indeterminate
cycles for all failure types Fi .

Proof: Sufficiency(⇐). SupposeGd does not haveFi -indeterminate cycles. Consider a
tracest ∈ L(G) such thats ∈ 9(6 f i ), andt is long enough, i.e.,‖t‖ > n, wheren can
be arbitrarily large. Then, by assumption,st′, t ′ ∈ t does not lead to anFi -indeterminate
cycle inGd. Consequently,Gd will enter anFi -certain state within a finite number of steps,
sayn′i . This implies by Theorem 6 that the coordinator’s diagnostic informationC will be
Fi -certain within a finite number of steps equal ton′i . Therefore,L(G) is diagnosable with
respect to Protocol 2.

Necessity(⇒). We prove the contrapositive. Assume thatGd does enter anFi -indeter-
minate cycle. This implies that the coordinator’s diagnostic informationC, which carries
the same diagnostic properties as the centralized diagnoser state by Theorem 6, will remain
Fi -uncertain for an arbitrarily long number of steps. Hence,L is not diagnosable with
respect to Protocol 2.

Having checked that the diagnoserGd is capable of diagnosing all failure types, the next
step could be to find a test to check whether failure-ambiguous traces exist or not. We
bypass this and instead provide a direct test to verify whether Protocol 2 performs as well
as the centralized diagnoser. If the test fails we conclude that there are failure-ambiguous
traces in the language. Otherwise, we know that Protocol 2 diagnoses all failure types
that are diagnosed by the centralized diagnoser; however we cannot claim that there are no
failure-ambiguous traces in the language. In order to present this test, we introduceGtest2.
Gtest2 is the FSM

Gtest2 = (Qg, 6o, δg, g0) (38)

where the state spaceQg ⊆ Qd1×Qd2×Qd×(Qd1∩Qd2),6o is the set of events ofGtest2

andg0 = (q01;q02;q0;q01 ∩ q02) = ({(x0, {N})}; {(x0, {N})}; {(x0, {N})}; {(x0, {N})}) is
the initial state ofGtest2. A statep in Gtest2 is denoted by(g1; g2; g; gc) whereg1 ∈ Qd1,
g2 ∈ Qd2, g ∈ Qd andgc ∈ Qd1 ∩ Qd2. The partial transition functionδg is defined as
follows:

δg((g1; g2; g; gc), σ ) =



(δd1(g1, σ ); δd2(g2, σ ); δd(g, σ ); δd1(g1, σ ) ∩ δd2(g2, σ ))

if σ ∈ 6o1 ∩6o2

(δd1(g1, σ ); g2; δd(g, σ ); δd1(g1, σ ) ∩U R2(g2))

if σ ∈ 6o1\6o2

(g1; δd2(g2, σ ); δd(g, σ );U R1(g1) ∩ δd2(g2, σ ))

if σ ∈ 6o2\6o1.

The ideas and objective behind introducing this machine are the following:

1. Synchronize the operation of the diagnosersGd1 andGd2 to be able to generateC, the
coordinator’s diagnostic information.



COORDINATED DECENTRALIZED PROTOCOLS 69

2. Make sure that the synchronized behavior is indeed a legal observed behavior of the
system.

It can be verified thatL(Gtest2) = L(Gd). Therefore,Gtest2 observes the system behavior
as wouldGd after the execution of a given traces, provides information about the states
of the diagnosersGd1 andGd2 after the execution ofs, and computes the coordinator’s
diagnostic information,C. We are interested in detecting simultaneous occurrences ofFi -
indeterminate cycles in bothGd1 andGd2 because by comparing the coordinator’s diagnostic
information with the centralized diagnoser’s information along these cycles we may be able
to determine whether Protocol 2 performs as well as a centralized diagnoser. To precisely
describe how we do so, we need the following definitions.

Definition 20. A state p = (g1; g2; g; gc) in Gtest2 is said to be ambiguous ifg is not
normal andg, gc do not have the same failure properties. We say thatg, gc have the same
failure properties when the following is true:g is Fi -certain (uncertain) if and only ifgc is
Fi -certain (uncertain), for all failure typesFi .

Definition 21. A cycle in Gtest2 is said to beFi -indeterminate if the corresponding cycles
in Gd1 andGd2 are bothFi -indeterminate.

Definition 22. A cycle in Gtest2 is said to beFi -ambiguous if it isFi -indeterminateand
all its states are ambiguous.

The notion of an ambiguous cycle is helpful in providing conditions under which the
language is diagnosable as the following theorem indicates.

THEOREM8 (i) A live and prefix-closed language L is diagnosable with respect to Proto-
col 2, the set of projections P1, P2 and the failure partition5 f on6 f if for all failure types
Fi , the following conditions are true: (a) Gtest2 does not have Fi -ambiguous cyclesand
(b) Gd does not have Fi -indeterminate cycles.

(ii) A live and prefix-closed language L modeled by the FSM G is diagnosable with respect
to Protocol 2, the set of projections P1, P2 and the failure partition5 f on6 f only if for all
failure types Fi the following conditions are true: (a) Gtest2 corresponding to G does not
have any Fi -ambiguous cyclesand (b) Gd does not have any Fi -indeterminate cycles.

