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Abstract This paper considers the problems of fault diagnosis and supervisory
control in discrete event systems through the context of a new observation paradigm.
For events that are considered observable, a cost is incurred each time a sensor is
activated in an attempt to make an event observation. In such a situation the best
strategy is to perform an “active acquisition” of information, i.e. to choose which
sensors need to be activated based on the information state generated from the
previous readings of the system. Depending on the sample path executed by the
system, different sensors may be turned on or off at different stages of the process.
We consider the active acquisition of information problem for both logical and
stochastic discrete event systems. We consider three classes of increasing complexity:
firstly, for acyclic systems where events are synchronized to clock ticks; secondly, for
acyclic untimed systems; and lastly, for general cyclic automata. For each of these
cases we define a notion of information state for the problem, determine conditions
for the existence of an optimal policy, and construct a dynamic program to find an
optimal policy where one exists. For large systems, a limited lookahead algorithm for
computational savings is proposed.
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1 Introduction

Many types of systems, including communication networks (Pencolé 2000; Rozé and
Cordier 1998), manufacturing processes (Holloway and Chand 1994), and queueing
systems, can be modeled using discrete event systems (DES). An important problem
in complex systems modelled by DES is the problem of detecting and isolating failure
events.

One approach to the problem of failure detection in DES involves verification
of the property of diagnosability (for an overview of this approach, see Lafortune
et al. 2001). Roughly speaking, a DES is diagnosable if any failure that occurs can
be diagnosed after a finite delay. In recent years, there has been interest in studying
diagnosability of stochastic DES as well (Lunze and Schröder 2001; Thorsley and
Teneketzis 2005).

A problem related to the verification of the diagnosability property is the sensor
selection problem for DES (Debouk et al. 2002; Jiang et al. 2003; Yoo and Lafortune
2002a). In the sensor selection problem, the objective is to find the minimal sets of
sensors under which diagnosability is preserved when these sensors are activated for
the duration of the discrete-event process.

In some situations, finding a solution to a sensor selection problem may not result
in a solution that is optimal in a practical sense. For example, in communication
networks, the act of sensing an event at a remote location involves using system
bandwidth to send the data to a network co-ordinator. If the sensor is wireless, the act
of transmitting data involves using some of the small amount of energy available to
the sensor. In these situations, we do not purchase a sensor at the start of the process
and let it run for the duration; instead we incur a small cost each time the sensor is
used.

If our objective is to minimize the total cost incurred by the active use of sensors,
then, roughly speaking, our objective is to use the sensors as infrequently as possible,
that is, to determine when it is necessary to actively acquire information along each
possible system behavior. This is a different objective than that of the standard sensor
selection problem, where the goal is to use as few sensors as possible, but to activate
them for the duration of the process.

This paper investigates the use of active acquisition of information in the context
of DES. Our objective is to minimize the cost of observing a finite-state machine
when a cost is paid each time a sensor is activated, while preserving a diagnosability
property similar to that of Sampath et al. (1995).

The distinguishing characteristic between the verification problems, the sensor
selection problems, and the active acquisition problem proposed in this paper is the
information structure. In verification problems such as Sampath et al. (1995), the
information available to the observer/diagnoser is specified by a fixed projection or
observation mask. In sensor selection problems (Debouk et al. 2002; Ding et al. 2002;
Holloway and Chand 1994; Jiang et al. 2001, 2003; Khanna 1973; Kumar and Varaiya
1986; Kushner 1964, 1971; Lafortune et al. 2001; Lunze and Schröder 2001; Meier
III et al. 1967; Pencolé 2000; Pollard 2002; Rago et al. 1996; Rozé and Cordier 1998;
Sampath et al. 1995; Teneketzis 1996; Teneketzis and Andersland 2000; Thorsley and
Teneketzis 2005; Witsenhausen 1971, 1975; Yoo and Garcia 2003; Yoo and Lafortune
2002a), the objective is to select the fixed observation mask that minimizes the cost
associated with purchasing sensors that are then activated for the duration of the
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discrete-event process. In the active acquisition of information problem, the observer
actively decides which sensors are to be used based on the information that it has
already available. A cost is incurred each time a sensor is activated in an attempt to
sense the event associated with that sensor. If a sensor is never activated, the system
does not incur a cost from that sensor, even if it is available for the observer to use.

Variations on the active acquisition of information approach have been applied
to many classes of systems other than DES. For example, problems involving
sensors that can be activated or deactivated based on the system behavior have
been considered for many different classes of systems, including centralized and
decentralized linear stochastic systems (e.g., Athans 1972; Kushner 1964; Meier III et
al. 1967; Khanna 1973; Andersland and Teneketzis 1996), communication networks,
(Rago et al. 1996; Appadwedula et al. 2002) and operations research Ding et al.
(2002). In this paper we consider a version of the problem where the decision as
to what sensors are activated is made by a centralized diagnoser; a schematic of this
diagnoser is shown in Fig. 1. In the architecture this paper considers, the diagnoser
contains an observer that reads in data from a DES. It then sends the information it
has obtained to a policy maker that instantaneously feeds back to the observer the
set of events it should next attempt to observe.

Furthermore, although the primary focus of this paper is on the use of active
acquisition of information for fault diagnosis, the active acquisition method can also
be applied to the case of the supervisory control problem. In this problem, not only
does the policy maker choose a set of sensors for the observer to activate; it also
enables or disables certain events in the DES itself based on the information it has
received from the observer in order to ensure that the controlled system achieves
a given specification. Despite the differences between the supervisory control and
diagnosis problem, we show how they can approached in a similar manner using the
active acquisition of information method.

In the paper we consider the active acquisition problem for three classes of
automata. The development of the information structure is simplest in the case where
the automaton is acyclic and events are synchronized to ticks of a clock. The second

Fig. 1 Block diagram of the active acquisition system for diagnosis of DES
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class we consider is the case where the automata are acyclic, but events are no longer
synchronized; we place a mild assumption required that the time between successive
events in the system’s evolution is not only finite, but also bounded. The final class
we consider is general, cyclic, automata.

We divide this paper into three sections. In each section we describe the DES
model under consideration and define the active acquisition of information problem
in its particular context. We then define appropriate spaces of information states for
the particular class of automata. For the two acyclic cases, we describe a method for
finding an optimal observation policy; in the cyclic case, we determine conditions
for the existence of an optimal policy. In the acyclic, synchronous case, we describe a
limited lookahead algorithm for computational savings. In the acyclic, asynchronous,
case, we describe how to find optimal policies for both diagnosis and supervisory
control problems. Throughout the paper, we discuss both stochastic and logical DES
models and illustrate the results with examples.

The division of the paper is done so as to start with the simplest formulation of the
active acquisition of information for diagnosis problem, introduce the key solution
ideas within the context of that problem, and then show how these solution ideas
evolve as one considers more complicated versions of the problem.

2 Acyclic timed automata

2.1 Modeling formalism

In the section we consider the simplest case of the active acquisition of information
problem for diagnosis for DES for a restricted class of automata. A (logical)
automaton is defined as G = (X, �, δ, x0), where

• � is a finite set of events
• X is a finite state space
• δ : X × � → X is the partial transition function
• x0 ∈ X is the initial state

A logical automaton G generates a language L(G). To simplify the development of
the problem, we make the following assumptions about the automaton:

(A1) The automaton G is acyclic. Therefore, there exists a constant T that bounds
all the traces in the language generated by G. Traces that terminate before reaching
the bound T can be extended by adding the appropriate number of ε transitions,
where ε denotes the empty trace.

(A2) Events are synchronized to ticks of a clock, i.e., there is a constant amount
of time between the occurrence of two successive events.

Assumption (A1) ensures that the worst case observation cost of the system
remains finite and forces the existence of a finite horizon T. Assumption (A2)
simplifies the development of the concepts of information state and σ -field that will
be used to solve the active acquisition problem.

As there is a constant amount of time between events, we define for all t ≤ T,

Lt = {s : s ∈ L(G) ∧ ‖s‖ = t}. (1)
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Lt is simply the language that can be realized by the automaton at time t. In
particular, LT denotes the set of all strings realizable by the automaton when our
observation of its behavior is completed.

In the active acquisition problem, an event is called observable if there is an
available sensor that can detect its occurrence (although at any moment we may
choose not to use that particular sensor) and it is called unobservable if there is no
such available sensor. Formally, the event set is partitioned as � = �o∪̇�uo, where
�o is the set of observable events and �uo is the set of unobservable events.

In an observation or diagnosis problem with a fixed set of activated sensors,
the information available to the observer is defined using the projection operation
(Cassandras and Lafortune 1999). Under assumption (A2), we define the projection
for a timed system as P : �∗ → (�o ∪ εo)

∗

P(ε) = ε (2)

P(σ ) =
{

σ if σ ∈ �o

εo otherwise
(3)

P(sσ) = P(s)P(σ ). (4)

The symbol εo is considered to be observable; it indicates that no event in the
alphabet � was observed at a particular time.

Similarly, the inverse projection is defined as

P−1
L (s′) = {

s ∈ L : P(s) = s′} . (5)

In general, the inverse projection operation does not yield a single trace, but instead
a set of traces in L(G).

There is a cost ν : �o → [0, ∞) associated with activating each sensor in order to
identify an occurrence of an observable event. If ν(σ ) = 0, then σ is said to be freely
observable; the set of all freely observable events is denoted by �fo. Otherwise, σ is
said to be costly; the set of all costly observable events is denoted by �co. The cost of
an observation action u ∈ 2�co is simply the sum of the costs of each event observable
under that action:

c(u) =
∑
σ∈u

ν(σ ). (6)

We use the symbol ν to denote the cost of a single event and the symbol c to denote
the cost of an observation action to prevent confusion in later sections of this paper,
where an action by the policy maker consists of making both control and observation
decisions.

The set of failure events to be diagnosed is �f ⊆ �. We assume that �fo ∩ �f = ∅,
as it is a trivial problem to diagnose a failure that can be freely observed. The set of
failure events is partitioned into a set of failure types �f = �f1 ∪ · · · ∪ �fm . If a failure
event f ∈ �fi occurs, this is equivalent to the phrase “a failure of type Fi occurs.”

Our objective is to find an optimal observation policy that diagnoses L(G) in the
sense defined in the next subsection.
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2.2 Problem formulation

The active acquisition problem is a problem of optimization. We wish to find
an observation policy that minimizes the observation cost while allowing for the
detection of any failures by the time the process terminates.

To formulate the active acquisition of information problem we need to introduce
the following concepts. Let

χt : Lt → 2LT (7)

be defined as for 0 ≤ t ≤ T:

χt(s′) = {
s ∈ LT : P(s′) is a prefix of P(s)

}
. (8)

A string s′ is a prefix of itself; it follows that χT(s′) = {s ∈ LT : P(s) = P(s′)}.
The functions χt are used in the following definition.

Definition 1 An observation policy g := (g0, . . . , gT−1) is a sequence of functions gt :
LT → 2�co such that for all s′ ∈ Lt and s, ŝ ∈ χt(s′), gt(s) = gt((̂s)).

We next define the family of “maximal σ -fields” for the model of Section 2.1. This
family of σ -fields plays a key role in the solution of the active acquisition problem.
Let Rt be the range of χt, t = 0 . . . T. For each t, Rt is a subset of 2LT that is also a
partition of LT . Furthermore, Rt+1 is a finer partition of LT than Rt for t=0 . . . T−1.

Definition 2 The maximal σ -field Ft at time t, t = 0 . . . T, is

Ft = σ(πt : πt ∈ Rt), (9)

where σ(πt : πt ∈ Rt) denotes the σ -field generated by the elements of the parti-
tion Rt.

Since for each t, the partition Rt+1 is finer than Rt, it follows that Ft ⊆ Ft+1

for each t, therefore {Ft, t = 0 . . . T} is a filtration (Pollard 2002). By an argument
similar to the above we can define the filtration {Gg

t , t = 0 . . . T} corresponding to the
observation policy g. Let Pg denote the projection operator corresponding to g. For
any string s ∈ LT , Pg(s) selects only the events that are observed by g along s. For
t = 0 . . . T, let χ

g
t : Lt → 2LT be defined by:

χ
g
t (s′) = {

s ∈ LT : Pg(s′) is a prefix of Pg(s)
}
. (10)

Let Rg
t be the range of χ

g
t , t = 0 . . . T. For each t, Rg

t is a subset of 2LT that is also a
partition of LT . Furthermore, for each t, Rg

t+1 is a finer partition of LT than Rg
t .

Definition 3 The filtration {Gg
t , t = 0 . . . T} corresponding to g is

σ
(
πt : πt ∈ Rg

t

)
, t = 0 . . . T. (11)

Since the automaton G is acyclic by assumption (A1), we simply desire that there
exists an observation policy so that when the process terminates at time T, we can
be certain as to whether or not a failure has occurred. To formalize this, we need the
following definitions.
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Definition 4 A set of strings S ∈ 2L(G) is certain if, for all failure types Fi, either every
string s ∈ S contains an event in �Fi or no s ∈ S contains any event in �Fi .

Definition 5 A language L(G) is diagnosed by an observation policy g if, for all s ∈
LT , χ

g
T(s) is certain with respect to all types of failures.

Definition 6 Let H denote the set of policies that diagnose L(G). The language L(G)

is diagnosable if H is non-empty, i.e., if there exists a policy that diagnoses L(G).

The problem under consideration is to find an observation policy that diagnoses
L(G) at minimal worst-case cost. Define the performance criterion:

J(g) = max
s∈LT

{
T−1∑
t=1

cg
t (s) + Kg

T(s)

}
, (12)

where cg
t (s) denotes the cost of implementing policy g at time t along the trajectory

s, and Kg
T(s) denotes the final penalty incurred after implementing policy g along s.

Kg
T(s) is defined as

Kg
T(s) =

{
0 if χ

g
T(s) is certain

∞ otherwise.
(13)

The performance criterion is thus the maximum total cost of policy g for t = 0...T.
The active acquisition of information problem for diagnosis of acyclic timed

systems is defined as follows.

Problem A Find a policy g∗ ∈ H such that

J(g∗) = inf(J(g)|g ∈ H). (14)

In the remainder of this section we present a systematic methodology for solving
Problem A.

