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Abstract. We investigate a conjecture stated by Coffman, Flatto, and Wright within the context
of a stochastic machine minimization problem with a hard deadline. We prove that the conjecture
is true.
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1. Introduction. Problems of optimal stochastic allocation of machines under
waiting-time constraints have recently received considerable attention, as they are
important in the design of computer and communication networks and in stochastic
real-time scheduling problems (see [1], [2], [3]). From a theoretical point of view these
problems are complementary to makespan minimization problems (see, for example,
[4], [6], [7], [8]).

The general class of problems of optimal stochastic allocation of machines under
waiting-time constraints (also known as stochastic machine minimization problems)
can be formulated as follows: There are N jobs with processing times T1, T2, . . . , TN ,
deterministic or random with known distributions. Job waiting times are bounded by
a time W that is independent of T1, T2, . . . , TN , and may be deterministic or random
with a known distribution. There is an unlimited number of machines (processors)
initially available to process these jobs. At time 0, a timer is started with initial
value W and job scheduling begins. When the timer expires, all jobs not running at
that time and still waiting to be processed are assigned to available machines. The
objective is to determine, within the class of nonpreemptive policies, a policy that
minimizes the expected cost, with cost defined as the number of distinct machines
used throughout the schedule.

Several cases within the above class of problems have been considered so far in
the literature [1], [2], [3]. A problem of practical importance is the hard deadline case
where W is a constant. A partial analysis of this problem has been presented in [1],
where the structure of an optimal policy was proved under a conjecture that remains
so far an open problem. In this paper we prove that the conjecture stated in [1] is
true; consequently, the structure of the optimal policy proposed in [1] is correct.

The paper is organized as follows: the conjecture stated in [1] is precisely for-
mulated in section 2; an outline of the conjecture’s proof is given in section 3 and
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the technical details of the proof appear in section 4. Discussion of the results and
suggestions for further research appear in section 5.

2. The conjecture. Coffman, Flatto, and Wright [1] considered a stochastic ma-
chine minimization problem (described in section 1) where the job processing times
T1, T2, . . . , TN are independent samples of an exponentially distributed random vari-
able T with E(T ) = 1, and the job waiting times are bounded by a constant W .

For this particular stochastic machine minimization problem it is possible to define
a Markov process on the set of states (n, k, s), where n is the number of unfinished
jobs, k is the number of jobs currently assigned to processors, and s is the time
remaining on the timer (see [1]). Let V (n, k, s) denote the expected cost incurred by
an optimal allocation policy when the initial state is (n, k, s), and define

V (n, s) = min
1≤k≤n

V (n, k, s)(1)

as the expected cost incurred by an optimal allocation policy when there are n jobs
to be processed with s units of time remaining on the timer, and there is an unlimited
number of machines initially available. V (n, k, s) can be computed by the Bellman
equation,

(2)

V (n, k, s) = inf
0≤t≤s

{
e−k(s−t)V (n, k + 1, t) +

∫ s−t

0

ke−kuV (n− 1, k, s− u)du

}
, k < n,

V (n, n, s) = n.(3)

Coffman, Flatto, and Wright [1] proved that V (n, k, s) has the following properties.
Lemma 2.1. (i) V (n, k, 0) = n, V (n, k,∞) = k. (ii) V (n, k, s) is nondecreasing

in k for fixed n and s, strictly increasing in n for fixed k and s, and strictly decreasing
in s for fixed n and k < n.

Furthermore, the following assertion was made in [1].
Conjecture. For each n > 1, there exist nonnegative numbers lnk, 1 ≤ k ≤

n− 1, such that

V (n, k + 1, s) > V (n, k, s) for s > lnk,(4)

V (n, k + 1, s) = V (n, k, s) for s ≤ lnk,(5)

ln(n−1) ≤ ln(n−2) ≤ · · · ≤ ln1.(6)

Based on Lemma 2.1 and the above conjecture, Coffman, Flatto, and Wright
proved the following result in [1].