Proof: (i ) SupposeGtest2 does not have anyFi -ambiguous cycles andGd does not have
Fi -indeterminate cycles for all failure typesFi . Consider a tracest ∈ L(G) such that
s ∈ 9(6 f i ) andt is long enough, i.e.,‖t‖ > n, wheren can be arbitrarily large. By the
construction ofGtest2 and the assumption thatGtest2 does not have any ambiguous cycles,
st cannot lead toFi -indeterminate cycles in bothGd1 andGd2 along which the coordinator’s
diagnostic information does not have the same failure properties as the centralized diagnoser
state. ThereforeC cannot remainFi -uncertain indefinitely sinceGd does not haveFi -
indeterminate cycles; henceL(G) is diagnosable with respect to Protocol 2.
(i i ) AssumeL(G) is diagnosable with respect to Protocol 2 and is modeled by the FSM

G. Consider a tracest ∈ L(G) such thats ∈ 9(6 f i ), t is long enough, i.e.,‖t‖ > n,
wheren can be arbitrarily large, ands leads toFi -indeterminate cycles in bothGd1 and
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Gd2. By assumption we know that the coordinator’s diagnostic informationC will be Fi -
certain in a finite number of steps alongst. WhenC is Fi -certain then the corresponding
centralized diagnoser state isFi -certain because of the rule generatingC (cf. Section 5.2.3
and (25), (32) and (33)). Therefore, followingst the centralized diagnoser does not enter
an Fi -indeterminate cycle andGtest2 does not enter anFi -ambiguous cycle (because the
coordinator’s diagnostic information and the centralized diagnoser will both beFi -certain
alongst within a finite number of steps). Sincest is arbitrary, then for all failure typesFi ,
Gtest2 corresponding toG does not have anyFi -ambiguous cycles andGd does not have
any Fi -indeterminate cycles.

We note here that the necessary and sufficient conditions in Theorem 8 are almost identical,
except that the necessary conditions depend on the machine representation of the language.
We clarify this subtlety as follows. Protocol 2 is a state-based (as opposed to language-
based) diagnostic scheme (cf. the definition of the decision rule in Section 5.2.3). Hence,
we expect the necessary and sufficient conditions to depend on the FSMG that models the
languageL. In contrast, the necessary and sufficient conditions for diagnosability in the
centralized case (cf. Theorem 1) do not depend on the FSMG, since the arguments used
in the proof of Theorem 2 in Sampath et al. (1995) are all trace-based arguments, i.e., the
diagnostic scheme is indeed language-based. In the case of Protocol 2, ifGtest2 does not
haveFi -ambiguous cycles, andGd does not haveFi -indeterminate cycles for all failure
typesFi , then Protocol 2 diagnoses all failure types, and we need not worry aboutG in the
statement of the sufficient conditions. However, ifGtest2 hasFi -ambiguous cycles, then
we cannot assert that Protocol 2 cannot diagnose a failure of typeFi since there may exist
another FSMG′ of L, such that Protocol 2 diagnoses all failure types when it is combined
with G′. Consequently, the necessary conditions indeed depend onG. The following
examples illustrate the above discussion.

Example 13. Consider the system discussed in Example 11 and shown in Figure 6.Gtest2

is shown in Figure 10. The cycle labeled A in the Figure is aF1-ambiguous cycle: it
can be verified that the cycles(5F1,8N) and(4F1,7N) are F1-indeterminate cycles in
Gd1 andGd2, respectively, and both cycles are ambiguous since the state of the centralized
diagnoser isF1-certain(5F1 or 4F1) and the coordinator’s diagnostic information isF1-
uncertain((5F1,8N) or (4F1,7N)). Therefore the system with the FSM representation
shown in Figure 6 is not diagnosable under Protocol 2.

Example 14. Consider the system discussed in Example 12 and shown in Figure 8. The
systems of Examples 11 and 12 provide two different FSM representations of the same
language.Gtest2 for the system of Example 12 is shown in Figure 11. The cycle labeled
A in the figure is aF1-indeterminate cycle: it can be verified that the cycles(5F1,8N)
and (4F1,9N) are F1-indeterminate cycles inGd1 and Gd2, respectively; however the
states(5F1,8N : 4F1,9N : 5F1 : 5F1) and(5F1,8N : 4F1,9N : 4F1 : 4F1) share
the same failure properties (F1-certain), therefore the cycle is notF1-ambiguous. Hence
by Theorem 8 the system with the FSM representation shown in Figure 8 is diagnosable
under Protocol 2. Note here that although the language exhibits failure-ambiguous traces
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Figure 10. Gtest2 for Example 13.

(cf. Example 12), the system is diagnosable since we are able to verify usingGtest2 that
Protocol 2 performs as well as the centralized diagnoser based onG shown in Figure 8. In
Example 13 we showed that the same language represented by anotherG (cf. Figure 6) is
not diagnosable under Protocol 2, hence proving that the system modelG should be taken
into consideration in the necessity proof of Theorem 8.