2.3 Information states for active acquisition

The difficulty in the active acquisition problem is the derivation of a systematic
method of determining how information regarding the system behavior evolves as
different events are observed at different stages of the system’s evolution. To develop
this method, we use a maximal σ -field approach. This approach was initially proposed
in Witsenhausen (1971, 1975) in the context of general informationally decentralized
systems and was further used in Andersland and Teneketzis (1992, 1994), Teneketzis
(1996), Teneketzis and Andersland (2000).

For each t, t = 0 . . . T, we select Ft, defined by Definition 2, to be the space
of information states for Problem A. First we show that πt ∈ Ft satisfies the
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requirements of an information state as defined in Kumar and Varaiya (1986). For
any action u ∈ 2�co at time t, the information state πt ∈ Ft is updated as

πt+1 = δ̂u(π, σ ) =
{

{s ∈ π : st+1 = σ } if σ ∈ �u,obs

{s ∈ π : st+1 ∈ �u,unobs} otherwise.
(15)

where st+1 denotes the (t + 1)st event in the string s ∈ LT , �u,obs denotes the set of
events that are observable under the action u, and �u,unobs denotes the set that is
not observable under u. Furthermore, by its definition, πt is a function of the data
available up to time t. Consequently, πt ∈ Ft satisfies the requirements of Definition
6.4.2 in Kumar and Varaiya (1986). In Section 2.4, we will prove that πt ∈ Ft, t =
0 . . . T is appropriate for performance evaluation, that is, it can be used to determine
an optimal observation policy. Therefore,Ft is suitable to be the space of information
states for Problem A at time t, t = 0 . . . T. Before proving that πt is suitable for
finding an optimal observation policy we establish a relationship between the family
of maximal σ -fields Ft, t = 0 . . . T and the filtration {Gg

t , t = 0 . . . T} corresponding to
any policy g.

Theorem 1 Consider any fixed observation policy g. For any t, t = 0 . . . T and any
s′ ∈ Lt, χ

g
t (s′) ∈ Ft.

Proof For any fixed policy g, any t, t = 0 . . . T, and any s′ ∈ Lt, we have

χ
g
t (s′) = {

s ∈ LT : Pg(s′) is a prefix of Pg(s)
}

(16)

=
{

s ∈ LT : ∃s′′ ∈ Pg−1 [Pg(s′)] such that s′′ is a prefix of s
}

(17)

=
⋃

s′′∈Pg−1 [Pg(s′)]

{
s ∈ LT : s′′ is a prefix of s

}
. (18)

Suppose s1 ∈ χ
g
t (s′). Then there exists s′′ ∈ Pg−1 [Pg(s′)] such that s′′ is a prefix of s1.

Now suppose s2 ∈ LT is a string such that P
(
s2

) = P
(
s1

)
; since P(s′′) is a prefix of

P
(
s1

)
, P(s′′) is also a prefix of P

(
s2

)
. It follows that Pg(s′′) is a prefix of Pg

(
s2

)
, because

P(s′′) is a prefix of P
(
s2

)
and the projection Pg associated with the policy g has less

refined information than the full projection P.
Therefore ∃s′′′ ∈ Pg−1 [Pg(s′′)] such that s′′′ is a prefix of s2. Since s′′ ∈ Pg−1 [Pg(s′)],

it follow that Pg−1 [Pg(s′′)] ∈ Pg−1 [Pg(s′)]. Thus ∃s′′′ ∈ Pg−1 [Pg(s′)]. Therefore, from
Eq. 17, s2 ∈ χ

g
t (s′) . It follows that for any s1, s2 ∈ LT , if s1 ∈ χ

g
t (s′) and P(s2) = P

(
s1

)
,

then s2 ∈ χ
g
t (s′). Then,

χ
g
t (s′) ⊇

⋃
s′′∈Pg−1 [Pg(s′)]

{
s ∈ LT : P(s′′) is a prefix of P(s)

}
. (19)

To show set equality between the right and left-hand sides of the above statement,
consider s3 ∈ LT such that there does not exist s′′ ∈ Pg−1 [Pg(s′)] such that P(s′′) is a
prefix of P(s3). Then there does not exist an s′′ such that s′′ is a prefix of s3. From
Eq. 18, it follows that s3 �∈ Xg

t (s′). Thus the set inclusion above can be replaced by an
inequality.

Since the right-hand side of Eq. 19 is a countable union of elements of Rt, it is an
element of the σ -field Ft. Therefore, χ

g
t (s′) ∈ Ft. ��
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From Theorem 1, it follows that for any observation policy g and any t, t = 0 . . . T,
Gg

t ⊆ Ft. Because the filtration defined by any observation policy g is no greater
than the filtration {Ft, t = 0 . . . T}, Ft, t = 0 . . . T has been defined as the family of
maximal σ -fields.

The maximal σ -fields defined in Eqs. 8–9 are independent of the observation
policy chosen by the policy maker. For every problem we formulate in this paper we
define a family of σ -fields {Ft}, t = 0, 1, 2, . . . that have the following properties: (1)
They are independent of the observation policy; (2) The filtrations Gg

t , t = 0, 1, 2, . . .

resulting from any observation policy g are sub-σ -fields of the set of maximal σ -
fields, i.e., for all t, Gg

t ⊆ Ft.Ft, t = 0 . . . T, is the smallest family of σ -fields that satisfy
this property. Such a choice of maximal σ -fields reduces the off-line computation re-
quired for the solution of the dynamic program that determines optimal observation
policies.

Having developed a method to describe the information state and a sequence of
maximal σ -fields in which the information state must reside, we now address the
question of how to determine the existence of an optimal observation policy and
develop a method to find such a policy when it exists.

2.4 Finding an optimal observation policy

In this subsection we first present a criterion for diagnosability that can be used
to determine if an optimal observation policy exists. We then present a method of
determining a policy which minimizes a worst case observation cost, subject to the
constraint that all failures in the system are diagnosed.

2.4.1 Existence of an optimal policy

In order for a solution to Problem A to exist, the set of admissible observation poli-
cies H must be non-empty, i.e., the language L(G) must be diagnosable. Therefore
the condition for existence of a solution to Problem A is simply the condition for
diagnosability.

Theorem 2 L(G) is diagnosable if and only if all elements of the partition RT of LT

that generates FT are certain.

Proof (Sufficiency) Suppose each element of the partition RT of L(G) that generates
FT is certain. Let gmax denote the policy where gt(πt) = �co for all πt and all t =
0, 1, . . . , T − 1, i.e., the policy where all costly sensors are always activated. Along
any string in LT , the only strings consistent with the observations made under gmax

have identical projections onto �o; therefore, the information state reached along
any string s ∈ LT is an element of the partition RT of LT that generates FT Since
that information state is F-certain, gmax diagnoses L(G).

(Necessity) We prove necessity by proving the contrapositive statement. Suppose
that there exists an element of the partition RT of L(G) that generates FT that is
uncertain. Then there exist two traces s1, s2 ∈ LT such that P(s1) = P(s2), where P is
the projection of � onto �o and s1 + s2 is uncertain.

Select any observation policy g and consider the information state reached by
implementing g along s1. That information state contains both s1 and s2; therefore
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it is uncertain. Since g was arbitrarily chosen, it follows that there is no policy that
diagnoses L(G). ��

Having demonstrated a criterion for testing the diagnosability of a language, we
now present a dynamic programming technique to find an optimal observation policy
when this criterion is satisfied.

2.4.2 Active acquisition dynamic program

The active acquisition dynamic program for Problem A is

VT(π) =
{

0 if π ∈ FT is certain
∞ otherwise,

(20)

Vt(π) = min
u∈2�co

{
cu + max

σ∈�
Vt+1

(
δ̂u(π, σ )

)}
for π ∈ Ft, t = 0 . . . T − 1, (21)

where δ̂u is defined in Eq. 15.
We demonstrate the information state defined is suitable for finding an optimal

observation policy. with the following theorem.

Theorem 3 The solution of the dynamic program, defined by Eqs. 20–21, is a solution
to Problem A. That is, the solution to Eqs. 20–21 determines an optimal observation
policy g∗ := (g∗

1, g∗
2, . . . , g∗

T1
) and the corresponding optimal cost J(g∗) = V0(LT). The

optimal cost is the minimum worst case observation cost that diagnoses L(G).

Proof We follow the philosophy of Chapter 6 of Kumar and Varaiya (1986).
To prove the theorem, we verify the following two statements:
(1) Consider any admissible observation policy g ∈ H, and let πt(sg,t) ∈ Ft denote

the information state resulting when g is implemented and sg,t is observed up to time
t. Then for all t = 0 . . . T,

Vt
(
πt

(
sg,t)) ≤ Jg

t

(
sg,t) := max

s∈LT /πt(sg,t)

{
T−1∑
	=t

cg
	(s) + Kg

T(s) | sg,t

}
, (22)

where LT/πt(sg,t) is the postlanguage of the information state πt(sg,t).
(2) Let g∗ be an observation policy such that for all t and for all π ∈ Ft, g∗

t (π)

achieves the minimum in Eq. 21. Then g∗ is an optimal observation policy and

Vt
(
πt

(
sg,t)) = Jg∗

t

(
sg,t) (23)

for all sg,t.
The proof of (1) proceeds by induction. For t = T, let

Jg
T

(
sg,t) = {

Kg
T(S) | sg,t} , (24)
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where S is the set of all s ∈ LT that produce an observable trace equal to that of sg,t

under the observation policy g. Therefore S = πt
(
sg,t

)
and

Jg
T

(
sg,T) =

{
0 if πt

(
sg,T

)
is certain

∞ otherwise.
(25)

From Eqs. 20 and 25 we conclude that:

VT
(
πt

(
sg,t)) = Jg

T

(
sg,T)

(26)

for all sg,T ∈ LT . This establishes the basis for the induction.
Suppose now that Eq. 22 holds for the index t + 1. Then, by the induction

hypothesis and Eq. 21,

Jg
t

(
sg,T) =

⎧⎨
⎩cg(π(sg,T),t) + max

σ∈�

⎧⎨
⎩ max

s∈LT /δ̂
gt(π(sg,T))(π(sg,t,σ ))

{
T−1∑

	=t+1

cg
	(s) + Kg

T(s) | sg,tσ

}
| sg,t

}}
(27)

≥ cg(π(sg,T),t) + max
σ∈�

Vt+1

(
δ̂gt(π(sg,T))

(
π(sg,t, σ )

))
(28)

≥ min
u∈2�

co

{
cu + maxσ∈�Vt+1

(
δ̂gt(π(sg,t,t))

(
π

(
sg,t, σ

)))}
(29)

= Vt
(
π

(
sg,t)) . (30)

The first inequality holds due to the induction hypothesis; the second inequality holds
because g ∈ H is fixed and not necessary optimal. Therefore Eq. 22 holds for t and
this completes the induction step and proof of statement (1).

To prove (2), we first prove Eq. 23 by induction. From Eq. 26 we know Eq. 23
holds for 	 = T. Suppose it holds for 	 = t + 1. Then, in the derivation of Eq. 30
inequalities become equalities. The first inequality becomes equality by the induc-
tion hypothesis; the second inequality becomes inequality because, for every sg∗,t,
g∗

t

(
π

(
sg∗,t)) achieves the minimum. Thus Eq. 23 holds for all sg∗,t, for all t. It remains

to show that g∗ is optimal. For t = 0, Eq. 23 gives

Jg∗
0 = V0(LT), (31)

where LT is the known initial information state of the automaton. For any other
g ∈ H, setting t = 0 we obtain

Jg
0 ≥ V0(LT). (32)

Therefore g∗ is an optimal observation policy, and V0(LT) is the corresponding
optimal cost. ��

2.5 Example

We illustrate the results of the previous subsection by applying the active acquisition
algorithm to the finite-state machine in Fig. 2. In this example, �uo = { f, u}, �co =
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Fig. 2 An automaton used to
illustrate the active acquisition
method. �uo = { f, u},
�co = {a, b , c}, �f = { f }, and
T = 3

{a, b , c}, and �f = { f }. The costs associated with each event are νa = 4, νb = 1, and
νc = 2.

The longest trace in the language of this automaton contains three events. The
final σ -field is thus F3, defined as:

F3 = σ(ubb , f ca, uaa, f ab). (33)

The elements of F3 are listed in the first column of Table 1. For each π ∈ F3, we
assign a cost based on whether or not the information state is certain; these costs are
shown in the second column of Table 1.

The σ -field F2 is a proper subset of F3, given by the following:

F2 = σ(ubb , f ca, uaa + f ab). (34)

Table 1 Information states
and their associated costs for
the automaton in Fig. 2

π V3(π) V2(π) V1(π) = V0(π)

uaa 0 — —
ubb 0 0 —
fab 0 — —
f ca 0 0 —
uaa + ubb 0 — —
fab + fca 0 — —
uaa + fab ∞ 1 —
uaa + fca ∞ — —
ubb + fab ∞ — —
ubb + fca ∞ 1 —
L3/uaa ∞ — —
L3/ubb ∞ ∞ —
L3/ fab ∞ — —
L3/ f ca ∞ ∞ —
L3 ∞ ∞ 4
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Table 2 Calculation of an
optimal observation action for
the information state
uaa + fab at time t = 2

u c(u) δ̂u,2(π, a) δ̂u,2(π, b) max V3
(
δ̂u,2(π, σ )

)
∅ 0 uaa + fab uaa + fab ∞
{a} 4 uaa fab 0
{b} 1 uaa fab 0
{a, b} 5 uaa fab 0

The strings uaa and f ab have an identical projection up to time t = 2 and thus are
part of the same element of the partition of L3 that generates F2.

For each π ∈ F2, the cost V2(π) is calculated using the dynamic programming
equation:

V2(π) = min
u∈2�co

{
c(u) + max

σ∈�
V3

(
δ̂u(π, σ )

)}
. (35)

The determination of an optimal observation action for the information state
uaa + f ab at time t = 2 is shown in Table 2. Since c cannot be the next event from
this information state, four observation actions must be evaluated at uaa + f ab : ∅,
{a}, {b}, and {a, b}.

Table 2 indicates that an optimal observation action for this information state is
{b}; therefore the cost of the state V2 is νb = 1. The values of V2 for all π ∈ F2 are
shown in Table 1.