Theorem 2.2. For all k, 1 ≤ k ≤ n− 2,

l(n−1)k < lnk.(7)

The above theorem and the conjecture imply the following structure of an optimal
policy.
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Theorem 2.3 (see [1, Theorem 5.3]). Let the initial state have n > 1 jobs to be
scheduled, an unlimited number of machines available, and a clock time s such that
lnk < s ≤ ln(k−1) for some 1 ≤ k ≤ n − 1. Then assign jobs to k machines and
start running jobs in state (n, k, s). Continue running jobs in any given state until
one of the following three events occurs: (1) The clock expires; in this case assign the
remaining n − k ≥ 0 waiting jobs to new machines. (2) A machine completes a job
in some state (n′, k′, s′), k′ < n′; in this case replenish the machine and continue in
state (n′ − 1, k′, s′). (3) A state (n′, k′, s′), k′ < n′, is reached in which the remaining
time has reduced to s′ = ln′k′ ; in this case assign a waiting job to a new machine and
continue in state (n′, k′ + 1, s′).

In the remainder of this paper, we prove that the above stated conjecture is true,
thus completing the proof of the optimality of the policy described in Theorem 2.3.
We proceed as follows: First we briefly outline the main ideas of the proof and then
we present all the technical details.

3. Outline of the proof of the conjecture. We establish, via the Bellman
equation, the existence of “time thresholds” lnk, n = 1, 2, . . . and k = 1, 2, . . . , n − 1
that have the following features:
(F1) When the initial state is (n, k, s), s > lnk, then along sample path realizations

where there are no job completions it is optimal not to assign any new (i.e.,
previously unused) machines to jobs waiting to be processed as long as the
time remaining in the timer is strictly larger than lnk. (Along the same sample
path realizations it is optimal to assign a new machine to a job waiting to be
processed when the time remaining in the timer is equal to lnk.)

(F2) If the initial state is (n, k, t) and t ≤ lnk, then it is optimal to assign right away
at least one new machine to a job waiting to be processed.

(F3) For any n, n = 1, 2, . . . and k = 1, 2, . . . , n − 1 the “time thresholds” lnk are
ordered as follows:

ln(n−1) ≤ ln(n−2) ≤ · · · ≤ ln1.

To establish (F1) we use the Bellman equation and consider an initial state (n, k, s)
with the following characteristic: The earliest time lnks (according to the Bellman
equation) at which it is optimal to add a new machine along sample path realizations
where there are no job completions is such that lnks < s. We prove that for all states
(n, k, s′) such that s′ > lnks we have lnks = lnks′ := lnk. This result and the definition
of lnks (see (8)–(9)) lead to the proof of the first part of the conjecture (see (4)).

To establish (F2) we consider an instance where the initial state is (n, k, s), s >
lnk, and an optimal allocation policy satisfying the Bellman equation is used. We
show that along sample path realizations where there are no job completions until t
units of time remain on the timer (t < lnk by assumption) it is optimal to have at
least k + 1 jobs under processing at t. This implies that if the initial state is (n, k, t)
and an optimal allocation policy (satisfying the Bellman equation) is used, at least
one new machine must be allocated to a job waiting to be processed at t. This feature
together with a property of the cost function V (n, k, s), described by Lemma 2.1(ii),
leads to the proof of the second part of the conjecture (Eq. (5)).

To establish (F3) we use the first and second parts of the conjecture (already
proved), a property of the cost function V (n, k, s) described by Lemma 2.1 (ii), the
Bellman equation, and a contradiction argument. Feature (F3) of the “time thresh-
olds” lnk describes the last part of the conjecture (see (6)).

Thus, the validity of the conjecture is established.
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4. Proof of the conjecture. Consider the Bellman equation and for each state
(n, k, s) define

As
n,k :=

{
l : l = arg inf

0≤t≤s

[
e−k(s−t)V (n, k + 1, t) +

∫ s−t

0

ke−kuV (n− 1, k, s− u)du

]}
(8)
and

lnks := max
{
l : l ∈ As

n,k

}
.(9)

Let π∗ denote the allocation policy that satisfies the Bellman equation and has the
following characteristic: Along sample paths that originate at any state (n, k, s), with
n > k, s > lnks, and have no job completions until lnks units of time remain on the
timer, π∗ adds a new machine at that point.

