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Asymptotically Efficient Adaptive Allocation Rules 
for the Multiarmed Bandit Problem with Switching 

cost 
RAJEEV AGRAWAL, MANJUNATH V, HEGDE, MEMBER, IEEE, AND DEMOSTHENIS TENEKETZIS 

Abstract-We consider multiarmed bandit problems with switching 
cost, define uniformly good allocation rules, and restrict attention to such 
rules. We present a lower bound on the asymptotic performance of 
uniformly good allocation rules and construct an allocation scheme that 
achieves the bound. We discover that despite the inclusion of a switching 
cost the proposed allocation scheme achieves the same asymptotic 
performance as the optimal rule for the bandit problem without switching 
cost. This is made possible by grouping together the samples in a certain 
fashion. Finally, we illustrate an optimal allocation scheme for a large 
class of distributions which includes members of the exponential family. 

I. INTRODUCTION 

WELL investigated class of resource allocation problems is A the multiarmed bandit problem which in its simplest form can 
be described as follows. There are p 1 2 statistical populations 
whose distributions are parametrized by an unknown 8 E 8. How 
should we sample x I ,  x2, * sequentially from the p populations 
in order to maximize, in some sense, the expected value of the 
sum Jn = xI + x2 + - + X, as n + a? 

Various versions of the above problem have been addressed in 
the recent control and statistics literature. Solutions have been 
obtained by Lai and Robbins [l], [2], and by Anantharam, 
Varaiya, and Walrand [5 ] .  To the best of our knowledge none of 
the formulations of the multiarmed bandit problem presented so 
far addresses the issue of switching cost. 

In this paper we formulate a multiarmed bandit problem with 
switching cost and present asymptotically optimal allocation 
schemes. The idea we exploit is the following. Since the 
introduction of a switching cost obviously discourages frequent 
switching, we need to sample in blocks. The surprising result we 
discover is that despite the inclusion of such an additional cost, 
our allocation schemes achieve the same asymptotic performance 
as the optimal solutions for the problem with no switching cost. 

The paper is organized as follows. In Section I1 we precisely 
formulate a multiarmed bandit problem with switching cost and 
introduce the total regret associated with an allocation rule. In 
Section I11 we present a lower bound on the total regret, and in 
Section IV we construct allocation rules which achieve this lower 
bound. In Section V we illustrate such an allocation scheme for a 
large class of distributions which includes some members of the 
exponential family. 

11. PROBLEM FORMULATION 

Let ill, * e ,  II, be statistical populations specified, respec- 
tively, by univariate density functionsf(x; t!$), * * * ,  f(x; 0,) with 
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respect to some measure v, wheref( e ;  e )  is known and the 8j’s are 
unknown parameters belonging to some set 8. Assume that 
S:ml~lf(x; 8)dv(x) c 00 for all 8 E 8. Let 

and define 

p* := max {p(el), . a - ,  p(Bp)}=p(e*)=p(Oj*)  (2.2) 

for some j *  E { 1, * , p} where 8* = O j * .  
An adaptive allocation rule 4 consists of a sequence of random 

variables 41, 4 2 ,  * . taking values in the set { 1 ,  e ,  p }  such that 
the event {& = j }  (“sample from ITj  at stage n”) belongs to the 
a-fieldFn-l generated by xlr a ,  x ~ - ~ .  For n I 00 let 

n 

Tn(j) := 1{4i=j} (2.3) 
i =  I 

denote the number of times that the rule 4 samples from I I j  
through stage n,  and let 

n 

J,, : = x;. 
i =  1 

Then by Wald’s lemma (cf. [4]) 

Define the sampling regret 

where6 = (e,, e . . ,  8,). 
Also, let 

n 

sn(j) := l { + i = j i  + i - l + t j )  
i = 2  

and define the switching regret 
P 

sw,,(e) : = c ~ s , , ( j )  
j =  1 

where C > 0 is the fixed switching cost, 
Further, define the total regret 

R,(e) := R;(e)+sw,,(e). (2.9) 

We want to maximize, in some sense, (EJ,, - SW,,) which is 
equivalent to minimizing the total regret &(e). Note that it is 
impossible to do this uniformly over all parameter configurations 
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8.  For example, the rule “always sample from population II,” 
will have zero regret when p(Oj) I p(8,) for all j E { 1, * - , p )  . 
However, when a parameter configuration has p(0,) > p(0, )  for 
some j # 1, this rule will have a regret proportional to n. 