All strings in L3 have the same projection up to t = 1 and thus F1 = σ(L3) =
{L3,∅}.

V1(L3) = min
u∈2�co

{
c(u) + max

σ∈�
V1

(
δ̂u (L3, σ )

)}
. (36)

The value of V1(L3) computed by this equation is 4, corresponding to the obser-
vation action {b , c}.

At t = 0, since both events are unobservable, the dynamic programming equation
indicates that V0(L3) = V1(L3). Therefore the minimum worst case observation cost
is V0(L3) = 4.

Table 3 shows an optimal policy g∗ = (
g∗

0, g∗
1, g∗

2

)
for all information states that

are reachable under g∗. Note that, in order to determine which information states
were reachable, it was necessary to determine an optimal observation policy for all
information states.

Table 3 An optimal
observation policy for
diagnosing the automaton
in Fig. 2

Only reachable information
states are shown

π g∗
0 g∗

1 g∗
2

ubb — — ∅
f ca — — ∅
uaa + fab — — {b}
L3 ∅ {b , c} —
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2.6 Limited lookahead algorithm

Determining an optimal observation policy using the method described in the
previous subsection can become computationally formidable for large T. In this
subsection, we propose a limited lookahead algorithm that approximates an optimal
observation policy.

Roughly speaking, in the limited lookahead algorithm a sequence of active
acquisition programs are run for a time horizon T ′ < T. Information states at T ′
are assigned infinite cost only if it is not possible to diagnose L(G) from all possible
future observations. This notion of information state diagnosability (as opposed to
diagnosability of a language, which was defined in Definition 6) is formalized in the
following definition.

Definition 7 An information state π ∈ Ft is diagnosable at time t if the cost Vt(π)

determined by the active acquisition dynamic program is finite.

Definition 7 indicates that from a diagnosable information state, the cost-to-
go required to diagnose L(G) is finite. The following statement is equivalent to
Definition 7, and relates the concepts of information state diagnosability and lan-
guage diagnosability.

Theorem 4 Express an information state as π = s1t1 + s2t2 + · · · + sntn, where ‖si‖ =
t for i = 1 . . . n. The information state π is diagnosable at time t if and only if the
language Lπ := P̂

(
s1

)
t1 + P̂

(
s2

)
t2 + · · · + P̂(sn)tn is diagnosable at finite cost, where

P̂ is the projection of � onto �uo.

Proof (Sufficiency) Suppose that Vt(π) < ∞. Then there exists a policy g =
(gt, gt+1, . . . , gT−1) such that the information state πT reached by implementing g
along any ti is certain. The final information state πT consists of those sjt j ∈ π that
are consistent with the observations made along ti under policy g.

To diagnose Lπ , implement the policy g′ = (∅,∅, . . . , ∅, gt, gt+1, . . . , gT−1). Since
the first t events along any string in Lπ are unobservable, along any string P̂

(
si
)
ti,

the final information state π ′
T consists of those P̂

(
s j

)
t j that are consistent with the

observations made along ti. Since the policy g′ is identical to g for times greater than
t, P̂

(
s j

)
t j ∈ π ′

T if s jt j ∈ π . Since P̂
(
s j

)
t j and s jt j contain the same failure events, π ′

T is
certain if πT is certain. Therefore, the policy g′ diagnoses Lπ .

(Necessity) We prove necessity by proving the contrapositive statement. Suppose
that Vt(π) = ∞. Then for any g = (gt, gt+1, . . . , gT−1), there exists a ti such that the
information state πT reached by implementing g along ti is uncertain.

Select any policy g′ = (g0, g1, . . . , gt−1, gt, . . . , gT−1) and consider the final infor-
mation state reached by implementing g′ along P̂

(
si
)
ti. Again, since the first t events

along any string in Lπ are unobservable, the final information state π ′
T consists of

those P̂
(
s j

)
t j that are consistent with the observations made along ti. Since P̂

(
s j

)
t j

and s jt j contain the same failures, π ′
T is uncertain if πT is uncertain. Since for any g

we can choose a ti such that πT is uncertain, for any g′ we can choose a P̂
(
si
)
ti such

that π ′
T is uncertain. Therefore Lπ is not diagnosable. ��
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To start the limited lookahead algorithm, we choose a horizon T ′ < T and
consider the σ -field FT ′ . For each information state π ∈ FT ′ , a cost is assigned as
follows:

VT ′(π) =
{

0 if π is diagnosable at T ′

∞ otherwise.
(37)

The cost VT ′(π) is assigned to each element in FT ′ by constructing the language
Lπ described in Theorem 4, and then using the result of Theorem 2 to determine
whether or not Lπ is diagnosable.

The dynamic programming equation solved is identical to that in the previous
subsection:

Vt−1(π) = min
u∈2�co

{
cu + max

σ∈�
Vt

(
δ̂u(π, σ )

)}
for π ∈ Ft−1, t = 1, 2, . . . , T ′ − 1. (38)

Once the dynamic program is solved, V0(LT ′) and an observation action g∗
0(LT ′)

for t = 0 are determined. The observer then implements g∗
0(LT ′) and calculates the

information state at t = 1 based on g∗
0(LT ′) and its observation.

For 0 < t ≤ T − T ′, the observer generates a sub-σ -field GT ′+t ⊆ FT ′+t by consid-
ering only those elements in FT ′+t that are reachable from πt, the information state
at time t resulting from the implementation of policy g∗

0, g∗
1, . . . , g∗

t−1 along the system
trajectory up to time t − 1. This sub-σ -field GT ′+t is defined as:

GT ′+t = {A ∈ FT ′+t : A ∩ πt = A}. (39)

Costs are assigned to each element of GT ′+t as:

VT ′+t(π) =
{

0 if π is diagnosable at T ′ + t, π ∈ GT ′+t

∞ otherwise,
(40)

and then the dynamic program in Eq. 38 is used to calculated an observation action
for πt. The observer then implements that action, calculates a new information state
πt+1, and iterates the algorithm to find an observation action for that information
state.

The algorithm finishes when t = T − T ′ and the observer looks ahead to the final
time horizon of the system. The observer implements the policy specified by the
solution of the dynamic program (20–21) where the horizon is T − T ′ and the initial
information state is πT−T ′ .

As an example, consider the automaton in Fig. 3, and suppose �co = {a, b , c, d, e},
νa < νb < νc < νd < νe and T ′ = 2.

At t = 0, the observer considers the σ -field F2 = σ( f c, ub , f a + ua). Since every
element of F2 is diagnosable at t = 2, solving Eq. 38 results in the observation action
∅ at t = 0.

At t = 1, the information state generated by the observation action at t = 0 is
necessarily π1 = LT . Consider G3 = {A ∈ F3 : A ∩ πt = A} = F3. Every element of
G3 is diagnosable at t = 3, and, as a result of Eq. 38, the observation action is ∅.

At t = 2, the information state is π2 = LT , and the observer considers G4 = {A ∈
F4 : A ∩ πt = A} = F4. The information states fcadd + ubbed and fabee + uaade are
not diagnosable at t = 4 and thus have infinite cost. Using Eq. 38, we find that an
optimal observation action at t = 2 is to observe {a}.
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Fig. 3 An automaton used
to illustrate the limited
lookahead method

Thus there are two possible information states at t = 3: if a is observed when t = 2,
π3 = fcadd + uaade; otherwise, π3 = fabee + ubbed.

In the case where a is observed, the observer generates the σ -field G5,a using
Eq. 39:

G5,a = {∅, fcadd, uaade, fcadd + uaade} , (41)

and assigns a cost to each element of G5,a according to Eq. 40; since no further
observations can be made after t = 5, an information state in G5,a is diagnosable
only if it is certain. By Eq. 38, we find that the observation actions are to observe
no events when t = 3 and then to observe {d} when t = 4. A similar calculation for
the case where εo is observed at t = 3 finds that the same sequence of actions is used
there as well.

At each stage of the limited lookahead algorithm, we optimize the worst case
T ′-step observation cost. The result of this policy is a “procrastinating” diagnoser
that makes just enough observations within the lookahead window to ensure that
there is some policy that will allow the failure to be diagnosed after the window has
passed.

Had the observer used the algorithm of Section 2.4, it would have determined that
the worst-case observation cost is 2νa, which is less than νa + νd.
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2.7 Active acquisition of information for stochastic automata

The active acquisition of information problem can be solved for stochastic automata
in an analogous manner. The model is identical to that of Section 2.1, except that the
partial transition function δ is extended to a state transition probability function p.

Consider a stochastic automation Gs, formally defined as:

Gs = (�, X, p, x0), (42)

where

• � is a finite set of events
• X is a finite state space
• p : X × � × X → [0, 1] defines the state transition probability function
• x0 ∈ X is the initial state

As in the logical case, the event set is partitioned into the sets �uo, �fo, and �co,
and again we assume the automaton satisfies (A1) and (A2). The state transition
probability function p(x1, e, x2), defined for all events and pairs of states, denotes
the probability that, in state x1, the event e will occur and cause a transition to state
x2. For ease of notation, we also assume that p(x1, e, x2) > 0 for at most one x2 ∈ X,
and thus define the transition function δ as δ(x1, e) = x2 if p(x1, e, x2) > 0.

The probability that an event e follows a trace s is therefore given by:

Pr(e | s) = p(δ(xo, s), e). (43)

Consider an arbitrary but fixed observation policy g and define the expected cost
corresponding to g by

J(g) = Eg

{
T−1∑
t=0

cg
t (s) + Kg

T(s)

}
, (44)

where cg
t (s) denotes the cost of implementing policy g at time t along trajectory s and

Kg
T(s) is the terminal cost incurred by g at time T along the string s. The cost Kg

T(s)
is defined as follows. For any s ∈ LT let

χ̂
g
T(s) = {

s ∈ χ
g
T(s) : Pr

(
s | yg,T(s)

)
> 0

}
, (45)

where yg,T(s) denotes the sequence of observation incurred along the string s when
g is implemented. Then

Kg
T(s) =

{
0 if χ̂

g
T(s) is certain,

∞ otherwise.
(46)

Using χ̂
g
T(s) for s ∈ LT , we define when a language is diagnosed by an observation

policy.

Definition 8 A language L(G) is diagnosed by an observation policy g if, for all s ∈
LT , χ̂

g
T(s) is certain with respect to all failure types.

The above definition is the stochastic analogue to Definition 5 for logical, cyclic,
timed automata. Definition 6 holds for both logical and stochastic acyclic, timed
automata.
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The active acquisition of information problem for diagnosis of acyclic, timed
stochastic automata is defined as:

Problem SA Find a policy g∗ ∈ H such that

J(g∗) = inf(J(g)|g ∈ H). (47)

A space of information states appropriate for Problem SA is the space of PMFs on
LT . An information state at time t is the conditional PMF on LT given the sequence
of observations yt up to t and the sequence of control actions ut−1 up to time t − 1.
The information state at t = 0 is the a priori PMF on LT . The probability of each
string is updated according to the following equation

Pr(s1es2 | π, yt+1, ut)=

⎧⎪⎪⎨
⎪⎪⎩

Pr(e|s1) Pr(s1|π) Pr(s2|s1e)∑
s′∈Lt

Pr(e|s′) Pr(s′ |π) Pr(s2|s′e) if yt+1 = e
Pr(e|s1) Pr(s1|π) Pr(s2|s1e)∑

s′∈Lt

∑
e′∈�ut ,unobs

Pr(e′ |s′) Pr(s′ |π) Pr(s2|s′e′) if e ∈ �ut,unobs and yt+1=εo

0 otherwise.
(48)

If the event e is observed at time t, the probability of all traces in LT that do
not contain e at time t must be zero; the probabilities of the remaining traces are
computed by normalization. If εo is observed, the probability of all traces where
an event observable under our observation action at time t occurs is zero, and the
probabilities of the remaining traces are again computed by normalization.

There is a strong relationship between the stochastic and logical information state
transition functions. As events are observed, traces that are not consistent with the
observations are eliminated from the logical information state; in the stochastic case,
the probability of these traces is set to zero. Thus, at time t, the conditional PMF is
always supported on some element of the σ -field Ft.

Furthermore, given the observations up to t and the observation actions up to
t − 1, the conditional PMF on the traces of LT is uniquely defined and is independent
of the observation policy g (this result is, as expected, consistent with that of Lemma
6.5.10 of Kumar and Varaiya (1986)).

Let PLt be the space of all PMFs supported on the elements of the σ -field Ft, t =
0 . . . T. For any such PMF π , denote by S(π) its support. Then the dynamic program
that solves Problem SA is

VT(π) =
{

∞ if S(π) is certain
0 otherwise.

(49)

for π ∈ PLT , and

Vt−1(π)= min
u∈2�co

{
cu+

∑
σ∈�

Vt
(
δ̂u,t(π, σ )

)
Pr(σ | π(t − 1))

}
for π ∈ Ft−1, t=0, 1, . . . , T,

(50)

where δ̂u,t(π, σ ) is defined by Eq. 48. Any solution of the above dynamic program
provides an optimal observation policy for Problem SA. The proofs of the optimality
of this dynamic program is similar to the proof of Theorem 3 and is therefore omitted.
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A remark for the remainder of the paper: The results of Section 2 show that in
searching for an optimal observation policy g := (g0, g1, . . . , gT−1), it is sufficient to
restrict attention to functions of the form

gt : Ft → 2�co , t = 0 . . . T − 1, (51)

where Ft is the maximal σ -field (defined in Section 2.2) at time t. Based on these
results we will restrict attention to policies of the above form for all the variations
of Problem A and SA formulated in this paper. The proper maximal σ -fields will
be identified for each problem. The presentation in the remainder of the paper will
assume that the maximal σ -fields for each problem are the spaces of information
states for that problem.

3 Acyclic untimed automata

3.1 Introduction

In this section we relax the assumption (A2) from the previous section and consider
an acyclic automaton that evolves in the standard manner, i.e., where events can
occur spontaneously at any instant in time. For the diagnosis problem we follow a
procedure similar to that of the previous section, differing only in the construction of
the filtration of maximal σ -fields.

We choose to take a more general approach in this section and show how
the maximal σ -field approach can be applied to both the diagnosis problem and
supervisory control problem. The proper general construction of maximal σ -fields
in the presence of control is presented, and the diagnosis and supervisory control
problems are both presented in this framework. Solutions to both problems are given
in both stochastic and logical cases.