Proof of (4). Consider an initial state (n, k, s) such that s > lnks. We prove that
for all s′ > lnks we have

lnks = lnks′ := lnk.(10)

This fact together with the definition of lnks leads to the proof of the first part of the
conjecture, namely, (4). To prove (10) we proceed in two steps.

Step (i). Take s′ such that lnks < s′ < s. We prove that As
n,k = As′

n,k. Pick

l ∈ As′
n,k; then

V (n, k, s′) = e−k(s′−l)V (n, k + 1, l) +

∫ s′−l

0

ke−kuV (n− 1, k, s′ − u)du.(11)

Furthermore, since s > s′ > lnks,

V (n, k, s) = e−k(s−s′)V (n, k, s′) +

∫ s−s′

0

ke−kuV (n− 1, k, s− u)du.(12)

Substituting (11) into (12), we get

V (n, k, s) = e−k(s−s′)

[
e−k(s′−l)V (n, k + 1, l) +

∫ s′−l

0

ke−kuV (n− 1, k, s′ − u)du

]

+

∫ s−s′

0

ke−kuV (n− 1, k, s− u)du.(13)

Letting

v = s− s′ + u(14)

in the second term of (13), we obtain

V (n, k, s) = e−k(s−l)V (n, k + 1, l) +

∫ s−l

0

ke−kuV (n− 1, k, s− u)du.(15)

Equation (15) proves that l ∈ As
n,k. Hence,

As′
n,k ⊂ As

n,k.(16)
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Next, take l ∈ As
n,k; suppose that l �∈ As′

n,k. Then, since by assumption s > s′ >
lnks ≥ l, it follows that

V (n, k, s) = e−k(s−s′)V (n, k, s′) +

∫ s−s′

0

ke−kuV (n− 1, k, s− u)du

< e−k(s−s′)

[
e−k(s′−l)V (n, k + 1, l) +

∫ s′−l

0

ke−kuV (n− 1, k, s′ − u)du

]

+

∫ s−s′

0

ke−kuV (n− 1, k, s− u)du

= e−k(s−l)V (n, k + 1, l) +

∫ s−l

0

ke−kuV (n− 1, k, s− u)du;(17)

the inequality in (17) results because l �∈ As′
n,k. According to (17), l �∈ As

n,k and this

is a contradiction. Hence, l ∈ As′
n,k; therefore,

As
n,k ⊂ As′

n,k.(18)

From (16) and (18), we conclude that

As
n,k = As′

n,k for all s′ such that lnks < s′ < s.(19)

Step (ii). Consider s′ such that �nks < s < s′. We prove that there is no �̂ ∈ As′
n,k

such that �̂ ≥ s. The proof is by contradiction.
Suppose there exists �̂ ∈ As′

n,k such that �̂ ≥ s; then �nks′ ≥ s. Start at (n, k, s′)
and use the optimal allocation policy π∗. Let Ω′ be the set of sample paths that start
at (n, k, s′) and along which there are no job completions until s units of time remain
on the timer. Since �nks′ ≥ s, the expected cost incurred by the optimal policy π∗

along Ω′ is V (n, k + k̂, s), where k̂ ≥ 1. Furthermore, since k̂ machines are added by
the optimal policy π∗ along Ω′, we conclude that when there are n unfinished jobs
and s units of time remain on the timer it is optimal to use k + k̂ machines (k̂ ≥ 1).
That is,

V (n, s) = V (n, k + k̂, s).(20)

On the other hand, since s > �nks, (1), Lemma 2.1(ii), the Bellman equation, and the
definition of �nks imply that

V (n, s) < V (n, k + 1, s) ≤ V (n, k + k̂, s),(21)

which, in turn, implies that when there are n unfinished jobs and s units of time
remain on the timer it is optimal to use less than k + 1 machines. Thus, under the
assumption that there exists �̂ ∈ As′

n,k such that �̂ ≥ s, a contradiction (see (20) and

(21)) is reached. Consequently, every �̂ ∈ As′
n,k satisfies �̂ < s. Furthermore, since

s′ > s > lnks′ , by arguments similar to those of step (i), we conclude that

As′
n,k = As

n,k for all s′ such that lnks < s < s′.(22)