We call a rule uniformly good if for every parameter 
configuration 8 

R,(B) = o(n0) (2.10) 

for every a > 0. Such rules do not allow the total regret to 
increase very rapidly for any 6. We restrict our attention to the 
class of uniformly good rules, and consider any others as 
uninteresting. The problem formulation is now complete. 

In what follows we make extensive use of the Kulback-Leibler 
number which is defined as 

w, A) = J m  [log (m; evm; ~ ) ) i m ;  e) ~ x ) .  (2.1 1) 
- -CO 

The Kulback-Leibler number is a well-known distance measure 
between two distributions. 

The main results of the paper, appearing in Sections 111 and IV 
are derived under the following technical assumptions. 

A.1: 0 < Z(0, A) < 03 whenever p(A) > p(0). 
A.2: For every E > 0 and 0, A E 8 such that p(A) 2 p(O), 

II(0, A ) - I ( e ,  A ’ ) ~ < E  if p ( A ) s p ( A ’ ) s p ( A ) + 6 .  

A.3: vh E 0 and v6 > 0 , g A ’  E 8 such that p(A) < p()\’)  < 
Ah) + 6. 

A.4: The parameter configuration 8 = (e,, - . e ,  0,) is such that 
p(0,) < p* = .p(0,*) for a l l j  # j * .  

The assumption Z(0, A) > 0 is automatically satisfied whenever 
p(A) > p(0). The condition Z(0, A) < 00 implies that the 
distribution of the samples under the parameter 8 is absolutely 
continuous with respect to the distribution of the samples under 
any parameter A such that p(A) > p(8). Such a condition can be 
expected to be satisfied for most parametric families of distribu- 
tions which are mutually absolutely continuous. Assumption A2 is 
a right continuity condition on Z(0, A) for fixed 0 and p(h)  2 p(0). 
Assumption A3 is a denseness condition on the space 0. 
Assumptions A2-A3 are needed to obtain the lower bound on the 
total regret. Assumption A4 implies that there is a unique best 
population among all of the p populations. This assumption is 
essential in obtaining the upper bound on the total regret. 

there exists 6 > 0, such that 

111. A LOWER BOUND FOR THE TOTAL REGRET 

In this section we note the extension of the lower bound 
obtained by Lai and Robbins [l]  to our problem. We state this in 
the form of Theorem 3.1. 

Theorem 3. I: Assume that Assumptions Al-A3 hold. Let qi be 
any uniformly good allocation rule, i.e., qi satisfies (2.10). Then 

( 3 . 1 )  

for any inferior population ITj, i.e., p(0,) < p(0*) = p* and 
consequently 

i) lim inf ET,(j)/log nr l/I(O,, e*) 
n-m 

(3.2) 

Proof: Follows from Theorem 1 of Lai and Robbins [l]. U 
We shall call rules that attain the above lower bound asymptoti- 

cally efficient, i.e., 

Fig. 1. Block allocation scheme for p = 4. 

IV. CONSTRUCTION OF ASYMPTOTICALLY EFFICIENT RULES 

In the first part of Section IV-A we motivate the idea of block 
allocation and then introduce a specific block allocation scheme. 
In this scheme we employ upper confidence bounds that are 
constructed in Section IV-B. Finally, in Section IV-C we derive 
an upper bound on the total regret of our allocation scheme. This 
bound is asymptotically equal to the lower bound of Theorem 3.1. 
Consequently, the proposed allocation scheme is asymptotically 
efficient. 