3.2 Problem formulation

As in the previous section, we consider an automaton G = (X, �, δ, x0) and maintain
assumption (A1). We no longer require assumption (A2) synchronizing events to
ticks of a clock; in its place we consider the following:

(A3) The amount of time elapsed between two successive events is bounded by
some positive constant.

This assumption allows us to conclude that the system behavior has reached a final
state because if no event is observed for a sufficiently long time, then the controlled
system must have reached a state where no further events are both feasible and
enabled.

The event set � is partitioned into controllable events �c and uncontrollable
events �uc. For each controllable event we assign a disabling cost κ : �c → [0,∞).
Since we may not wish to disable an event even though we can do so freely, we make
no distinction between freely controllable and costly controllable events.

At each information state, the action we wish to take consists of two parts:
deciding which set of costly observable events to observe and deciding which set of
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controllable events to disable. The cost of such an action u = (uctrl, uobs) is defined as:

c(u) =
∑
σ∈uo

ν(σ ) +
∑
σ∈uc

κ(σ ), (52)

where uctrl ∈ 2�c and uobs ∈ 2�co .
To set up the supervisory control problem, we define a specification K ⊆ L(G)

that represents the desired controlled behavior of the system. Assumption (A1)
forces the specification K to be acyclic and we denote the maximum length of the
set of strings in K by T. For the situation we define a control-observation policy g by
g : FT → 2�co × 2�c , where FT is the maximal σ -field at stage T with respect to the
specification K. The family of maximal σ -fields with respect to K will be defined in
Section 3.3. The σ -field FT is the space of information states for the problem studied
in this section. Our objective is to find a control-observation policy g that achieves
the specification K (that is, it does not allow strings that extend beyond K, not does
it prevent any string in K from being reached by the system) and minimizes a worst-
case cost defined by Eq. 53 below. To formulate precisely this problem we need the
following definitions.

Definition 9 A specification K is realized by a policy g if the following is true: if s is
a string in L(G) such that s is reachable under g and there are no feasible events at s
enabled under g, then s ∈ K.

Definition 10 Let H denote the set of all policies that realize K. K is realizable if H
is non-empty.

Define the performance criterion:

J(g) =
{

max
s∈L(G)

T∑
t=1

cg
t (s) + Lg

t (s)

}
, (53)

where cg
t (s) denotes the cost of implementing policy g at stage t along the trajectory

s and

Lg
T(s) =

⎧⎪⎨
⎪⎩

0 if the information state reached by implementing
g along s is a subset of K

∞ otherwise.

(54)

The performance criterion is thus the maximum total cost of policy g. The
active acquisition of information for supervisory control with acyclic specifications
is defined as follows.

Problem C Find a policy g∗ ∈ H such that

J(g∗) = inf(J(g)|g ∈ H). (55)

3.3 Construction of maximal σ -fields

The presence of control allows for a further refinement of information than in the
case of the diagnosis problem, where the behavior of the system is merely observed
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and not affected by the supervisor. For example, consider two strings s1 = aσ1b and
s2 = aσ2b , where σ1 and σ2 are both unobservable and controllable. Since P(s1) =
P(s2) = ab , these two strings are indistinguishable to a diagnoser that passively
observes the system. However, a controller may choose to disable σ1 and thus, when
ab is observed, the controller can conclude that s2 has occurred and s1 has not. Thus
to construct a sequence of maximal σ -fields for the control problem considered in
this section, it is not sufficient to consider traces that are merely equivalent under
projection; we must consider traces that are equivalent under control actions as well.

3.3.1 Control projection

Suppose that two strings contain an identical sequence of observable events. In order
to have an admissible supervisor, we must choose the same control action after both
of these strings occur. This control action may enable or disable any number of
unobservable or observable controllable events, but we cannot take a new control
action until a new observation is made.

Furthermore, suppose that between successive observable events, these two
strings contain identical sets of unobservable controllable events. If we choose to
disable one of these strings by disabling an unobservable event, we must also disable
the second string as that string also contains any event that we can feasibly disable.
Therefore, we must disable both these traces or we must disable neither.

We formalize this notion of traces that must be enabled or disabled jointly using
the idea of the control projection. We extend the standard projection operation by
introducing symbols to indicate which set of unobservable controllable events occurs
between each pair of observable events in the projection.

We denote the set of symbols specifying the sets of unobservable events as
CA. Each symbol in this alphabet will be of the form 1A, where A is a set of
unobservable controllable events. For example, if our system has three unobserv-
able controllable events {α, β, γ }, the associated alphabet is CA = {

1∅, 1{α}, 1{β},
1{γ }, 1{α,β}, 1{α,γ }, 1{β,γ }, 1{α,β,γ }

}
.

The control projection is a string whose events alternate between the symbols
indicating controllable unobservable events and observable events. Formally it is
defined for events as:

CP(σ ) =

⎧⎪⎨
⎪⎩

σ if σ ∈ �o

1{σ } if σ ∈ �c ∩ �uo

ε otherwise.

(56)

where sf denotes the final event in the string CP(s). Each symbol in CA indicates the
unobservable events that can be disabled before the next observation is made.

When the control projection is extended to traces, we must ensure the alternation
of symbols from CA and symbols from �o. In the case where two observable events
may end up adjacent, we simply insert the symbol 1∅ between them, as there as no
unobservable events, either controllable or uncontrollable, between those events.
When two symbols in CA are adjacent, we must merge the two symbols using the
function ∨ : CA × CA → CA:

1A ∨ 1B = 1A∪B. (57)
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The merge function is extended to strings in (CA�o) ∗ CA by maintaining all symbols
in the string except for the last, which is merged with the symbol to be concatenated
to the string.

(t1A) ∨ 1B = t1A∪B. (58)

Formally, the function is extended to traces as CP : �∗ → (CA�o)∗ such that:

CP(sσ) =

⎧⎪⎨
⎪⎩

CP(s)1∅CP(σ ) if sf ∈ �o and σ ∈ �o

CP(s) ∨ 1{σ } if sf ∈ CA and σ ∈ �c ∩ �uo

CP(s)CP(σ ) otherwise.

(59)

For each string of unobservable events, the control projection records the set
of controllable events that occur along that string. If two strings contain the same
sequence of observable events and the same sets of unobservable controllable
events between pairs of observable events, it is not possible to choose a policy that
distinguishes between these two traces.

3.3.2 Formulation of σ -fields

The maximal σ -fields are defined with respect to the specification K and not the
language generated by the automaton. For n = 0...T, we define

Xn =
{

s ∈ CP−1
L [CP(K)] : max

t∈P(K)/P(s)
‖t‖ = n

}
, (60)

and we define the sequence of σ -fields as follows:

Ft = σ
(∪t

n=0 Xn
)
. (61)

As t increases, each σ -field Ft is generated by a larger set of traces in L(G).
Therefore F0 ⊆ F1 ⊆ · · · ⊆ FT .

The untimed case differs from the timed case in that strings in the information
state are not extended to stage t. In the untimed case, it is necessary to know what
the most recent observed event was to choose a new observation action, instead of
consulting the clock.

In return for increasing the complexity of the filtration (as opposed to the timed
case), we do not need to define distinct cost functions and information state transition
functions for each stage t.

3.3.3 Example

Figure 4 shows an automaton marking the specification K = {ac1b , ac2b , c} where
�o = {a, b , c} and all events are controllable. We construct σ -fields using the
specification only; since information states outside the specification are certainly
undesirable, we will need not to calculate costs for such states.

To construct the σ -field, we partition K into three generating sets:

X0 = {ac1b , ac2b , c} (62)

X1 = {a} (63)

X2 = {ε}. (64)
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Since c1 and c2 are both controllable, the two elements of the set X0 can be
distinguished even though they have the same projection onto �o; since we could
choose to disable c1 but not c2 or vice versa, if the string ab is observed we may be
able to know which one of the two strings in X0 actually occurred. Because we can
distinguish between these two strings as a result of our control actions, they have
distinct control projections.

The σ -fields are generated from these sets as follows:

F0 = σ
(
X0

)
(65)

F1 = σ
(
X0, X1

)
(66)

F2 = σ
(
X0, X1, X2

)
. (67)

Since the generating sets of the σ -fields increase, the σ -fields are nested as F0 ⊆ F1 ⊆
F2. The elements of these σ -fields are enumerated in Table 4.

3.4 Assigning costs to information states

In order to find an optimal control-observation policy, we first must determine which
information states we wish to avoid at any (finite) cost. Since our objective is to
achieve a given specification, we wish to avoid allowing the possibility that the system
has executed a trace that lies outside the specification. Therefore we initialize our
assignment of costs by assigning an infinite cost to these illegal information states π :

V̂(π) = ∞ if π �⊆ K. (68)

In general, our specification K may not be prefix-closed; therefore we not only
need to ensure that we do not allow the system behavior to exceed K—we also need
to ensure that we do not select a control action that allows the system to reach a
deadlock state before the specification is achieved. To disallow policies that could

Fig. 4 An automaton for
illustration the use of active
acquisition to find an optimal
control specification
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Table 4 Elements of the
generated σ -fields Fn

F0 F1 − F0 F2 − F1

∅ a ε

ac1b a + ac1b ε + ac1b
ac2b a + ac2b ε + ac2b
c a + c ε + c
ac1b + c a + ac1b + c ε + ac1b + c
ac2b + c a + ac2b + c ε + ac2b + c
ac1b + ac2b a + ac1b + ac2b ε + ac1b + ac2b
ac1b + ac2b + c a + ac1b ε + ac1b + ac2b + c

+ac2b + c
ε + a
ε + a + ac1b
ε + a + ac2b
ε + a + c
ε + a + ac1b + c
ε + a + ac2b + c
ε + a + ac1b + ac2b
ε + a + ac1b + ac2b + c

potentially deadlock, we introduce the stopping cost function V̂s, defined as follows:

V̂s(π) =
{

0 if π ⊆ K

∞ otherwise.
(69)

Note that ∅ ⊆ K and thus V̂s(∅) = 0. If an information state is in K but not K, its
stopping cost will be infinite since we do not want the system to terminate in such
a state; however, its cost function V(π) could be finite as there may exist a policy
that reaches π on its way to achieving K. Thus we cannot determine V(π) for these
information states in advance. Vs is defined for all possible sublanguages of K, even
those that do not appear in the sequence of σ -fields.

If certain events can be disabled, the information state transition depends on
which events have been disabled as well as which events have been observed. Thus
for any u ∈ 2�co × 2�c , the information state transition function ˆ̂

δu : Ft × �u,obs ∪
ε → Ft+1 at stage t, t=0. . . T-1 is defined as

ˆ̂
δu(π, σ ) = {

stσ : s ∈ π ∧ t ∈ (�u,unobs ∩ �u,enabled)
∗} (70)

ˆ̂
δu(π, ε) = {

st : s ∈ π ∧ t ∈ (�u,unobs ∩ �u,enabled)
∗ ∧ �(δ(x0, st)) ⊆ �u,disabled

}
. (71)

The structure of the information state transition function allows us to quickly
conclude that many of the information states in F1, . . . , FT are unreachable as it
is not possible for a reachable information state to contain two strings where one is a
proper prefix of another. We will call an information state π where no string in π is
a proper prefix of another string in π an antichain.

Theorem 5 All reachable information states are antichains.

Proof Suppose that an information state π = s1 + s2 + · · · + sn is an antichain. Then
the next observation will either be ε or an observable event σ . If ε is observed, the
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new information state must be an antichain because if there existed ti, t j in δ̂u(π, ε)

such that ti were a prefix of t j, then there would be an event enabled after ti, which
cannot be the case as a result of Eq. 71.

If an observable event σ is observed, the new information state will
be of the form δ̂u(π, σ ) = s1u1,1σ + s1u1,2σ + · · · + s1u1,k1σ + · · · + snun,1σ + · · · +
snun,knσ , where each ui, j ∈ �∗

uo and where ui, j �= ui,k if j �= k.
Since the continuations ui, jσ each contain the event σ exactly once, no continua-

tion can be a proper prefix of an another because if that were the case σ would have
to appear twice in a continuation. Furthermore, since by assumption there do not
exist si, s j such that si is a proper prefix of s j, no continuations ui,k1σ, u j,k2σ can exist
such that siui,k1σ is a prefix of s ju j,k2σ , as that would require either si to be a prefix of
s j or vice versa.

Since the initial information state π0 = {ε} contains no prefixes, by induction, all
reachable information states are antichains. ��

As a result of this theorem, within the context of the example in Section 3.3.3, we
can eliminate most information states in Table 4 and solve the dynamic programming
equations only for those information states that are also antichains, provided that a
solution indeed exists for the particular system under consideration. In the set F2 −
F0, the only information states that are not determined to be unreachable by the
above theorem are ε, a, and a + c.

3.4.1 Size of the space of information states

Since each information state corresponds to an antichain, we can determine the
size of the space of information states by counting the number of antichains in the
automaton. If k = ‖�o ∪ ε‖ = ‖�o‖ + 1, the number of information states can be no
more than the number of antichains in a k-ary tree of depth T. That bound can be
computed using the recursion

N(t) = (1 + N(t − 1))k, (72)

with the initial condition N(1) = 1. The solution to this recursion is O
(
2kT )

, doubly
exponential with respect to T. In the timed case, the number of information states
at the time horizon T is O

(
2kT )

also; therefore, the size of the reachable set of
information states is of the same order even when the σ -fields are expanded in the
untimed case.

3.5 Solution existence

As in the case of acyclic, timed automata, we require conditions under which there
exists an optimal solution to Problem C. The required conditions relate to the
controllability and observation of the desired specification K.

Theorem 6 An optimal control policy exists if and only if the specification K is
controllable and observable with respect to �o, �c, and L(G).
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Proof (Sufficiency) Suppose K is controllable and observable with respect to �o, �c,
and L(G). Then K is achieved by the policy where g where

g(π) =
(
�o, �c/

{
σ ∈ �c : ∃sσ ∈ K(s ∈ π)

})
. (73)

(Necessity) Now suppose K is uncontrollable. Then there exists s ∈ K and σ ∈ �uc

such that sσ ∈ L(G) and sσ �∈ K. Consider any policy g. If g is to realize K, g must
enable the string s; let πg,s denote the information state reached by implementing
policy g along s. Since σ is feasible from this information state and takes the system
outside K, it must be disabled; but since σ ∈ �uc, it cannot be. Therefore there is
no feasible action at the reachable information state πg,s, and thus no policy g can
realize K.