5.5. Discussion

We first note that the performance of Protocol 2 is inferior to that of Protocol 1 because
only under the restrictions on the system structure discussed in Section 5.3, Protocol 2
performs as well as the centralized diagnoser. However, the communication, memory,
and processing requirements for Protocol 2 are less than those of Protocol 1. Indeed, the
generation of diagnostic information at the local sites, in case of Protocol 2, requires less
time and memory than the generation of diagnostic information in Protocol 1. Furthermore
less information per observed event has to be communicated to the coordinator under
Protocol 2. The coordinator’s information update and decision rules for Protocol 2 are
simpler to implement than the ones used for Protocol 1.

The partitioning of observable events is crucial in deciding whether a language is di-
agnosable under Protocol 2 or not. In fact, failure-ambiguous traces, which may force
Protocol 2 not to perform as well as the centralized diagnoser, are defined with respect
to the projectionsP1 and P2 (cf. Definition 18). Therefore, changing the partitionsP1
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Figure 11. Gtest2 for Example 14.

andP2 may eliminate the presence of failure-ambiguous traces, hence allowing Protocol 2
to perform as well as the centralized diagnoser. The following example illustrates this
idea.

Example 15. Consider the system of Example 1 shown in Figure 2 with6 = {a,b, c,d,
e, σ }, 6uo = {σ }, 6 f 1 = {σ }, 6o1 = {a, c,d,e}, and6o2 = {b,d,e}. In Exam-
ple 9 we showed that the tracebacσ(de)∗ is failure-ambiguous, hence Protocol 2 may
not perform as well as the centralized diagnoser with the partitionsP1 and P2. Indeed,
this can be seen by checkingGtest2 for the above system (cf. Figure 12): the cycle la-
beled A in the figure isF1-ambiguous because the cycles{(8N,10F1), (6N,9F1)} and
{(8N,10F1,11N), (6N,9F1,12N)} are F1-indeterminate inGd1 andGd2, respectively,
and the correponding centralized diagnoser state isF1-certain (10F1 and 9F1) while
the coordinator’s diagnostic information isF1-uncertain ((8N,10F1) and (6N,9F1)).
If we consider now a new partitioning of the observable events where6o1 is as be-
fore and6o2 = {a,b,d,e}, then Protocol 2 performs as well as the centralized diag-
noser: Gtest2 for the system with the new partitioning of observable events (i.e. the new
set of projections) is shown in Figure 13; clearly there are noFi -ambiguous cycles in
Gtest2.

It is worth noting that, if there are no state-ambiguous traces inL(G), the informa-
tion state available at the coordinator’s site is sufficient, at any instant of time, to ob-
tain the estimate of the centralized diagnoser. Now we argue that, if there are no state-
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Figure 12. Gtest2 for Example 15.

ambiguous traces inL(G), Protocol 2 can achieve the same performance as the cen-
tralized diagnosereven when there is no continuous communication between the local
sites and the coordinator. This can be done as follows: communication is initiated
by a request from the coordinator rather than the occurrence of an observable event.
We assume that the request from the coordinator reaches the two sites simultaneously
or at least no observable event is executed from the time the request reaches one site
until it reaches the other site. Upon receiving the request each site communicates to
the coordinator its current state and unobservable reach and a status bit (as defined ear-
lier) specifying whether the last event it observed was common or not. In this case,
we show in [8] that by slightly modifying the coordinator’s decision rule described ear-
lier, Theorems 5 and 6 still hold. Thus communication is reduced while achieving the
same performance. Situations where savings in communication are of paramount impor-
tance arise in networks where the nodes (sites) are low energy battery-powered mobile
units.

The feature of Protocol 2 discussed above is also present in decentralized estimation of
linear Gaussian systems, Speyer (1979) and Willsky et al. (1982). However, in Speyer
(1979) and Willsky et al. (1982) there are no restrictions on the structure of the linear Gaus-
sian system. On the other hand, the estimation problems in Speyer (1979) and Willsky et
al. (1982) are linear, whereas Protocol 2 deals with a nonlinear estimation problem. De-
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Figure 13. Gtest2 with the new set of projections for Example 15.

centralized nonlinear estimation problems for stochastic systems have been investigated in
Castanon and Teneketzis (1985). The coordinated decentralized estimation protocol pro-
posed in Castanon and Teneketzis (1985) achieves the same performance as the optimal
centralized estimator under no restrictions on the system structure, but requires continuous
communication between the local sites and the coordinator and assumes that the coordinator
has knowledge of the system structure. The above comparison shows that, under the as-
sumptions on the system structure discussed in Section 5.1, Protocol 2 has some remarkable
features.

Finally, Example 14 shows that although the local diagnosers remainFi -uncertain indefi-
nitely after the occurrence of a failure of typeFi , Protocol 2 detects and isolates the failure.
The process of identifying the failures is achieved through the decision rule implemented at
the coordinator. The decision rule identifies failures based on the diagnostic informationC.
The information update rule (cf. Section 5.2.3) processes the messages received from the
local sites to update the diagnostic informationC. In some practical cases, the coordinator
cannot wait to process the data to make decisions, rather it should declare the occurrence
of failures based on the raw information it receives from the local sites. The next section
introduces a protocol that addresses this issue.
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6. A Third Coordinated Decentralized Protocol: Protocol 3

6.1. Objective and Assumptions

In this section, we present a protocol where the coordinator declares the occurrence of
failures based on the raw information it receives from the local sites. We call this protocol
Protocol 3.