A .  Block Allocation Scheme 

In view of Theorem 3.1, if 6 is an asymptotically efficient rule, 
then the number of samples that qi takes from any inferior 
population II, up to stage n is about (log n)/Z(O,, e*). With no 
knowledge of the time instants at which the samples are taken 
from the inferior populations, all we can infer about the 
contribution from population II, to the switching regret up to stage 
n is that it is at most about (2 log n)/Z(0,, e*). (The largest 
contribution to the switching cost occurs when every sample from 
population II, involves switching to and from it.) Clearly any 
asymptotically efficient rule must ensure that the samples chosen 
from any population are grouped together in blocks in such a 
fashion that the contribution to the switching cost is much smaller 
than the above upper bound, in fact o(1og n). Furthermore, the 
block lengths must increase with n. 

With this idea in mind we construct a “block allocation 
scheme” in two steps. We first determine, a priori, intervals of 
time, and over each interval we sample from the same population. 
Then, at the beginning of each interval we adaptively decide 
which population to sample from. The intervals are chosen so that 
if we ensure the expected numbers of samples from each inferior 
population is O(1og n), the expected number of switches is 
automatically controlled to o(1og n).  

Step 1: To facilitate analysis, time is first divided into 
“frames” numbered 0, 1, 2, . . . Each frame f is further 
subdivided into “blocks” numbered 1 ,2 ,3 ,  - . . All the blocks in 
a frame are of equal length. Each such block can thus be uniquely 
identified by (f, i )  where f is the frame number to which it 
belongs, and i is the block number. 

Furthermore, let 
Nr denote the time instant at the end of frame f, 
b, denote the block length of each block in frame f, 
kf denote the number of blocks in frame f. 
We choose the block lengths and frame lengths (N’ - Nf- ,) as 

follows: 

Frame # (f) by N’- Nf-  I 

0 1 P  

1 

2 

1 . p . l = p  

Such a block allocation scheme is illustrated in Fig. 1 for p = 4. 
I ’  We now derive lower and upper bounds for Nf, the time 
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instants at the end of frame f. These bounds will be used 
extensively in subsequent analysis. 

90 1 

J 
= p 2 f Z + p  i 

i p 2 J 2 + p f 2 .  (4.3)  

i =  1 

Therefore, NJ - p2f2 ,  and log NJ - f 2 .  On the other hand, the 
block lengths b~ = f. 

Step 2: To start up our allocation scheme, in frame 0 we sample 
once from each population. From then on we proceed as follows. 
The beginning of each block (f, i )  is a comparison instant, n( f, 
i )  ( = Nf-  + (i - l)bf); at that time we decide which population 
to sample from. We sample from the chosen population for the 
entire block (f, i ) ,  i.e., bf times. To decide what population to 
sample from, at each comparison instant n we employ upper 
confidence bounds U,,( j )  for p(0,), the mean of each population 
II,. We define the leader as the population IIjn for which 

u n ( j n ) z u n ( j )  v j  E (1 ,  * * * , P } .  

At each comparison instant we choose to sample from the 
leader. (Ties are resolved by choosing any population among the 
leaders.) 

B. Construction of Upper Confidence Bounds 

To fix ideas, let Y l ,  Y2, * * ., be i.i.d. random variables with 
a common density function f (  y; 0) with respect to some measure 
v, where 0 E 8 denotes an unknown parameter. Let gni: R i  -+ R 
(n = 1,2, e * * ;  i = 1,2 ,  , n )  be Bore1 functions such that for 
every 6 E 8 

Po{gni(Yl, e . . ,  Y , ) z p ( B )  for all i _ c n ) = l - o ( n - ' )  (4.4) 

limsup[Eo[sup { l ~ i ~ n ~ g , , ; ( Y ~ ,  . - . ,  Yi)rp(X)}]/logn] 
n-m 

whenever p(X) > d e ) ,  and 

gni is nondecreasing in n 2 i for every fixed i=  1, 2, . . . , 

(4.6) 