Now suppose K is unobservable. Then there exist s1, s2 ∈ K and σ ∈ �c such that
P(s1) = P(s2), s1σ �∈ K and s2σ ∈ K. Consider any policy g. If g is to realize K, g must
enable s1; since P(s1) = P(s2), the information state reach by implementing g along s1

must also contain s2. Since s1σ �∈ K, enabling σ is not admissible since it would allow
an information state not in K; however, since s2σ ∈ K, disabling σ would not allow a
string in K to be realized. Therefore there is no admissible action at this information
state and thus no policy that realizes K. ��

3.6 Dynamic programming equations

For each information state in F0, we need to disable all feasible events and thus no
observations will be possible and no sensors need to be activated. The cost of each
information state in F0 is given by:

V(π) =
∑

σ∈�(π)

κ(σ ), (74)

where �(π) denotes the active event set of π , that is, the set of events that are feasible
following any string in π .

An optimal policy can then be calculated for information states π not in F0 by
solving the following dynamic programming equation.

V(π) = min
u∈2�c×�co

{
cu + max

σ∈�

[
V

(
δ̂u(π, σ )

)
, Vs

(
δ̂g(π)(π, ε)

)]}
, π ∈ FT . (75)

The reverse filtration of σ -fields indicates the order in which we must determine
the costs for various information states. The costs of information states in F0 depend
only on the costs of information states that are pre-assigned. The costs of information
states in F1 − F0 depend on the pre-assigned costs and the costs calculated for
elements of F0. We therefore solve the dynamic programming equation first for
elements in F0, then for elements in F1 − F0, and so on, and finally for the elements
in FT − FT−1.

3.7 Example computation on an optimal control policy

Using the dynamic program from the previous subsection, we calculate an optimal
control policy for the automaton in Fig. 4. The form of the resulting calculations is
very similar to that used for timed automata in the previous section.
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Table 5 An optimal control and observation policy for the automaton in Fig. 4

F2 − F1 Disable Observe F1 − F0 Disable Observe F0 Disable

ε {b , d} a a {σc3 } b c {b , d}
a + c — — ac1b {c}

ac2b {d}
ac1b + ac2b {c, d}
ac1b + c {b , c, d}
ac2b + c {b , d}
ac1b + ac2b + c {b , c, d}

Table 5 shows an optimal control policy for the automaton in Fig. 4. For each
information state in F0, we need not observe any events as our choice of control
action will disable all events and prevent any further observations. The cost incurred
for each information state is the cost of disabling all feasible events.

Once these costs have been calculated, we determine the costs for those reachable
information states in F1 − F0. The information state a + c is illegal for the following
reason. If the event b is enabled, then if the string executed by the system is c,
the trace cb outside the specification is enabled and we occur an infinite penalty;
however, if we disable b and the true string is a, then the system will deadlock and
we will incur an infinite stopping penalty.

For the information states a, the choice of control and observation action is not
unique as we may choose to observe b and thus not need to disable c and d, or we
could not observe b and then be required to disable c and d. We calculate the cost of
the information state a using the following equation:

V(a) = min
u∈2�c×�co

{
cu + max

σ∈�

[
V

(
δ̂u(a, σ )

)
, Vs

(
δ̂u(a, ε)

)]}
. (76)

3.8 Active acquisition for diagnosis

The development of the diagnosis problem is simpler than that of the control
problem as the inputless nature of a system under diagnosis simplifies the information
structure. An observation policy is a function g : FT → 2�co , where g(π) indicates
which events should be observed given that the information available to the policy
maker is the information state π . No control actions need to be determined.

In the absence of controllable events, the control projection of a string contains
no more information than the standard projection, as the control alphabet reduces to
the singleton symbol 1∅. Therefore we define σ -fields using the standard projection.
For n = 0...T, we define

Xn =
{

s ∈ P−1
L [P(K)] : max

t∈P(K)/P(s)
‖t‖ = n

}
, (77)

and we define the sequence of σ -fields as follows:

Ft = σ
( ∪t

n=0 Xn
)
. (78)
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Fig. 5 An automaton used to
illustrate the active acquisition
method for diagnosis for
acyclic, untimed systems. This
automaton is identical to that
shown in Fig. 2, except that
there is no longer a fixed
amount of time between
events. �uo = { f, u},
�co = {a, b , c}, �f = { f }, and
T = 3

Since no events can be disabled, the information state transition function can be

reduced to ˆ̂
δu : Ft × �u,obs ∪ ε → Ft+1 by:

ˆ̂
δu(π, σ ) = {stσ : s ∈ π ∧ t ∈ (�u,unobs)

∗} (79)
ˆ̂
δu(π, ε) = {st : s ∈ π ∧ t ∈ �∗

u,unobs ∧ �(δ(x0, st)) = ∅}. (80)

The main difference in the active acquisition technique between the control and
diagnosis problems is in how illegal information states are assigned. In the diagnosis
problem, an information state is illegal it indicates that we are uncertain as to whether
or not a failure has occurred when the process has terminated. We thus define a cost
for all π ∈ F0 as follows.

V(π) =
{

0 if π is F-certain
∞ otherwise.

(81)

The dynamic programming equation is as before is a simplified version of Eq. 75:

V(π) = min
u∈2�co

{
cu + max

σ∈�∪ε
V

(
δ̂u(π, σ )

)}
, π ∈ FT . (82)

Since no events are controllable in the diagnosis problem, the system cannot stop
as the result of any action we choose to implement. Because we only stop when the
system terminates, we do not need to consider an additional penalty for stopping
too soon as we do in the case of supervisory control. The costs V(π) for various
information states π ∈ FT are determined by the method describe in Section 3.6.

3.9 Diagnosis example

Consider the automaton in Fig. 5. This automaton has the same structure as that of
Fig. 2, except we no longer assume that events occur at “ticks of the clock.”

To define the generating sets {Xn}, we start with those traces where no continua-
tion is possible; for this example those traces are ac and bd, so

X0 = {uaa, fab , ubb , f ca}. (83)
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Similarly, X1 consists of those traces where one more observation is possible, and X2

is the set of traces where exactly two more observations are possible. The sets X0

through X2 are enumerated in Table 6. Note that these partitions are equal to the
sets used to generate the σ -fields in the untimed case.

These sets are used to generate the reverse filtration of σ -fields used for the
dynamic program. Using Eq. 78, the filtration σ -fields F0 . . .F2 are created. The
reachable elements of these σ -fields are enumerated in Table 7.

Note that while our σ -field F0 is identical to the σ -field F3 from the timed
example, the set of reachable elements in F2 − F1 is much larger than any of the
timed σ -fields.

Table 6 Construction of the
field generating sets Xn X2 X1 X0

ε f a + ua fab
ub uaa
f c ubb

f ca

Table 7 Reachable elements of the generated σ -fields Fn

F2 − F1 g∗(π) V(π) F1 − F0 g∗(π) V(π) F0 V(π)

ε {b , c} 4 ua + fa {b} 1 fab 0
ub ∅ 0 uaa 0
f c ∅ 0 ubb 0
ua + fa + ub — ∞ f ca 0
ua + fa + ubb {b} 1 fab + uaa ∞
ua + fa + f c — ∞ fab + ubb ∞
ua + fa + f ca {a} 4 fab + f ca 0
ub + fab {b} 1 uaa + ubb 0
ub + uaa ∅ 0 uaa + f ca ∞
ub + f c {b} 1 ubb + f ca ∞
ub + f ca {b} 1 fab + uaa + ubb ∞
f c + fab ∅ 0 fab + uaa + f ca ∞
f c + uaa {a} 4 fab + ubb + f ca ∞
f c + ubb {a} 4 uaa + ubb + f ca ∞
ua + fa + ub + f c — ∞ fab + uaa + ubb + f ca ∞
ua + fa + ub + f ca — ∞
ua + fa + ubb + f c — ∞
ua + fa + ubb + f ca — ∞
ub + fab + uaa — ∞
ub + fab + f c {b} 1
ub + uaa + f c {a} 4
ub + fab + f ca {b} 1
ub + uaa + f ca — ∞
f c + fab + uaa — ∞
f c + fab + ubb — ∞
f c + uaa + ubb {a} 4
ub + f c + uaa + fab — ∞
ub + f ca + uaa + f ab — ∞
f c + uaa + f ab + ubb — ∞
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To determine an optimal policy, we simply solve Eq. 82 for the untimed case just
as we solved Eq. 21 in the timed case.

4 Cyclic automata

In this section we remove the assumption that our automata must be acyclic and
consider the general class of automata where neither assumption (A1) nor (A2)
need be satisfied; we still require assumption (A3) to hold. The methodology of the
previous sections cannot be directly applied in this case because constructing σ -fields
in the same manner for cyclic automata would results in an infinite sequence of
σ -fields, and there would be no set of “final” information states from which to
initialize a dynamic programming solution. We present two methods of working
around this problem: we describe how the set of string-based information states can
be reduced to a finite set of “diagnoser states;” we also demonstrate how limited
lookahead methods as described in Section 2.6 can be applied in the cyclic case.

4.1 Problem formulation

We formulate the active acquisition of information problem for diagnosis of cyclic
systems in a manner similar to previous sections. For ease of notation we restrict
attention to the case where there is only one failure type, although these results can
be extended to the case of multiple failure types.1

As in the acyclic untimed case, we define an observation policy

g : F∞ → 2�co (84)

where

F∞ = lim
T→∞

FT = 2P−1
L [P(L(G))], (85)

and FT is the space of information states for the diagnosis problem of an acyclic
untimed automaton where the maximum string length is T. The σ -field F∞ is the
space of information states for the diagnosis problem under consideration. Thus if
π ∈ F∞ is the information available to the policy maker at a certain stage, then
g(π) ∈ 2�co specifies the set of costly observable events that must be observed at
that stage. Since the automaton is cyclic, there may be information states π ∈ F∞
generated from arbitrarily long sequences of observations. In Section 4.2 we show
how to compress the set of possible information states so as to ensure that the domain
of an observation policy is finite.

To proceed with the formulation of the problem of active acquisition of informa-
tion for the diagnosis of cyclic untimed automata, we need to introduce Definitions
11–16 which are the extensions of Definitions 4–6 for acyclic timed automata.

Definition 11 An information state π is F-certain if f ∈ s for all s ∈ π .

1In the case of multiple failure types, Definition 11 can be written as: an information state π is l-safe
if f ∈ l ⇒ f ∈ s for all s ∈ π and f �∈ l ⇒ f �∈ s ∧ f �∈ L/s for all s ∈ π .
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Definition 12 An information state π is N-safe if f �∈ s and f �∈ L/s for all s ∈ π .

Definition 13 An information state π is safe if π is F-certain or N-safe.

These definitions can be illustrated using Fig. 3. In the language generated by the
system in the figure, the information state π2 = fab + f cad is F-certain, as each
string in π2 contains the failure event f . The information state π2 = ubb + uaa is
N-safe because not only does no string in π2 contain a failure event, no failure event
is possible following any string in π2. Both information states π1 and π2 are safe.

If the system is in a safe information state, we need not make any more observa-
tions since we are certain as to the failure mode in the current information state and
in all future state. If the information state is not safe, we must choose an action that
ensures that another event will eventually be observed or else we may never diagnose
the failure.

Definition 14 An information state π is non-diagnosable if ∃M ∈ N such that for all
n ≥ M, ∃t ∈ L/π such that ‖t‖ = n and the information state obtained by implement-
ing any policy g along t is uncertain.

Definition 15 A language L(G) is diagnosed by an observation policy g if, for all
s ∈ L(G), the information state reached by implementing g along s is never non-
diagnosable.

Definition 16 Let H denote the set of all policies that diagnose L(G). The language
L(G) is diagnosable if H is non-empty, i.e., if there exists a policy that diagnoses
L(G).

Define the performance criterion:

J(g) = sup
s∈L(G)

{cg(s) + Kg(s)}, (86)

where cg(s) denotes the cost of implementing policy g along the trajectory s and

Kg(s) =
⎧⎨
⎩

∞ if the information state π g(s) reached by implementing g along s is
non-diagnosable

0 otherwise. (87)

The performance criterion is thus the maximum total cost of policy g along any string
of arbitrary length.

The active acquisition of information problem for diagnosis of cyclic systems, is
defined as follows.

Problem CD Find a policy g∗ ∈ H such that

J(g∗) = inf(J(g)|g ∈ H) and J(g∗) < ∞. (88)

4.1.1 Solution existence

Without loss of generality, we assume all observable events have a non-zero cost, i.e.
�co = �o. Solution existence for Problem CD can be determined using the following
definition and theorem.
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Definition 17 A language L(G) is strictly logically diagnosable with respect to �o

and �f if:

(∃N ∈ N)
(

n > N ⇒ D̂N(s) = 1 ∨ DF(s) = 1
)

, (89)

where the functions D̂N and DF are defined as:

D̂N(s) =
{

1 if PL[P−1(s)] is N-safe
0 otherwise,

(90)

DF(s) =
{

1 if PL[P−1(s)] is F-certain
0 otherwise.

(91)

Strict logical diagnosability is a more stringent condition than the logical diag-
nosability of Sampath et al. (1995). A system is strictly logically diagnosable if
when all possible events are observed, the system will surely transition to a safe
information state after a bounded number of states. Thus, a finite-cost observation
policy that diagnoses the failure can be easily determined: we must observe all
possible events until N events have been observed; at that point the system will be in
a safe information state and no more observations will have to be made at all. In the
next theorem we show that strict logical diagnosability is a necessary and sufficient
condition for the existence of a solution to Problem CD.

Theorem 7 A finite-cost observation policy exists if and only if L(G) is strictly
logically diagnosable with respect to �o and �f.