To analyze the performance of Protocol 3 we introduce the notion of fully-ambiguous
traces with respect to the projectionsP1 andP2.

Definition 23. A trace s ∈ L(G) is said to be fully-ambiguous with respect to the
projectionsP1 and P2 and the failure typeFi if there exist two traces,s′ ands′′ in L(G)
such thats′ ands′′ are arbitrarily long, not necessarily distinct, and the following is true:

1. P1(s) = P1(s′) but P(s) 6= P(s′).

2. P2(s) = P2(s′′) but P(s) 6= P(s′′).

3a. Fi ∈ s but Fi 6∈ s′.

3b. Fi ∈ s but Fi 6∈ s′′.

This definition says that the tracess, s′ ands, s′′ can be dinstinguished under the projection
P; howevers ands′ are not distinguishable underP1 while s ands′′ are not distinguishable
underP2. Furthermore, there is a difference in failure properties betweens, s′ ands, s′′:
if Fi belongs tos then it does not belong to neithers′ nor s′′ or vice-versa. Note here
that a failure-ambiguous trace is a fully-ambiguous trace; however the reverse is not true
since there are no restrictions on the failure properties ofs′ ands′′ in the definition of a
fully-ambiguous trace. Thereafter when we refer to a trace as being fully-ambiguous, the
projectionsP1 and P2 and the failure typeFi will be understood from the context. The
concept of “fully-ambiguous traces” is illustrated by the following example.

Example 16. Consider the system discussed in Example 12 and shown in Figure 8. The
set of events is6 = {a,b, c,d,e, σ, σ1}, 6uo = {σ, σ1}, 6 f 1 = {σ1}, 6o1 = {a,b,d}
and6o2 = {a, c,e}. The traces = abσ1c(de)∗ is fully-ambiguous (with respect to failure
type F1) since (1)P1(s) = P1(aσb(de)∗) = ab(d)∗ but P(s) = abc(de)∗ 6= ab(de)∗ =
P(aσb(de)∗), (2) P2(s) = P2(aσc(de)∗) = ac(e)∗ but P(s) = abc(de)∗ 6= ac(de)∗ =
P(aσc(de)∗) and (3)F1 ∈ s, but F1 6∈ aσb(de)∗ andF1 6∈ aσc(de)∗. Note here that we
could have concluded thats is fully-ambiguous since we showed in Example 12 thats is
failure-ambiguous.

We will study the performance of Protocol 3 under AssumptionsA1–A8 (cf. Section 3.1)
and the following additional assumption.

A10 There are no fully-ambiguous traces (with respect to all failure types) inL(G).
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6.2. Specification of the Protocol

In this section we specify Protocol 3 in detail. We begin by discussing the diagnostic
information at the local sites.

6.2.1. Diagnostic Information at Local Sites

We implement diagnosers at the local sites. Therefore, the state of the diagnoser, after the
occurrence of an observable event, is the diagnostic information based on which the site is
supposed to infer the occurrence of failures.

6.2.2. Communication Rules

Since the coordinator is supposed to declare the occurrence of failures based on the raw
information provided by the local sites, the information communicated from the local
sites should be as simple and concise as possible. Consequently we define the following
communication rules:

• [CRi] , i = 1,2: After the agent at sitei observes an eventσ ∈ 6oi that leads to an
Fi -certain state in the diagnoserGdi , it communicates the labelFi to the coordinator,
meaning that a failure of typeFi has occurred.

6.2.3. Decision Rule

The coordinator declares that a failure of typeFi has occurred once its diagnostic infor-
mationC is Fi -certain. Since local sites communicate the failure labels detected by their
corresponding diagnoser, once the coordinator receives a message, either from site 1 or
site 2, containing the informationFi , it declares the occurrence of a failure of typeFi and
broadcasts the information to the failure recovery module.

The coordinator’s diagnostic informationC is updated each time a message is received
at its site. The rule update isC = C ∪ {Fi } whereFi is the last incoming message. For the
sake of consistency with the definition of diagnosability (cf. Definition 8), when reading
thatC is Fi -certain, we understand thatFi belongs toC.

6.3. Diagnostic Properties of Protocol 3

We first present a lemma that relates the existence ofFi -indeterminate cycles in the local
diagnoser to fully-ambiguous traces (with respect to failure typeFi ).

LEMMA 2 Consider a trace s in L(G)∩9(6 f i ). The trace s is fully-ambiguous with respect
to failure type Fi if and only if s leads to Fi -indeterminate cycles in Gd1 and Gd2.
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Proof: Sufficiency(⇐). Assume thats leads toFi -indeterminate cycles inGd1 andGd2.
By definition (cf. Definition 5), there exist tracess′ ands′′ in L(G) arbitrarily long such
that the following is true:

P1(s) = P1(s
′), Fi ∈ s but Fi 6∈ s′, (39)

and

P2(s) = P2(s
′′), Fi ∈ s but Fi 6∈ s′′. (40)

(39) and (40) imply thats is fully-ambiguous with respect toFi .
Necessity(⇒). The fact thats is fully ambiguous with respect toFi implies that there

exist two tracess′ ands′′ such that

P1(s) = P1(s
′), Fi ∈ s but Fi 6∈ s′, (41)

and

P2(s) = P2(s
′′), Fi ∈ s but Fi 6∈ s′′. (42)

(41) and (42) imply that there exists anFi -indeterminate cycle inGd1 andGd2 simultane-
ously, i.e., following the traces.