We now make use of the functions g,; to define our upper 
confidence bounds. Let rJ1, . - * ,  qTno be the samples drawn 
from population I I j  up to stage n (i.e., T,,( j ) samples out of a total 
of n samples). Then at each comparison instant n( f, i) the upper 
confidence bound U,( j ) for p(0,), the mean of population I I j ,  is 
given by 

u n ( j ) = g n T n ( j ) ( Y / I r  Y / T n ( j ) )  (4.7) 

for each j E ( 1 ,  * . . , p } .  

and IV-B. 
Denote by 4* the allocation rule constructed in Sections IV-A 

Heuristics: Conditions (4.4)-(4.6), which define the upper 
confidence bounds, play a very crucial role in proving asymptotic 
efficiency of the proposed block allocation scheme. That is why 
we discuss their intuitive meaning below. 

Conditions (4.4), (4.5) relate the behavior of the sequence of 
upper confidence bounds U,,(j) of population II, to the actual 
mean p(0,). They upper bound the deviation above and below the 
actual mean. 

Condition (4.4) shows that asymptotically the upper confidence 
bounds U,,( j ) of population II, (for any j )  will very rarely fall 
below its actual mean. 

Conditions (4.3, (4.6) can be interpreted as follows. Consider 
two populations; a population II, whose mean p(0,) is unknown, 
and another population IIk whose mean p(0,) = p(X) is known. 
Assume that we employ the following block allocation scheme. At 
each comparison instant (defined in the same way as before) we 
compare the upper confidence bound U,(j) of II, to p(X) and 
choose to sample from II, if U n ( j )  2 p(X), and from IIk 
otherwise. Then, if p(X) > p(0,), the expected number of samples 
from population II, up to stage N, is upperbounded by log N, times 
a factor which measures how statistically distinct the population 
II, and IIk are. The statistical distance between II, and IIk is 
measured by the Kulback-Leibler number. This interpretation of 
(4.3, (4.6) is not only intuitively appealing but is also in 
agreement with standard results from statistical sequential analysis 
(Lai [3], Siegmund [6]). Moreover, it motivates the proposed 
block allocation scheme as follows. In the absence of knowledge 
of p(0,) it is reasonable to substitute p(0,) by an upper confidence 
bound that now in addition satisfies (4.4) so that the same results 
are maintained. These considerations are reflected in the analysis 
in Section IV-C. 

In addition, conditions (4.4)-(4.6) allow us to substantiate the 
notion of an asymptotically efficient rule, which extends the 
notion of a consistent rule, proposed by Robbins in [7]. Briefly, 
consistent rules are rules that achieve optimality in an average cost 
sense, i.e., lim,,,m(EJ,, - SW,,)/n = p*. Consistent rules have 
been constructed in [7]. Consider only two populations a, b and 
let { a , }  E and {b,} E be two fixed disjoint increasing sequences 
of positive integers such that a,/n -+ 03 and b, /n -+ 03. At the 
time instants corresponding to either sequence the allocation rule 
forces the selection of the respective population a or b. At other 
time instants the rule selects the population with the largest sample 
mean. Consistency of the above rule is easily established using the 
strong law of large numbers and the sparseness of the sequences 
{a , }  and { b,} . If asymptotic efficiency of the allocation rule is 
desired we should ensure that the normalized total regret 
n-IR,(B) tends to zero at the fastest possible rate as n --* 03. This 
can only be achieved if the selection of the time instants { a , } ,  {b,} 
is not done a priori but adaptively from the data. Conditions 
(4.4)-(4.6) ensure that the sequences { a , }  and {b,} are indeed 
generated adaptively at the best possible rate. 