Proof (Sufficiency) Suppose L(G) is strictly logically diagnosable with respect to �o

and �f. Consider the following observation policy g. For any s ∈ L(G) let π ∈ F∞
be the information state resulting when g is implemented along s. If ‖s‖ ≤ N set
g(π) = �o; otherwise set g(π) = ∅. The cost of this policy is no greater than Nc(�co),
and thus a finite-cost observation policy exists.

(Necessity) Now suppose that L(G) is not strictly logically diagnosable with
respect to �o and �f. Then for all m ∈ N, ∃s ∈ L(G) such that ‖s‖ = m and neither
D̂N(s) = 1 nor DF(s) = 1. Suppose the system executes such a string s of arbitrary
length. The initial observation action must contain at least one event along s; suppose
that σ1 is the first such event. The information state reached after σ1 is observed
must be unsafe since neither D̂N(s) = 1 nor DF(s) = 1. Therefore we must choose
an observation action that contain at least one more event along s. However, after
the observation of the second event σ2, we must remain in an unsafe state. Since this
process can be repeated indefinitely without making a diagnosis, there must be an
infinite cost along s, and thus there is no finite-cost observation policy. ��

The condition of strict logical diagnosability is too severe for most problems as
it disallows the possibility of the system running in a normal, “unsafe,” state for an
indefinitely long time. Were a system to run in such a state indefinitely, a diagnosis at
infinite observation cost would be incurred; however, the number of events required
to occur for this cost to be incurred would also be infinite. Therefore, it would be
more realistic to find a criterion for solution existence coinciding with the concept of
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diagnosability introduced in Sampath et al. (1995). The definition of diagnosability is
given below.

Definition 18 A language L(G) is logically diagnosable with respect to �o, �f if

(∃n ∈ N)[∀s ∈ �(�fi)](∀t ∈ L/s)[‖t‖ ≥ n ⇒ DF(st) = 1]. (92)

To formulate the diagnosis problem so that finite-cost solution existence corre-
sponds to logical diagnosability, consider a performance criterion where future costs
are discounted at a rate β < 1:

Jβ(g) =
{

max
s∈L(G)

‖s‖∑
t=0

β tcg
t (s)

}
. (93)

The discounted active acquisition of information problem for diagnosis of cyclic
systems is defined as follows.

Problem DCD Find a policy g∗ ∈ H such that

Jβ(g∗) = inf(Jβ(g)|g ∈ H). (94)

The conditions for the existence of a solution to Problem DCD coincide with
Definition 18.

Theorem 8 A language L(G) is diagnosable at finite discounted cost if and only if it is
logically diagnosable with respect to �o and �f.

Proof (Sufficiency) Sufficiency will be shown by contradiction. Suppose L(G) is
logically diagnosable. Consider the observation policy g defined by g(π) = �o for
all π ∈ F∞; the cost of this policy is

∑
σ∈�o

ν(σ )

1−β
. The information state reached by

implementing g along any s is π(s) = P−1
L [P(s)]. Suppose π(s) were non-diagnosable.

Then by Definition 18, there exists N ∈ N such that there also exists t ∈ L/s such
that ‖t‖ = N and P−1

L [P(st)] is uncertain; therefore, at least one string in P−1
L [P(st)]

contains a failure event.
Furthermore, for all n ∈ N there exists u ∈ L/st such that ‖u‖ = n and P−1

L [P(stu)]
in uncertain. Therefore, a continuation u of arbitrary length can be appended to the
failure event, thus contradicting the assumption of logical diagnosability. Therefore,
no such π(s) can be reached, and thus L(G) is diagnosable at finite cost.

(Necessity) If L(G) is not logically diagnosable, ∃s ∈ L(G) such that for all n ∈ N,
there exists t ∈ L/s such that ‖t‖ > n and P−1

L [P(st)] is uncertain. The information
state reached by implementing any policy along st must contain at least all members
of the set P−1

L [P(st)] and therefore must be uncertain. Therefore, the original infor-
mation state π0 = ε is non-diagnosable by Definition 14; since this initial information
state is reachable under every policy, L(G) must be non-diagnosable. ��

4.2 Solution methods

A cyclic automaton generates an infinite number of string-based information states
in the σ -field 2P−1

L [P(L(G))]. In order to derive an optimal policy in the same way in the
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case of acyclic automata, we reduce the string-based information states to diagnoser
states, as the set of diagnoser states is guaranteed to be finite (Sampath et al. 1995).

Recall from Sampath et al. (1995) that a diagnoser state is an element of the set
Qo = 2Xo×�, where Xo is the set of states of the system reachable via an observable
event and � is the set of failure labels indicating which failure events may have
occurred in the system.

For each element in 2L(G), the diagnoser state associated with that element can be
computed by the function q : 2L(G) → Qo

q(π) =
⋃
s∈π

(δ(xo, s), LP(x0, s)). (95)

This mapping allows the infinite set of string-based elements in 2L(G) to be reduced
to a finite set of diagnoser states, or state-based information states. We can calculate
optimal policies using diagnoser states instead of string-based elements as a result of
the following theorem.

Theorem 9 If multiple information states in F∞. map to the same diagnoser state, the
same sequence of observation actions is optimal for any string after that diagnoser
state.

Proof Let π1 be a string-based information state such that q(π1) = q1. Suppose we
implement the action u ∈ 2�co and the event σ is observed. The new string-based
information state will be:

δ̂u(π1, σ ) = {stσ : s ∈ π1 ∧ t ∈ �u,unobs}. (96)

The diagnoser state corresponding to this information state is given by:

q
(
δ̂u(π1, σ )

) =
⋃

stσ∈δ̂u(π1,σ )

(δ(x0, stσ), LP(x0, stσ)) (97)

=
⋃

stσ :s∈π1∧t∈�u,unobs

(δ(x0, stσ), LP(x0, stσ)) (98)

=
⋃
s∈π1

⋃
tσ :t∈L/s∩�u,unobs

[δ(δ(x0, s), tσ), LP(LP(x0, s), tσ ] (99)

=
⋃

(x,l)∈q1

⋃
tσ :Lx(G)∩�u,unobs

(δ(x, tσ), LP(x, tσ)), (100)

where Lx(G) denotes the language generated by G starting from the state x.
This expression indicates that if the current diagnoser state q1 is known, the

succeeding diagnoser state depends only on the action u, not on the string-based
information state π1.

Now suppose π2 is a string-based information state distinct from π1, but q(π2) =
q1. If we implement the action u at the information state π2, the resulting diagnoser
state will be the same as it would be if we had implemented that action at π1.

Now consider a sequence u∗ := (u∗
1, u∗

2, . . . ) of optimal actions starting at π1 along
a string t. This sequence of actions will create a sequence of diagnoser states that
will reach a safe state when the system is diagnosed. If u∗were not also optimal for
π2 along t, there would be a less expensive sequence u′ of actions along t that would
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generate a sequence of diagnoser states. However, since t must be feasible after both
π1 and π2 (since they map to the same diagnoser state and hence to the same set of
states in the system), u′ would also be feasible after π1, contradicting our statement
that the sequence u∗ is optimal. Therefore if two string-based information states
map to the same diagnoser state, the same set of actions will be optimal for both
information states. Furthermore, when determining an optimal policy, we need only
consider an optimal action for each diagnoser state, as opposed to each string-based
information state. ��

The reduction of information states in F∞ to diagnoser states ensures that an
optimal policy need only be calculated for a finite number of information states;
that is, we can describe an optimal observation policy as a function g : Qo → 2�co ,
Qo being the finite set of potential diagnoser states. However, the reduction of set of
strings to diagnoser states sacrifices the sequentiality inherent in the strings; there is
no inherent “filtration” of diagnoser states that we can use as we have in the case of
acyclic systems.

However, there are certain diagnoser states for which we can assign a cost a priori
just as we assign costs to information states in the final maximal σ -field FT in the
case of untimed systems (Section 3.6). If a state is safe, we are sure that no more
observations are needed after reaching such a state and can assign zero cost to such
a state. Furthermore, we can test all remaining diagnoser states to see if the they are
non-diagnosable (Yoo and Lafortune 2002b; Jiang et al. 2001) and assign infinite cost
to any non-diagnosable state.

For all q ∈ Qo, define

V(q) =
{

0 if q is safe
∞ if q is non-diagnosable.

(101)

We state what it means for a state-based information state to be diagnosable in the
following definition.

Definition 19 A state-based information state π is diagnosable if the language
generated by the automaton G′ = (X ∪ x′, � ∪ { f, n}, δ′, x′) is diagnosable, where:

δ′(x′, f ) = x if (x, F)) ∈ π (102)

δ′(x′, n) = x if (x, N)) ∈ π (103)

δ′(x, σ ) = δ(x, σ ) if x �= x′. (104)

In short, a state-based information state π is diagnosable if the original automaton
with initial state π instead of x0 is diagnosable. To apply standard diagnosability
results, we append a new initial state to the automaton G and add unobservable
transitions to this state that bear the failure labels associated with each component
of the diagnoser state.

In order to determine whether a particular diagnoser state has a zero or infinite
cost, we need only test these conditions for diagnoser states qd consisting of at
most two components because if qd is non-diagnosable, any diagnoser state that is
a superset of qd will also be non-diagnosable.
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The minimum worst-case costs of the remaining diagnoser states can be deter-
mined using the following dynamic programming equations.

V(q) = min
u∈2�co

{
cu + max

σ∈�o

V
(
δ̂u(q, σ )

)}
, q ∈ Qo. (105)

For Problem DCD, the equation that needs to be solved is given by

V(q) = min
u∈2�co

{
cu + max

σ∈�o

β tV
(
δ̂u(q, σ )

)}
, q ∈ Qo, (106)

where the exponent t is defined as:

t = min
w∈�u),unobs

{‖wσ‖ : wσ ∈ L/π}. (107)

Future costs in Eq. 106 are thus discounted according to the minimum number
of events that may have occurred between the current observation and the next
observation.

The dynamic programming Eqs. 105–107 that, together with Eq. 101, solve
Problems CD and DCD, respectively, are sets of algebraic equations that in general
must be solved simultaneously for all diagnoser states. Such solutions appear in the
literature as characteristics of the free-time problem in stochastics (cf. Chapter 4 of
Kushner 1971).

4.2.1 Example

Figure 6 shows an example of a cyclic automaton, where the costs of each observable
event are given by ν(a) = 1, ν(b) = 2, ν(c) = 3, and ν(d) = 4. The results of the two-
component diagnosability tests are shown in Table 8.

For example, since the diagnoser state {(3, N), (4, F)} has infinite cost, any diag-
noser state containing both (3, N) and (4, F) will also have infinite cost. Also, if two
diagnoser states have zero cost and the same label, their union will have the same
label, e.g. since {(3, N), (4, N)} and {(8, N), (9, N)} both have zero cost and bear only
the label N, the diagnoser state {(3, N), (4, N), (8, N), (9, N)} also has zero cost.

Fig. 6 An automaton used to
illustrate the active acquisition
method for cyclic systems
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Table 8 Results of diagnosability tests for reachable two-component diagnoser states

4F 7F 0N 2N 3N 4N 5N 8N

7F 0 — — — — — — —
0N ? ? — — — — — —
2N ? ? ? — — — — —
3N ∞ ? ? 0 — — — —
4N ∞ ? ? 0 0 — — —
5N ? ∞ ∞ ? ? ? — —
8N ∞ ? ? 0 0 0 ? —
9N ∞ ? ? 0 0 0 ? 0

In Fig. 6, a finite-cost solution exists for Problem DCD but not for Problem CD.
To see this, consider the cost of the information state q = {(8, N} under Problem
DCD.

In the information state q = {(8, N}, only the two actions {c, d} and {a, b , d} and
actions that are supersets of those actions are admissible in that they prevent the
system from entering a non-diagnosable state. The equation to find an optimal action
for q is therefore:

V(8N) = min{c + d + βV(5N), a + b + d + β2V(8N)}. (108)

We now need to consider the cost of the information state {5, N}. Using the same
arguments as above, the only two actions we need to consider at {5, N} are {a, b} and
{a, c, d}. The equation to find an optimal action at {5, N} is:

V(5N) = min{a + b + βV(8N), a + c + d + β2V(5N)}. (109)

If we solve these equations simultaneously, we find that the optimal action at
{8, N} is {a, b , d} and the optimal action at {5, N} is {a, b}. The cost of the information
state {8, N} is then:

V(8N) = 7

1 − β2
. (110)

If β < 1, the cost of {8, N} is finite. However, if we consider Problem CD, β is
equal to exactly one and the cost of diagnosing the failure from this information
state becomes infinite. The loop between states 5 and 8 means that it is possible
for an arbitrarily large number of observations to be necessary, thus the worst-case
undiscounted observation cost must be infinite (Table 9).

Table 9 Calculation of optimal observation actions for the diagnoser states {(5,N)} and {(8,N)}

g(5N) g(8N) V(5N) V(8N)

{a, b} {c, d} a+b+β(c+d)

1−β2
c+d+β(a+b)

1−β2

{a, b} {a, b , d} a + b + β(a+b+d)

1−β2
a+b+d
1−β2

{a, c, d} {c, d} a+c+d
1−β2 c + d + β(a+c+d)

1−β2

{a, c, d} {a, b , d} a+c+d
1−β2

a+b+d
1−β2
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4.3 Limited lookahead algorithms for cyclic systems

Another technique to overcome the difficulties inherent in cyclic systems is to
consider a limited lookahead method similar to the one proposed in Section 2.6 for
acyclic timed automata. By restricting our attention to a finite lookahead horizon,
we no longer need to make the switch from string-based to state-based information
states, as the limited lookahead ensures that only a finite number of strings are
considered at each stage.

However, in applying the limited lookahead method to cyclic systems, we must
take note of a fine distinction that did not appear in acyclic automata; namely,
the distinction between preserving the property of diagnosability and the actual act
of diagnosing the failure. To see this difference, consider the example in Fig. 7
and suppose that �fo = {c}, �f = { f }, �co = {a, b}, and that the limited lookahead
horizon is T ′ = 2. Suppose we apply the limited lookahead algorithm for acyclic
automata defined in Eqs. 37–40 without modification. At each stage, the locally
optimal action is always to observe only c, as it will always be possible to pay to
observe a and b beyond the lookahead horizon. Such a policy ensures that the failure
event is always diagnosable, but the actual diagnosis can be put of indefinitely. The
“procrastination” characteristic described for the acyclic timed model is no longer
held in check by the existence of a final, finite, deadline for diagnosis.