The above lemma establishes the fact that following the execution of a trace which is
not fully-ambiguous, the local diagnosersGd1 andGd2 cannot loop “simultaneously” in
indeterminate cycles. By “simultaneously” we understand following the execution of a
trace in the system.

The diagnostic properties of Protocol 3 are summarized by the following theorem.

THEOREM9 Protocol 3 performs as well as the centralized diagnoser if and only if there
are no fully-ambiguous traces (with respect to all failure types) in the language.

Proof: Sufficiency(⇐). Assume that there are no fully-ambiguous traces in the language.
Consider a tracest ∈ L(G) such thats ∈ 9(6 f i ), t is long enough, i.e.,‖t‖ > n, where
n can be arbitrarily large andst leads to anFi -certain state in the centralized diagnoser.
By the implication of Lemma 2s cannot lead toFi -indeterminate cycles in bothGd1 and
Gd2. Therefore the state ofGd1 or that ofGd2 will be Fi -certain in a finite number of steps,
which implies that eitherGd1 or Gd2 will diagnose the failure. Sinces is arbitrary, all
failures diagnosed by the centralized diagnoser are diagnosed under Protocol 3. Therefore,
Protocol 3 performs as well as the centralized diagnoser.

Necessity(⇒). We prove the contrapositive. Assume that there are fully-ambiguous traces
in the language. Consider a fully-ambiguous tracest ∈ L(G) such thats ∈ 9(6 f i ), t is
long enough, i.e.,‖t‖ > n, wheren can be arbitrarily large andst leads to aFi -certain
state in the centralized diagnoser. By Lemma 2, we have thats leads toFi -indeterminate
cycles in bothGd1 andGd2. Therefore the state ofGd1 and that ofGd2 will be Fi -uncertain
indefinitely (alongst), which implies thatFi 6∈ C. Therefore,L is not diagnosable under
Protocol 3, hence Protocol 3 do not perform as well as the centralized diagnoser.
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6.4. Necessary and Sufficient Conditions for Diagnosability

The results of Section 6.3 imply that if there are no fully-ambiguous traces inL(G), the
necessary and sufficient conditions for diagnosability with respect to Protocol 3 can be
stated with respect to the centralized diagnoser as follows:

THEOREM10 If there are no fully-ambiguous traces in L(G), a live and prefix-closed
language L is diagnosable with respect to Protocol 3, the set of projections P1, P2 and the
failure partition5 f on6 f if and only if the diagnoser Gd does not have Fi -indeterminate
cycles for all failure types Fi .

Proof: The proof is a direct consequence of Theorem 9.

Having checked that the diagnoserGd is capable of diagnosing all failure types, the next
step could be to find a test to check whether fully-ambiguous traces exist or not. In order
to present this test, we introduceGtest3. Gtest3 of the systemG is defined as follows:

Gtest3 = Gd1‖Gd2‖Gd

whereGd1, Gd2, andGd are as defined earlier. The following format for a statep of Gtest3

is adopted:p = (q1;q2;q), whereq1,q2, andq belong toQd1, Qd2, andQd, respectively.
The ideas and objectives behind introducing this machine are the following:

1. Synchronize the operation of the diagnosersGd1 and Gd2. This necessitates their
parallel composition.

2. Make sure that the synchronized behavior is indeed a legal observed behavior of the
system. This necessitates the composition ofGd1‖Gd2 with the system diagnoserGd.

Now we have that

L(Gtest3)
4= P−1

1 [L(Gd1)] ∩ P−1
2 [L(Gd2)] ∩ L(Gd) (43)

whereP−1
i , i = 1,2, is with respect to6o1 ∪6o2 and not6. This fact implies that

L(Gtest3) = L(Gd). (44)

Therefore,Gtest3 observes the system behavior as wouldGd after the execution of a given
traces, and also provides information about the states of the diagnosersGd1 andGd2 after
the execution ofs. Hence, usingGtest3, it is possible to identify the states of the diagnosers
Gd1 andGd2 after the system has executed a trace in the language. We are interested in
detecting simultaneous occurrences ofFi -indeterminate cycles in bothGd1 andGd2, since
testing these cycles may identify whether there are fully-ambiguous traces in the language
or not (cf. Lemma 2). We first need the following technical definition.

Definition 24. A cycle in Gtest3 is said to beFi -indeterminate if the corresponding cycles
in Gd1 andGd2 are bothFi -indeterminate.

Such notion is helpful in providing a test to check whether the system is diagnosable
under Protocol 3 or not. The following result introduces the test.
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THEOREM11 A live and prefix-closed language L is diagnosable with respect to Protocol 3,
the set of projections P1,P2, and the failure partition5 f on6 f if and only if for all failure
types Fi the following is true: Gd does not have Fi -indeterminate cyclesand Gtest3 does
not have Fi -indeterminate cycles.