C. Upper Bound on the Total Regret 

every j such that p(Oj) < p* 
Theorem 4.1: Under the block allocation rule q5*, for all 8 and 

(4.8) 

ii) E,&(j) I o (log n ) ,  (4.9) 

and consequently, for all B satisfying Assumption A4 

iii) lim supR,,(B)/log n_c (p*-p(Oj)) /I(Oj ,  e*). (4.10) 
n-m 

j:AOj)<r* 

Proof: 
Proof of 4. I i): We shall first prove i) for n = NI, the end of 
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frame I, i.e., we shall show that Hence, by (4.5) 

Let j *  be such that p(Bj.) = p(O*) = p*. (In case there are 
more than one j * ,  choose any one.) Let # A  denote the number of 
elements of a set A.  Then for any fixed j such that p(Oj) < p* 

Proof of Claim 2: 

I 

Term 2=E b f [ # { l s i s k f :  U,(j*)<~(ej*)}I  
I 

T N I ( / ) = C  b f [ # { l s i s k f :  +* samplesfromIIjat 
f = O  

comparison instant n ( f ,  i ) } ]  

I Then, 
= 1 + E by[#{ 1 5 i s  kf : +* samples from ITj at 

/= I 1 kf 
Eo [Term 21 = by Po{ Un( j*)<p@j*)}  

comparison instant n ( f ,  i ) ,  U n ( j * ) z p ( 0 , * ) }  / = I  i = l  

+ #{  1 I i s  kf : +* samples from H j  at 

comparison instant n ( f ,  i ) ,  U,,(j*)<p(Oj*)}] 

/ 

s 1 + 11 by[#{ 1s i s  kf : Un( j ) zp (O*) ,  and +* 
/= I 

samples from H j  at comparison instant n (f, i ) } ]  

/ +E b f [ # { l s i s k f :  Un(;*)<p(Oj*)}1 
f = l  

= 1 + Term 1 + Term 2 (say). 

Claim I :  = o (log NI)  (by Appendix RI ). 

limsup( Eo [Term 11 )s- 1 
I -+-  log N/ z(ej, e*) * 

Claim 2: E@ [Term 21 5 o(1) log NI. 

Proof of Claim I :  

I 
Term 1 = bf[#{l  s i l k f  : U,(j)rp(O*), and +* 

f-1 

samples from H, at comparison instant n ( f ,  i ) } ]  

I 

b f [ # { l s i s k f :  g n r n ( j ) ( q l  y i rn ( j ) )2pL(e*) ,  
f = 1  

and +* samples from IIi at comparison instant 

Thus, by Claims 1 and 2 

Now we extend this result for any arbitrary n. Let I be such that 
< n I NI. 

Clearly 

This completes the proof of i). 
Proof of 4. I ii): Let I be such that NI- I < n 5 NI. Then, 
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BY (4.8) 

903 

and 

Therefore, for any given E > 0 3 f o  such that v f 2 f o  

Hence, by (4.3) 

Thus, for n > Nfo 

5K(E)21+ M(E) 

where 

f = 1  

Consequently, 

Proof of 4.1 iii): By (4.8) and (2.6) it follows that 

R;(O)= (p*-p(eJ))/z(e,, e*)+o(i)  log n. (4.11) 

Under the additional Assumption A4 we have from (2.8) 

[ J P(SJ)<P* 1 
I [,*I* 

SW,(O) = C ES,( j )  + ES,(j*) 

5C [z E S , ( j ) +  1 1  

= o (log n). (4.12) 

0 
In view of Theorems 3.1  and 4.1 the block allocation scheme 

4* that we propose in this section is asymptotically efficient, i.e., 

J*J* 

Hence, by (2.9), (4.11), and (4.12), iii) follows. 

(p*-p(eJ)) /z(eJ9 e*)  log n. [ J P ( ~ J ) < P *  1 
Thus, despite the imposition of a switching cost we are able to 

recapture the same asymptotically optimal performance as Lai and 
Robbins [l] achieve in the nonswitching cost case. The block 
allocation scheme proposed in this section is crucial in achieving 
this performance. By grouping together samples from each inferior 
population in blocks, we manage to maintain the number of 
samples from each inferior population at about log n/Z(OJ, e*) and 
to limit the number of switches to o(1og n). 