In order to ensure the diagnoses are made in a timely fashion, we consider
a surrogate problem wherein we introduce a penalty for the delay in diagnosis
occurring in uncertain information states. The delay in diagnosis for an information
state π is defined as

delay(π) = max
s∈π

(‖t‖ : s = uf t). (111)

We require the delay penalty function R : N → R+ to have the following prop-
erties: (1) R is non-decreasing in N, and (2) ∃n ∈ N such that R(n) ≥ c(�co). The
first condition ensures that the penalty for delaying a diagnosis increases as the delay
increases, while the second ensures that if the diagnosis has been delayed a sufficient
length of time, it becomes optimal to make whatever observations are necessary to
complete the diagnosis.

Fig. 7 An automaton where
applying the acyclic limited
lookahead approach directly
results in the failure never
being diagnosed



Discrete Event Dyn Syst (2007) 17:531–583 569

When assigning costs at the lookahead horizon, we consider two cases. In the first
case we assign a cost based solely on the diagnosis delay before the horizon. All costs
required to make a diagnosis that are incurred beyond the horizon are disregarded,
even if all observations beyond the horizon must be made. In this case we assign a
zero cost to an information state is if it is diagnosable at the horizon.

In the second case, while determining whether or not the information state is
diagnosable, we also determine the worst-case diagnosis delay after the horizon when
all observations are made using the method of Yoo and Garcia (2003). By considering
the delay after the lookahead horizon, in general we reduce the delay in diagnosis as
the penalty function R increases more rapidly.

To construct the maximal σ -fields F ′
t used in the limited lookahead algorithm, we

first create the automaton GT ′ which generates all strings in L(G) of length T ′ of
less. For n = 0...T ′, we define a sequence of partitions using the method for acyclic
untimed automata:

X ′
n =

{
s ∈ P−1

L [P(GT ′)] : max
t∈P(GT′ ))/P(s)

‖t‖ = n
}

, (112)

and we define the sequence of σ -fields as follows:

F ′
t = σ

(∪t
n=0 X ′

n

)
. (113)

We then assign a cost to all information states in F ′
0:

V ′(π) =

⎧⎪⎨
⎪⎩

0 if π is F-certain
R(delay(π) + diagdelay(π)) if π is diagnosable
∞ if π is non-diagnosable.

(114)

We then determine the actions for all information states π in F ′
T ′ using the

following dynamic program

V ′(π) = R(delay(π)) + min
u∈2�co

{
cu + max

σ∈�∪ε
V ′(δ̂u(π, σ )

)}
, (115)

and proceeding as in Section 3.6. Upon solving this equation for V ′(ε), we implement
the observation action and when an event is observed, we generate a new information
state π̂and then construct a new sequence of σ -fields starting from π̂ .

We construct the automaton GT ′,π̂ , which generates those strings that are con-
tinuations of strings of π̂ of length T ′ or less. We then construct the sequence of
partitions:

X ′
π,n =

{
st ∈ P−1

L [P(GT ′)] : s ∈ π̂ ∧ max
t∈P(GT′ ))/P(s)

‖t‖ = n
}

, (116)

We define the sequence of σ -fields

F ′
t = σ

(∪t
n=0 X ′

π̂ ,n

)
, (117)

solve the corresponding dynamic program, and so on. Returning to the example in
Fig. 7, suppose ν(a) = 1.25, ν(b) = 2, and that the delay penalty function is given by:

R(n) =
{

n
3 n ≤ 12

4 otherwise.
(118)
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If we do not consider delay beyond the lookahead horizon, the penalty for an
information state of the form uc(ac)k + f c(bc)k is

R
(
delay

(
uc(ac)k + f c(bc)k)) = R

(‖c(bc)k‖) = R(2k + 1) =
{

2k+1
3 k ≤ 5

4 otherwise.

(119)

The action at π = ε is still to observe only c, as the penalty for the information
state uc + f c is 1

3 . At π = uc + fc, the action is still to observe only c, as the penalty
for the information state π = ucac + fbcb is 1, less than the cost of observing either
a or b . However, at that information state, the action chosen by the algorithm is to
observe a, as the cost of observing a and diagnosing the failure is 1.25, less than the
delay cost occurred at the information state π = ucacac + fbcbcb , which is 5

3 .
If we consider the delay beyond the lookahead horizon, instead of waiting until

π = ucac + f bcb to observe a and make the diagnosis, the decision to observe a is
made at π = uc + f b . At this point, the cost of delaying the observation is given by

R(delay(ucac + f bcb) + diagdelay(ucac + fbcb)) = R(3 + 1) = 4

3
, (120)

as we would need to wait for one event beyond the horizon to make the diagno-
sis. Thus by considering the delay after the horizon, the diagnosis is made more
promptly.

4.4 Problem formulation for stochastic, cyclic automata

In an analogous manner to the section on timed, acyclic automata, we now consider
the active acquisition of information problem for stochastic, cyclic automata. An
observation policy g and the space of information states for the problem formulated
in this section are defined in exactly the same way as in the case of logical cyclic
untimed automata. To precisely formulate the diagnosis problem, we restate the
definitions for logical, cyclic automata in the stochastic framework. These definitions
are conceptually equivalent to Definitions 11–16.

Definition 20 An information state π is F-certain if Pr(s : f ∈ s | s ∈ π) = 1.

Definition 21 An information state π is N-safe if Pr(s : f �∈ s ∧ f �∈ L/s | s ∈ π) = 1.

Definition 22 An information state π is safe if π is F-certain or N-safe.

Definition 23 An information state π is non-diagnosable if ∃N ∈ N such that for all
n ≥ N, ∃t ∈ L/π such that ‖t‖ = n and the information state obtained by implement-
ing any policy g along t is uncertain.

Definition 24 A language L(G) is surely diagnosed by an observation policy g if,
for all s ∈ L(G), the information state reached by implementing g is never non-
diagnosable.



Discrete Event Dyn Syst (2007) 17:531–583 571

Definition 25 Let H denote the set of all policies that diagnose L(G). The language
L(G) is surely diagnosable if H is non-empty, i.e., if there exists a policy that surely
diagnoses L(G).

For stochastic automata we consider the expected cost of an observation policy g
instead of the worst-case cost of g. Define the performance criterion:

J(g) = Eg {
cg(s) + Kg(s)

}
, (121)

where cg(s) denotes the cost of implementing policy g along the trajectory s and
Kg(s) is defined in Eq. 87. The performance criterion is thus the expected total cost
of policy g.

The active acquisition of information problem, or stochastic cyclic sure diagnosis
problem, is defined as follows.

Problem SCSD Find a policy g∗ ∈ H such that

J(g∗) = inf(J(g)|g ∈ H) < ∞. (122)

4.5 Solution existence in the cyclic, stochastic case

As in this section on logical cyclic automata, we assume that all observable events
have a non-zero cost of observation; this cost may be arbitrarily close to zero.

Just as in the case of acyclic systems, we first consider conditions necessary and
sufficient to ensure that a language can be diagnosed at finite cost. To find such
conditions, we consider the previous work on diagnosability of stochastic discrete-
event systems (Thorsley and Teneketzis 2005).

4.5.1 Review of stochastic diagnosability

The notions of stochastic diagnosability replace the logically sure statements of
the definition of diagnosability for logical automata in Sampath et al. (1995) with
probabilistic almost sure statements. Of the two definitions presented, the stricter is
A-diagnosability.

Definition 26 (A-diagnosability) A live, prefix-closed language L is A-diagnosable
with respect to a projection P and a set of transition probabilities p if

(∀ε > 0)(∃N ∈ N)(∀s ∈ �(�fi) ∧ n ≥ N){
Pr

(
t : DF(st) = 0 | t ∈ L/s ∧ ‖t‖ = n

)
< ε

}
, (123)

where the diagnosability condition function DF is as in Eq. 91.

If a system is A-diagnosable, when a failure occurs, the probability of a continua-
tion that does not allow the failure to be diagnosed approaches zero as the length of
the continuation approaches infinity. However, we still need to be logically certain
that a failure has occurred in order to call it diagnosed. In the second definition,
AA-diagnosability, we weaken the requirement necessary to diagnose a failure.
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Definition 27 (AA-Diagnosability) A live, prefix-closed language L is AA-
diagnosable with respect to a projection P and a transition probability function p if

(∀ε > 0 ∧ ∀α < 1)(∃N ∈ N)

(∀s ∈ �(�fi) ∧ n ≥ N)

{
Pr

(
t : DF

α (st) = 0 | t ∈ L/s ∧ ‖t‖ = n
)

< ε

}
, (124)

where the diagnosability condition function Dα is:

DF
α (st) =

{
1 if Pr

(
ω : �fi ∈ ω | ω ∈ P−1

L [P(st)]) > α

0 otherwise.
(125)

Thus a system is AA-diagnosable if almost every continuation of a certain length
after a failure event leads to a state where we are almost certain that the failure
has occurred with probability greater than α, for any α arbitrarily close to, but not
equal to, one. Conditions necessary and sufficient to confirm A-diagnosability and
sufficient to confirm AA-diagnosability are given in full in Thorsley and Teneketzis
(2005); we now highlight a few key points.

The conditions for A- and AA-diagnosability are checked through the construc-
tion of a stochastic diagnoser. A stochastic diagnoser for a stochastic automaton G is
the machine Gsd = (Qsd, �o, δd, qo, �, φ0), where

• Qsd ⊆ Qo is the set of reachable logical elements
• �o is the set of observable events in G
• δd is the partial transition function of the stochastic diagnoser
• q0 = {x0, N} is the initial state of the stochastic diagnoser
• � is a set of transition probability matrices
• φ0 = [1] is the initial probability vector.

The first four elements (Qsd, �o, δd, qo) of the stochastic diagnoser are the same
as in the logical diagnoser described in Section 1.2. The logical diagnoser states
are renamed “logical elements” as there are not, in themselves, the states of the
stochastic diagnoser. The state of the stochastic diagnoser consists of a logical
element and probability distribution among the components of that logical element.

Each logical element consists of a set of components of the form (q, x, 	), where
q denotes the logical element, of the stochastic diagnoser, x denotes the state of the
stochastic automaton, and 	 is a failure label (normal or faulty). The pair (�, φ0)

allows components to be classified as either transient or recurrent by treating the
components as states of a Markov chain. We also define a function δcomp : (Qsd ×
X × � × �) → (Qsd × X × �), which indicates how the component of the stochastic
diagnoser that corresponds to the actual state of the original stochastic automaton
is updated as events occur. Lastly, we say that a logical element of a stochastic
diagnoser is N-safe if every information state π ∈ F∞ that such that q(π) = q is
N-safe.

4.5.2 Strict-A-diagnosability; solution existence for Problem SCSD

In order to find necessary and sufficient conditions for a solution for Problem SCSD
to exist, it is necessary to modify the definition of A-diagnosability.
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Definition 28 A language L is strictly-A-diagnosable if

(∀ε > 0)(∃N ∈ N)(∀n > N)[Pr(s : DF(s) = 0 ∧ D̂N(s) = 0 | ‖s‖ = n) < ε], (126)

where the diagnosis condition functions D̂N and DF are defined in Eqs. 90 and 91.

This definition is the stochastic analogue to the definition of strict logical diagnos-
ability; it is necessary that, as the number of events that have occurred becomes large,
the probability that the system reaches a safe information state approaches one. This
definition allows us to state the following theorem.

Theorem 10 A system is strictly-A-diagnosable if and only if every recurrent compo-
nent of its associated stochastic diagnoser lies in a certain and safe logical element.

Proof (Sufficiency) Let C be the set of components of a stochastic diagnoser, and let
Tc ∈ C and Rc ∈ C be the sets of transient and recurrent components, respectively.
Suppose that every q ∈ Qd that contains a recurrent component (q, x, lf ) such that
�fi ∈ lf is Fi-certain.

By Lemma 1 of Thorsley and Teneketzis (2005), there exists n ∈ N such that ∀c =
(q, x, l) ∈ C

Pr(s : δcomp(c0, s) ∈ Tc | ‖s‖ = n) < ε. (127)

(This lemma states that, in the long run, the stochastic diagnoser will almost surely
reach a recurrent component.) Since δ(x0, s) is a component of the diagnoser of the
system reached by s, this implies that:

Pr(s : δcomp(c0, s) ∈ Rc | ‖s‖ = n) > 1 − ε. (128)

Therefore, if at least n events have occurred, with probability greater than 1 − ε, we
will reach an element that contains at least one recurrent component.

If the true behavior of the system reaches a recurrent component, then, by
assumption, that component is part of a certain and safe logical element. Therefore
either DF(s) = 1 or D̂N(s) = 1.

Since the probability of reaching a certain and safe element is at least 1 − ε,

Pr
(
s : DF(s) = 1 ∨ D̂N(s) = 1 | ‖s‖ = n

)
> 1 − ε (129)

Pr
(
s : DF(s) = 0 ∧ D̂N(s) = 0 | ‖s‖ = n

)
< ε. (130)

Therefore if every recurrent component lies in a safe, certain logical element, the
system is strictly-A-diagnosable.

(Necessity) Necessity will be shown by contradiction. Suppose there exists a string
s such that s transitions the system from the initial state to a recurrent component
cR in a logical element that is either certain or unsafe. Let the probability of s be
denoted by ps.

Since cR is not in a certain, safe logical element, both DF(s) and D̂N(s) are equal
to zero. Since

Pr
(
t : DF(st) = 0 ∧ D̂N(st) = 0 | t ∈ L/s ∧ ‖t‖ = n − ‖s‖) = 1, (131)
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it follows that:

Pr
(
st : DF(st) = 0 ∧ D̂N(st) = 0 | ‖st‖ = n

) = ps. (132)

Since ps > 0, there exists 0 < ε < ps such that

Pr
(
st : DF(st) = 0 ∧ D̂N(st) = 0 | ‖st‖ = n

)
> ε. (133)

Thus the language is not strictly-A-diagnosable. ��

From this theorem, it is clear that strict-A-diagnosability implies A-diagnosability,
as the necessary and sufficient condition for A-diagnosability is satisfied whenever
the necessary and sufficient condition for strict-A-diagnosability is satisfied. Strict-
A-diagnosability is shown to be a necessary and sufficient condition for the existence
of a solution to Problem SCSD in the following theorem.