Proof: Sufficiency(⇐). Gd andGtest3 do not haveFi -indeterminate cycles for all failure
types Fi . Consider a tracest ∈ L(G) such thats ∈ 9(6 f i ), and t is long enough,
i.e., ‖t‖ > n, wheren can be arbitrarily large. By the construction ofGtest3 and the
assumptions above,scannot lead toFi -indeterminate cycles in bothGd1 andGd2. Therefore
Gd1 andGd2 do not simultaneously loop inFi -indeterminate cycles, which implies that
eitherGd1 or Gd2 will diagnose the failure. Sinces is arbitrary,L is diagnosable under
Protocol 3.

Necessity(⇒). AssumeL(G) is diagnosable under Protocol 3. Consider a tracest ∈
L(G) such thats ∈ 9(6 f i ), andt is long enough, i.e.,‖t‖ > n, wheren can be arbitrarily
large. By definition this implies thatC is Fi -certain (Fi ∈ C more precisely) in a finite
number of steps alongst. Therefore, the state of one of the diagnosersGd1 or Gd2 is
Fi -certain (in a finite number of steps) alongst by the specification of Protocol 3. Hence,
Gtest3 does not enter anFi -indeterminate cycle. It is easy to verify that if the state of
one of the diagnosersGd1 or Gd2 is Fi -certain then so is the state ofGd. ThereforeGd

enters anFi -certain state in a finite number of steps alongst, i.e., Gd does not haveFi -
indeterminate cycles. Sinces is arbitrary, then for all failure typesFi , Gd andGtest3 do not
haveFi -indeterminate cycles.

6.5. Discussion

We first note that the performance of Protocol 3 is inferior to that of Protocol 2 in the sense
that there are more restrictions on the system structure for Protocol 3 to perform as well as
the centralized diagnoser than there is for Protocol 2. This can be seen by the following
example.

Example 17. Consider the system discussed in Example 12 and shown in Figure 8. In
Example 14 we showed that with the FSM representation shown in Figure 8, Protocol 2
performs as well as the centralized diagnoser.Gtest3 for the system of Example 12 is shown
in Figure 14. The cycle labeled A in the Figure is aF1-indeterminate cycle: it can be
verified that the cycles(5F1,8N) and(4F1,9N) areF1-indeterminate cycles inGd1 and
Gd2, respectively; hence by Theorem 11 the system is not diagnosable under Protocol 3.

Protocol 2 performs better than Protocol 3 because failure-ambiguous traces are also
fully-ambiguous, however the reverse is not always true. However, the communication,
processing, and memory requirements for Protocol 3 are less than those of Protocol 2.
Indeed, the diagnostic information generated at the local sites, in case of Protocol 3, is a
subset of the coordinator’s diagnostic information in the case of Protocol 2. In addition,
communication is significantly reduced in Protocol 3, and the decision rule does not involve
any processing at the coordinator.
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Figure 14. Gtest3 for Example 17.

As is the case for Protocol 2, the partitioning of observable events is crucial in deciding
whether a language is diagnosable under Protocol 3 or not. Changing the partitionsP1 and
P2 may eliminate the presence of fully-ambiguous traces.

7. Discussion

In this section we discuss some fundamental issues related to the coordinated failure diag-
nosis protocols presented in this paper.

7.1. “Performance vs. Complexity” Tradeoff

As is the case with all coordinated decentralized architectures, the issue of “performance
vs. complexity” should be addressed. By “performance vs. complexity” we understand a
discussion of the qualitative properties of the protocols in terms of how well they perform
and what their memory and processing power requirements are at the local sites and at the
coordinator site. The presentation of Protocols 1–3 in Sections 4–6 was done in a manner that
highlights this tradeoff. Protocol 1 performs as well as the centralized diagnoser irrespective
of the system structure and the partitioning of observable events. Protocol 2 achieves
the same task while constraining the system structure, and Protocol 3 adds additional
constraints to those of Protocol 2 to achieve the diagnostic performance of the centralized
diagnoser. Note here that the performance of Protocols 2 and 3 depend on the partitioning
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Table 4.Comparison of the three protocols.

Protocol Constraints on system structure Partitioning of observable events

1 None irrelevant

2 No failure-ambiguous traces relevant

3 No fully-ambiguous traces relevant

Table 5.Comparison of the three protocols (continued).

Protocol Diagnostic
information

Information
communicated

Communication
instances

Decision rule

1 Extended diagnoser
state, extended un-
observable reach

Extended
diagnoser state,
extended unob-
servable reach,
status bit

upon each observ-
able event
occurrence

two
intersections

2 Diagnoser state, un-
observable reach

Diagnoser state,
unobservable
reach, status bit

upon the coordina-
tor’s request3

one
intersection

3 Diagnoser state Failure label upon the diagnoser
state being failure
certain

no intersection

of observable events. Therefore, the diagnostic performance of the protocols improves
from 3 to 2 to 1. However, the memory and processing requirements for implementing
the protocols increases from 3 to 2 to 1: from a considerably low amount of processing
and communication and a simple decision rule for Protocol 3 to more processing and
communication, and a more involved decision rule for Protocol 2, to more processing and
communication and an even more complicated decision rule for Protocol 1. Tables 4 and 5
summarize the above comparison.