V. UPPER CONFIDENCE BOUNDS FOR SPECIAL DISTRIBUTIONS 

In this section we construct umer confidence bounds for a 

is a strict monotone increasing function of the parameter 0 

log f(x; 0) is concave in 0 for each fixed x, (5.3) 

x2f(x; 0)  d v ( x ) < w  for each 8 E 8. (5.4) 

Conditions (5.1)-(5.4) are satisfied by some members of the 
exponential family of distributions, for instance, the normal 
distribution. We prove that the upper confidence bounds we 
construct satisfy conditions (4.4)-(4.6). Lemmas 5.1 and 5.2 are 
needed for the proof. 

are 
i.i.d., EXI > 0 and let N = l(Sn 5 0), L = 
l(inf,,,S, 5 0). 

-m 

Lemma 5.1: Let S,, = XI + * .  + X,, where XI, X2, 

Then the following are equivalent. 

a) E(I X I  I 2 1  (XI S O ) ) <  00 

b) E N < w  

c) E L < w .  

Lemma 5.2: Let S,, = XI + X2, + * . . + X,, where XI, X2, 
are i.i.d., 0 < EX, < W. Given A > 0, let LA = ~ ~ = 1  

Proof: See Hogan [71. 0 

l(inf,.,,S, 5 A ) .  IfE(IX1121(XI I 0)) < 03, then 

Proof: For E > 0 

Now we need to consider the i.i.d. r.v.'s 2; = X ;  - EX;/(l + 
4 .  

E{I Z1I21(Z1 5 0 ) )  

+ 2  (">' 1 + E  

< W .  

Thus, by Lemma 5.1 it follows that for some constant K ( E )  

EL l + ~  
A + -  A EX1 

lim sup >S--  . 

By letting E + 0 we get the desired result. 

bounds in two stem described bv Theorems 5.1 and 5.2. 
Using Lemmas 5.1 and 5.2 we construct upper confidence 

family of distributions under the fdliowing assumptions: A. 1-A.3 
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Theorem 5.1: Let Y l ,  Y2, * . be a sequence of i.i.d. samples 
from a population. Let 

where I:  ( - 00, 0) 4 R +  is a positive, continuous function with 
j!,l(w)dw = 1. For any K > 0 let 

(5.5) V ( i ,  Y l ,  - . a ,  Y, ,  K)=inf {el  Wi(e)rK}. 

Then, for all A > 0 

1 
for all i r l } r l - -  

K '  i) Pe(OsV( i ,  Y , ,  a . . ,  Yi,  K)  

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 33, NO. IO, OCTOBER 1988 

ii) lim -.!- ER [sup { i r l l  V ( i ,  Y I ,  e * . ,  Y, ,  K)rA}I 
K - a  log K 

= i/z(e, A). 

Proof: By (5.3) it follows that Wi(0) is nondecreasing in 0, 
so that 

V(i,  Y I ,  * * e ,  K, K)<O =) W,(B)rK. 

Now 

{ V(i, Y I ,  ..a, Y,, K)<B for some i r l }  

G { W,(O)zK 

W,(0) is a nonnegative Martingale under 0 with mean 1. Thus, by 
the sub-Martingale inequality (cf. [4]) 

Pa{ W,(O)rK for some i r l } s l / K  

for some ir 1). 

establishing i) . 
Let LK = 
Given E 

l(inf,,,W,(A) I K ) .  
0, choose 0 < 6 < X - 0 so that 

(Z(0, w ) ~ < E  i f e < w < e + 6 .  

[This is possible due to Assumptions A2, A3, and (5.2).] 
We have 

where 

I (w-A)  
A =  j /(w-A) dw, /"(w)=-- 

R<w<O+6 A '  

By Jensen's inequality 

Thus, we must examine the sum of i.i.d. variables 

where Y, has the distributionf(x; e). These random variables have 
mean 

L Z(0, A) - E > 0 for E sufficiently small. 

AlsoEX, < 00. NextweprovethatE[IXl121(Xl I O)] < 00 so 
that we can use Lemma 5.2 to upperbound ERLK. 

Note that 

0 r XI 1 ( X ,  I 0) r 

Now 

Observe that 

[log;-] 

4 
e2 

a) x [log XJ*I- on {XI I}, 

b) since A >  w>O, there is O < a <  1 such that w=CrO+(l - a )A .  