Hence, for all states (n, k, s), (n, k, s′) such that s > lnks, s
′ > lnks, we have

lnks = lnks′ := lnk.(23)
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From (2), (3), (8), (9), (19), (22), and (23), we conclude that there exists lnk such
that

V (n, k, s) < V (n, k + 1, s) for all s > lnk.(24)

Proof of (5). Consider any t ≤ lnk. We want to prove that for such a t,

V (n, k, t) = V (n, k + 1, t).(25)

To do this we formalize the idea outlining the proof of (F2) in section 3. Take (n, k, s),
s > lnk, as the initial state and use the allocation policy π∗. Let Ω be the set of sample
paths starting at (n, k, s) along which there are no job completions until t time units
remain on the timer. Then, because of (2), (8), (9), and the definition of policy π∗,
the expected cost incurred by the optimal policy π∗ along Ω is V (n, k+ r, s) for some
r ≥ 1. Moreover, since r machines are added by the optimal policy π∗ along Ω, it
follows that when there are n unfinished jobs and t units of time remain on the timer
it is optimal to use k + r machines (r ≥ 1). Hence,

V (n, k + r, t) = V (n, t) ≤ V (n, k, t).(26)

On the other hand, by Lemma 2.1(ii)

V (n, k + r, t) ≥ V (n, k, t).(27)

From (26) and (27) we conclude that

V (n, k, t) = V (n, k + r, t).(28)

From (28) and Lemma 2.1(ii) we obtain

V (n, k, t) = V (n, k + 1, t) for t ≤ lnk.(29)

Proof of (6). We use (4) and (5) and formalize the idea outlining the proof of
(F3) in section 3. Suppose that lnk > ln(k−1). Consider t such that lnk > t > ln(k−1)

and assume that there are n jobs to be processed at t. Then t < lnk and (5) imply
that

V (n, k, t) = V (n, k + 1, t).(30)

From (1), (30), Lemma 2.1(ii), and the Bellman equation it follows that it is optimal
to use at least k + 1 machines when there are n jobs to be processed with t units of
time remaining on the timer. On the other hand, t > ln(k−1) and (4) imply that

V (n, k, t) > V (n, k − 1, t).(31)

From (1), (31), Lemma 2.1(ii), and the Bellman equation we conclude that it is
optimal to use less than k machines when there are n jobs to be processed with t
units of time left on the timer. Thus, under the assumption lnk > ln(k−1) we reach
a contradiction. Consequently, lnk ≤ ln(k−1). By arguments similar to the above we
obtain the remaining inequalities in (6).

The proof of the conjecture is now complete.
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5. Discussion. The proof of the conjecture stated in [1] and described in sec-
tion 2 completes the proof of optimality of the policy described in Theorem 2.3.
Theorem 2.3 describes the nature of an optimal policy for the stochastic machine
minimization problem formulated in [1] and described in sections 1 and 2 of this
paper. According to this optimal policy allocation decisions are made at job comple-
tions, when the timer expires, or when the “time thresholds” lnk are reached. These
“time thresholds” can be computed for all n, k, k = 1, 2, . . . , n − 1 by (8) and (9).
The computation of lnk is a challenging and formidable task that will not be further
pursued in this paper.

The stochastic machine minimization problems investigated by Coffman, Flatto,
and Wright in [1], [2], [3] consider only the scheduling of jobs (tasks, projects) that
are initially available (i.e., they are available at time 0) in the system. Stochastic ma-
chine minimization problems with arrivals are interesting extensions of the problems
considered in [1], [2], [3], as they arise in wireless communication networks and in
automated target recognition systems (see [5]). A stochastic machine minimization
problem with Poisson arrivals, exponential service times, and hard deadlines has been
investigated in [5].

A class of interesting technical questions is to determine whether the structure
of the optimal policies described in [1], [2], [3] remains unaltered when arrivals are
included in the problem formulation.
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