7.2. Issues in Ordering Messages

Since the model we are using is untimed, one cannot talk about communication delay in
numerical terms. Instead, the issue of order is of importance: since no time stamps are
assumed to be available, we need to order the occurrence of events in the order of their
execution by the system. AssumptionsA4 andA5 address this issue, since they guarantee
the arrival of messages in the order they are sent locally and globally. However, part of
this assumption, namely the preservation of the global order, is admittedly strong. From
network theory (Bertsekas and Gallager, 1992), we know that sender/receiver protocols
that guarantee the correct and ordered reception of messages at the receiver end exist,
and they apply to one network layer connection. Therefore, one can assume that the
communication between one local site and the coordinator is correct and ordered. In the
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case of multiple connections, which is of interest to us since we have two or more sites
that communicate to the same receiver, protocols cannot always guarantee the correct and
globally ordered reception of messages at the receiver. If AssumptionA5 is violated, the
performance of Protocol 1 degrades drastically to the extent of possibly generating false
positives. Before presenting an example that illustrates this scenario, we specify how the
relaxation of AssumptionA5 may be approached.

Assume that the global order of reception of messages at the coordinator is not preserved
and that there exists an upper bound, sayT units, for the delay experienced by a message
before it reaches the coordinator. By a unit delay we understand the maximum time elapsed
between the execution of two consecutive events in the system. In this case, instead of having
registers to hold the latest received messages, we have a buffer for each such register. The
top of the buffer contains the earliest received message, or in other words the buffer is a first-
in first-out queue. Once the new diagnostic coordinator informationC is updated, a timer
is set equal toT and the next update ofC is done after the timer expires. However, since the
global order of reception of messages is not preserved, the coordinator’s information update
is not as easy as explained in Section 4. The coordinator should find a way to order the
occurrence of events before it updates its information and applies its decision rule. There
are cases where this ordering can be achieved easily by checking the status bits: if both
bits are equal to 1 this means that the event is common and the coordinator applies the
corresponding decision action. However, the case of two consecutive events when the first
is observed by one site and the second by the other site needs special attention. In such
a case, the coordinator may apply the two possible information updates; if one of them
results in an empty intersection, the other update is the correct one since the true system
state necessarily belongs to both diagnoser states or to their unobservable reaches. If both
updates result in non empty intersections not only this approach may fail but it may generate
false positives as the following example demonstrates.

Example 18. Consider the system discussed in Example 1 and shown in Figure 2. Consider
that the system is executing the traceabc(de)∗, the maximum delay is 4 units and Protocol 1
is used. Initially the timer is set to 4 units when the system begins executing its events.
Therefore, after the timer expires, the coordinator may begin trying to order the occurrence
of events. To do so the coordinator tests decision actionsDR4 andDR1. Decision action
DR1, which is the correct action to take since eventa occurred first, results in a candidate
non empty coordinator diagnostic informationC. Decision actionDR4, which assumes
that eventb occurred first, results also in a candidate non emptyC since there is a legal
system behavior that begins with an eventb, namely the tracebacσ(de)∗. Therefore the
coordinator is not capable of ordering the occurrence of events at this stage. A possible
choice would be to consider both possibilities and wait for anotherT units of time and
try to figure out which is the correct order of occurrence of events. If so, the coordinator
is faced with testing whetherab or ba is the correct sequence of occurrence of events by
applying a similar test as the one we discussed earlier. This test will not solve the problem
since both orders represent a legal behavior in the system after the occurrence of two events.
Hence the coordinator is still unable to identify the sequence of occurrence of the events.
After that the continuation of the sequencesab, abc(de)∗, orba, bacσ(de)∗ have the same
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projections with respect toP1 andP2 indefinitely, and by applying the suggested technique
the coordinator would not be able to resolve the confusion about which trace was executed
by the system. This confusion lasts indefinitely, and whatever messages the coordinator
will save, it will not be able to resolve it. Furthermore, if the coordinator picks the trace
bacσ(de)∗, then it may declare a false positive by asserting that a failure of typeF1 has
occurred. Note here that since the coordinator does not have a copy of the system model
then if the suggested algorithm were to work then it would have to be implemented at
the coordinator site as a set of instructions (without reference to the rationale behind the
algorithm).

The above example highlights a fundamental difficulty arising in untimed models of
coordinated decentralized systems with partial observations, namely that of ordering: based
on the information available from local sites, the coordinator is not always capable of
determining the correct order of occurrence of events. A similar problem is also discussed
in Wong and van Schuppen (1996).

The above example reveals a fundamental limitation of the untimed DES models and
decentralized architectures used in this paper. To relax assumptions such as AssumptionA5,
we submit that timed discrete-event models have to be used.

7.3. Extension tom Sites

In our discussion, we have considered the generic case of two sites. The results obtained in
this paper can be extended to the case ofm sites in a straightforward manner. We will not
state and prove these results, but we will give a logical explanation why they should stand.