(5.7) 

By (5.3) for each x,  f ( x ;  w) 2 f ( x ;  0)"f(x; Hence, 

Let w o  = cwA + (1 - a)0. By (5.3) again 

f ( x ;  e)(l-a)j-(x; A)*I~-(x; WO). (5.9) 

Combining (5.6)-(5.9), we obtain 

4 
e2 * 

ER [XI 1 (XI 5 o)] 5 - 

We may now use Lemma 5.2 to conclude that ERLK < 00 and 

ERLK 1 lim sup -<- 
K - a  log K-Z(B, A)-€  ' 

Letting E + 0 gives 

(5.10) 
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We now bound EoLK from below. Define the stopping time 

TK = inf { ir 1 I Wj(h) z K ) .  

Notice that LK 2 TK - 1. Thus, Eo TK < 00. 
Write 

where 

and Mi is a Martingale under 0 of mean 1. We observe that 

log K l &  log W,,(h)=E@ log AT,+& log M T ~  

5 E0 log  AT^ + log E o k f ~ ~  

=z(8, h)EoT,ysz(8, ~ ) E & K  

which along with (5.10) establishes ii). 0 
Theorem5.2:Letgn,(Y,, - - e ,  X) = p[V(i ,  Y , ,  e . . ,  Y,,n(log 

i )Po{g, , (Yl ,  - a . ,  Y,) > p ( 0 ) f o r a l l i s  nf = 1 - O(n-l(log 

ii)limsup,,,[E~[sup{l 5 i 5 n:g , , (Y1 ,  e - . ,  Y,) 1 p(X)}]J 

iii) g,, is nondecreasing in n 2 i for fixed i. 

n ) P ) ]  for some p > 1. Then for any X > 0 

n)  -”I 
log n] 5 l/I@, A) 

Proof: i) follows from i) and ii) from ii) of Theorem 5.1, iii) 
follows from the form of V(i, Yl ,  * * e ,  Y,, K)  and the assumption 

0 
Theorem 5.2 shows that upper confidence bounds g,, con- 

structed above satisfy the required conditions (4.4)-(4.6). This 
concludes our construction. 

that p(0)  is monotonically increasing in 8. 

VI. CONCLUSIONS 

Despite the inclusion of a switching cost, our allocation scheme 
achieves the s h e  asymptotic performance as the optimal solu- 
tions for the case without switching cost. This is made possible by 
grouping together samples into blocks of increasing sizes, thereby 
reducing the number of switches to o(log n). 

Notice that the block length and frame lengths are prescribed in 
advance and not generated adaptively from the data. With our 
block scheme if we can ensure that the number of samples from an 
inferior population is O(1og n), then we automatically control the 
number of switches to o(log n). 

Although in our problem formulation we consider a fixed 
switching cost, we can equally well handle switching costs which 
vary with time and with the pair of populations between which 
switching occurs, provided the switching cost is bounded. 

Assumption A4 is essential to obtain asymptotic efficiency. If 
we do not have a unique best population, then the number of 
switches among superior populations can be arbitrarily large. 

APPENDIX 

(see explanation below) 
1 = I  f = l  
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1 +- N / l  I 1 

“ 1  1 1 

sCi+zpz / ‘ - f  I= 1 NI-i 

NI - 1 
l = I  

1 1  
Slog N/+ 1 +-+- 

P NI-1 

1 1  1 1 1  +-+ . . . +- +-+- 
No No+l N I - ~  NI NI 

- -- 

1 1 1 1 +-+-+. . . +-+- 
Nl+2 Nl+2 N2-2 N2-2 

1 1 1  +-+-+-+. . . 

1 1  

N2 N2 N2 

1 1 +-+- - <-+-+ . . . 
No No+l NI-1 NI-1 

1 1  1 1 1 +-+- +-+-+-+. . . 
NI N1+1 Nl+2 N2-3 N2-2 

1 1  +-+ . . . +-+- 1 
N2-2 N2-1 N2 
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