In Protocol 3, the extension is quite obvious: in the case ofm diagnosers, one of them
diagnosers should be able to identify the occurrence (the type) of any failure that occurs. In
order to verify such a condition, we extendGtest3 to include the synchronization of all the
local diagnosers, in addition to the centralized one, and check for the existence of cycles
where the corresponding cycles of all local diagnosers are indeterminate.

The case of Protocol 2 is more involved. The communication rules are the analogues of
CR1 andCR2 for all local sites, and the decision rule can be extended in the following
way: in case the event is common to all, intersect all the states of the diagnosers, otherwise
intersect the states of all diagnosers who saw the event with the unobservable reaches of
all diagnosers who did not see the event. A mechanism to identify who saw the last event
and who did not should be implemented at the coordinator site. Using such rule, the test
to check diagnosability is to identify the existence of ambiguous cycles in a machine that
represents the extension ofGtest2 to m sites. Such a test will provide the correct result since
the intersection operator is associative.

Finally, in the case of Protocol 1, we adopt the same extension of the communication rules
as for Protocol 2. The decision rule can be extended in the same way, the only difference
being that∩i

e is used instead of the regular intersection. Moreover, after applying the
intersection to the states and unobservable reaches, the operator∩c is applied to identify the
admissible behavior. Since∩i

e is associative by definition, the decision rule is reconstructing
the centralized diagnoser state at the coordinator site; hence, there exists a test, namely the
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test on the centralized diagnoser, to check whether Protocol 1 diagnoses the system or not.
Note here that in such a case, a mechanism should be implemented at the coordinator site
to take care of who saw what and when.

7.4. General Thoughts on the Approach

Two salient features of the decentralized protocols presented in this paper are: (1) the diag-
nostic algorithms employed at the local sites are based on centralized diagnosis procedures,
that is, diagnostic information at each local site is generated by solving a centralized diag-
nosis problem at the site as in Sampath et al. (1995) or Sampath (1993); (2) the objective
is to determine realizations of the architecture of Section 3.1 that perform as well as the
centralized diagnostic scheme.

The use of diagnosers or extended diagnosers at the local sites is guided by the powerful
results of Sampath et al. (1995) and Sampath (1993) on the centralized diagnosis problem.
Even though the use of centralized diagnosis procedures provides a reasonable strategy for
generating diagnostic information at the local sites, it is far from clear that such procedures
always present the best alternative. For example, it may be possible to achieve the same
performance as Protocol 1 if at the local sites we use diagnostic algorithms other than
extended diagnosers. Such algorithms could take into account the fact that diagnostic
information is generated at more than one sites, they could utilize the knowledge that is
common (Aumann, 1976; Washburn and Teneketzis, 1984) to all local sites, and could
lead to protocols that perform as well as a centralized diagnoser with less requirements
on communication, data processing and memory than Protocol 1. The discovery of such
protocols is a very challenging open problem with far reaching implications.

As pointed out in Section 3.3, the performance of the centralized architecture proposed
in Sampath et al. (1995) provides an upper bound on the performance achievable (i.e., the
failure events diagnosable) by any realization of the coordinated decentralized architecture
of Section 3.1. Achieving the performance of the centralized diagnostic scheme proposed
in Sampath et al. (1995) with a coordinated decentralized architecture requires a certain
amount of resources for data storage and data processing both at the local sites and the
coordinator, as well as a certain amount of bandwidth for data communication, specified by
Protocol 1. When the amount of resources for data storage, processing and communication
is limited, the challenge is to determine the best performance achievable under the resource
constraint. The presence of such a constraint gives rise to problems that are significantly
more difficult than the ones studied in this paper, because currently there are no tight upper
bounds on the diagnostic performance, achievable under a resource constraint, to guide the
design of decentralized coordinated protocols. The determination of such tight bounds is
an important fundamental problem with significant practical implications.

8. Conclusion

In this paper, we have extended the theory of diagnosability of systems in the framework of
formal languages (Sampath et al., 1995; Sampath, 1995) to a class of coordinated decentral-
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ized systems. We presented three coordinated decentralized protocols that are capable under
certain assumptions of diagnosing all failure types diagnosed by the centralized diagnoser.
We identified necessary and sufficient conditions for diagnosability under the proposed pro-
tocols. The key feature of the presented protocols is that they highlight the “performance
vs. complexity” tradeoff that appears in coordinated decentralized architectures. The on-
line diagnostic process is carried through the diagnosers (extended diagnosers in the case
of Protocol 1) implemented at the local sites, i.e., the scheme is indeed implemented in a
decentralized fashion.

Our analysis has been based on a set of assumptions, some of which, namely the liveness
of the language and the nonexistence of cycles of unobservable events, can be relaxed easily
as discussed in Sampath (1995) and Sampath et al. (1998). However, the assumptions on
ordering are critical and reveal some fundamental limitations of the untimed DES models
and decentralized architectures used in this paper.
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Notes

1. This theorem is presented as an unproved claim in Sampath (1993).

2. We commit a slight abuse of notation by using the Kleene closure∗ in the expression of a trace.

3. As explained in Section 5.5 and not as presented in Section 5.2.2.
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