Theorem 11 A stochastic automaton is diagnosable at finite expected cost if and only
if the automaton is strictly-A-diagnosable when all events in �o are observed.

Proof (Sufficiency) Suppose that L is diagnosable at finite expected cost, and
suppose that the smallest observation cost for an observable event is γ > 0. Let the
cost of diagnosing L be denoted by a constant K. Then for all N ∈ N,

K = E
(
cg∗

(s) | #g∗
obs(s) ≤ N

)
Pr(s : #obs(s) ≤ N)

+E
(
cg∗

(s) | #g∗
obs(s) > N

)
Pr(s : #obs(s) > N), (134)

where #g∗
obs(s) denotes the number of events observed by the policy g∗ along the

string s.
The expected cost if more than N + 1 total observations are needed to observed

is at least Nγ , so

K ≥ Nγ Pr
(
s : #g∗

obs(s) > N
)

(135)

Pr
(
s : #g∗

obs(s) > N
) ≤ K

Nγ
. (136)

Let ε > 0. We can then choose N such that N > 2K
εγ

, and thus

Pr
(
s : #g∗,obs(s) > N

)
<

ε

2
. (137)

Since g∗ is an optimal observation policy, g∗ will only call for more than N observa-
tions along the string s if the information state generated by g∗ along the string s after
N observations is not safe. The set of strings s on which more than N observations
are made by g∗ is equal in probability to the set of strings where N observations are
made and no diagnosis has occurred. It follows that

Pr
(
s : DF(s) = 0 ∧ D̂N(s) = 0 ∧ #g∗,obs(s) = N

)
<

ε

2
. (138)

Now consider the possible number of unobservable events that may occur between
two observed events, and suppose that a diagnosis has yet to be made. Since the
system is diagnosable at finite cost, another observation must occur with probability
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one. Therefore, the expected number of events between each pair of observations is
finite, and thus for all ε > 0, N ∈ N, there exists M ∈ N such that

Pr
(
s : DF(s) = 0 ∧ D̂N(s) = 0 ∧ ‖u‖ ≥ M

)
<

ε

2(N + 1)
, (139)

where u denotes a sequence of unobservable events between two observable events.
The probability that at least one of N + 1 consecutive sequences of unobservable
events is of length no less than M is therefore less than ε

2 .
For a string of length N′ = M(N + 1), Eq. 139 indicates that the probability of less

than N events are observed in such a string is less than ε
2 . Eq. 138 indicates that the

probability of not having made a diagnosis given that N events are observed is also
less than ε

2 . The probability that either of these conditions is satisfied is thus less than
ε, and thus

Pr
(
s : DF(s) = 1 ∨ D̂N(s) = 1 | ‖s‖ = N′) ≥ 1 − ε. (140)

Therefore, the system is strictly-A-diagnosable.
(Necessity) Necessity will be shown by contradiction using the necessary and

sufficient condition for strict-A-diagnosability. Suppose there exists a string s such
that s transitions the system from the initial state to a recurrent component cR in a
state that is either uncertain or unsafe. Let the probability of s be denoted by ps.

Since cR is not in a certain, safe state, we must choose an observation policy that
observes at least one event and thus by assumption has a positive cost. Furthermore,
since cR is recurrent, the probability that the system returns to the logical element
containing cR infinitely often is 1.

Since each time the system reaches this logical element the language is not
diagnosed, we must pay a positive cost infinitely often. Since we must pay an infinite
cost with probability ps > 0, the expected cost of diagnosing the language is infinite.

Therefore, if the language can be diagnosed at finite expected cost, each recurrent
component in its stochastic diagnoser lies in a certain, safe state, and thus a language
is diagnosable at finite expected cost only if it is strictly-A-diagnosable. ��

4.6 Almost sure diagnosability conditions

We also formulate the active acquisition of information problem for situations where
diagnosis is made when the probability of failure is greater than a pre-defined α < 1.
An observation policy g and the space of information states are defined in the same
way as in Section 4.1. For completeness of presentation we restate Definitions 11–16
within the context of the diagnosis problem studied here.

Definition 29 An information state π is almost-F-certain if Pr(s : f ∈ s | s ∈ π) > α.

Definition 30 An information state π is almost-N-safe if Pr(s : f �∈ s ∧ f �∈ L/s | s ∈
π) > α.

Definition 31 An information state π is safe if π is almost-F-certain or almost-
N-safe.

Definition 32 An information state π is uncertain if α > Pr(s : f ∈ s | s ∈ π) > 1 − α.
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Definition 33 An information state π is non-diagnosable if ∃N ∈ N such that for all
n ≥ N, ∃t ∈ L/π such that ‖t‖ = n and the information state obtained by implement-
ing any policy g along t is uncertain in the sense of Definition 32.

Definition 34 A language L(G) is almost surely diagnosed by an observation policy
g if, for all s ∈ L(G), the information state reached by implementing g is never
non-diagnosable.

Definition 35 Let H denote the set of all policies that diagnose L(G). The language
L(G) is almost surely diagnosable if H is non-empty, i.e., if there exists a policy that
surely diagnoses L(G).

The cost associated with any observation policy g is

J(g) = {E(cg(s) + Kg(s))}, (141)

where cg(s) denotes the cost of implementing policy g along the trajectory s and
Kg(s) is defined in Eq. 87. As is Problem SCSD, the performance criterion is thus
the expected total cost of policy g.

The active acquisition of information problem, or stochastic cyclic almost sure
diagnosis problem, is defined as follows.

Problem SCASD Find a policy g∗ ∈ H such that

J(g∗) = inf(J(g)|g ∈ H) < ∞. (142)

4.6.1 Strict-AA-diagnosability; solution existence for Problem SCASD

For an optimal finite-cost solution to Problem SCASD to exist, we wish to ensure
that, as in the case of Problem SCSD, a diagnosis is almost surely made in a finite
amount of time. This motivates the notion of strict-AA-diagnosability.

Definition 36 A language L is strictly-AA-diagnosable if

(∀ε > 0 ∧ ∀α < 1
)
(∃N ∈ N)

(∀n > N) Pr
(
s : DF

α (s) = 0 ∧ D̂N
α (s) = 0 | ‖s‖ = n

)
< ε, (143)

where the function D̂N
α is defined analogously to DF

α as:

DF
α (st) =

{
1 if Pr

(
ω : �fi ∈ ω | ω ∈ P−1

L [P(st)]) > α

0 otherwise.
(144)

While strict-A-diagnosability is a more stringent condition that A-diagnosability,
this is not the case with their almost sure equivalents. In fact, strict-AA-
diagnosability and AA-diagnosability are identical conditions. While it is fairly
clear that strict-AA-diagnosability should imply AA-diagnosability, the opposite
implication is not intuitively obvious; the idea behind this implication is as follows.
If a system is AA-diagnosable and no failure occurs, the probability that the system
does not reach a safe normal state becomes arbitrarily small in the long run, as the set
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of unsafe normal states is transient. Thus if no failure occurs, we will almost surely
eventually diagnose that the system is in normal operation, and since the system is
AA-diagnosable, we will almost surely eventually diagnose any failure events. We
show this equivalence formally in the following theorem.

Theorem 12 A language is strictly-AA-diagnosable if and only if it is AA-
diagnosable.

Proof (Necessity) Suppose L is strictly-AA-diagnosable, but not AA-diagnosable.
We will show this assumption leads to a contradiction.

Since L is not AA-diagnosable, there exists s ∈ �(�fi) such that, for some ε1 > 0
and α < 1 such that ε1 > 1 − α, there exists an arbitrarily large n1 such that

Pr
(
t : DF

α (st) = 0 | t ∈ L/s ∧ ‖t‖ = n1 − ‖s‖) ≥ ε1

ps
, (145)

where ps is the probability of the string s. Therefore

Pr
(
st : DF

α (st) = 0 | ‖st‖ = n1
) ≥ ε1 (146)

Choose ε2 such that ε1 > ε2 > 1 − α. Since L is strictly-AA-diagnosable, there
exists N ∈ N such that for n2 > N,

Pr
(
s : DF

α (s) = 0 ∧ D̂N
α (s) = 0 | ‖s‖ = n2

)
< ε2 − (1 − α) (147)

Pr
(
s : DF

α (s) = 1 ∨ D̂N
α (s) = 1 | ‖s‖ = n2

) ≥ 1 − ε2 + (1 − α) (148)

Pr
(
s : DF

α (s) = 1 | ‖s‖=n2
)+Pr

(
s : D̂N

α (s)=1 | ‖s‖=n2
) ≥ 1−ε2+(1 − α) (149)

Pr
(
s : DF

α (s) = 1 ∧ f ∈ s
) + Pr

(
s : D̂N

α (s) = 1 ∧ f �∈ s = 1
)

+ Pr
(
s : DF

α (s) = 1 ∧ f �∈ s
) + Pr

(
s : D̂N

α (s) = 1 ∧ f ∈ s
) ≥ 1 − ε2 + (1 − α).

(150)

Consider the probability that a string is misdiagnosed as faulty, i.e. Pr(s : DF
α (s) =

1 ∧ f �∈ s) This probability is equal to

Pr
(
s : DF

α (s) = 1 ∧ f �∈ s | ‖s‖ = n2
)

= Pr
(
s : f �∈ s | DF

α (s) = 1 ∧ ‖s‖ = n2
)

Pr
(
s : DF

α (s) = 1 | ‖s‖ = n2
)

(151)

≤ (1 − α) Pr
(
s : DF

α (s) = 1 | ‖s‖ = n2
)
, (152)

as the fact that a faulty diagnosis was made indicates that the probability that a fault
occurred is greater than α. Similarly, it can be shown that

Pr
(
s : D̂N

α (s) = 1 ∧ f ∈ s | ‖s‖ = n2
) ≤ (1 − α) Pr

(
s : D̂N

α (s) = 1 | ‖s‖ = n2
)
. (153)

By combining the inequalities (150), (152), and (153), we obtain

Pr
(
s : DF

α (s) = 1 ∧ f ∈ s | ‖s‖ = n2
)

+ Pr
(
s : D̂N

α (s) = 1 ∧ f �∈ s = 1 | ‖s‖ = n2
) ≥ 1 − ε2. (154)
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Since both n1 can be chosen arbitrarily large and n2 can be any sufficiently large
integer, choose n = n1 = n2. Therefore inequalities (146) and (154) can be added, so

Pr
(
s : DF

α (s) = 1 ∧ f ∈ s | ‖s‖ = n
) + Pr

(
s : D̂N

α (s) = 1 ∧ f �∈ s + 1 | ‖s‖ = n
)

+ Pr
(
st : DF

α (st) = 0 | ‖st‖ = n
) ≥ 1 + ε1 − ε2. (155)

Since these three probabilities are of disjoint events, we have that

Pr
(
s : f ∈ s ∨ D̂N

α (s) = 1 ∧ f �∈ s | ‖s‖ = n
) ≥ 1 + ε1 − ε2. (156)

However, since ε1 > ε2, the probability of this event is greater than 1. Therefore we
have reached a contradiction, and L cannot be both strictly-AA-diagnosable and not
AA-diagnosable. Therefore if L is strictly-AA-diagnosable, L is AA-diagnosable.

(Sufficiency) We shall prove the contrapositive statement. Suppose L is not
strictly-AA-diagnosable. Then there exist ε1 > 0, α < 1 such that for all N ∈ N, there
exists n1 > N such that

Pr
(
s : DF

α (s) = 0 ∧ D̂N
α (s) = 0 | ‖s‖ = n1

) ≥ ε1

1 − α
. (157)

Let S = {s : DF
α (s) = 0 ∧ D̂N

α (s) = 0 ∧ ‖s‖ = n1}. Partition the set S into S =
S1∪̇S2∪̇ . . . ∪̇Sk, where every string in each Si has a unique projection si. Therefore,
since D̂N

α (s) = 0 for all s in each Si,

Pr
(
s : s ∈ Si ∧ f ∈ s

) ≥ (1 − α) Pr(s : s ∈ Si), (158)

so

Pr
(
s : DF

α (s) = 0 ∧ D̂N
α (s) = 0 ∧ f ∈ s | ‖s‖ = n1

)
≥ (1 − α) Pr

(
s : DF

α (s) = 0 ∧ D̂N
α (s) = 0 | ‖s‖ = n1

)
(159)

≥ ε1 (160)

Pr
(
s : DF

α (s) = 0 ∧ f ∈ s | ‖s‖ = n1
) ≥ ε1. (161)

Choose ε2 < ε1. Again, by Lemma 1 of Thorsley and Teneketzis (2005), there
exists N2 ∈ N such that n2 > N2 implies

Pr
(

f ∈ s ∧ f �∈ the first N2 events of s | ‖s‖ = n2
)

< ε2. (162)

Let pF denote the probability that a failure occurs in the first N2 events of a string.
Choose ε such that ε1 = εpF + ε2. Rewrite inequality (161) as

Pr
(
st : DF

α (st) = 0 ∧ f ∈ st ∧ f �∈ s | ‖s‖ = Ns ∧ ‖t‖ = n2 − Ns
)

+ Pr
(
st : DF

α (st) = 0 ∧ f ∈ s | ‖s‖ = Ns ∧ ‖t‖ = n2 − Ns
) ≥ εpF + ε2. (163)

From inequality (162), the first term of the above is less than ε2, and thus

Pr
(
st : DF

α (st) = 0 ∧ f ∈ s | ‖s‖ = Ns ∧ ‖t‖ = n2 − Ns
) ≥ εpF . (164)
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Divide the probability of st into the probability of s and t:

Pr
(
s : f ∈ s | ‖s‖ = Ns

)
Pr

(
t : DF

α (st) = 0 | t ∈ L/s ∧ ‖t‖ = n2 − Ns
) ≥ εpF (165)

Pr
(
t : DF

α (st) = 0 | t ∈ L/s ∧ ‖t‖ = n2 − Ns
) ≥ ε. (166)

��

Having demonstrated that strict-AA-diagnosability and AA-diagnosability are
equivalent, we now state the conditions under which Problem SCASD has a solution.

Theorem 13 A stochastic automation is diagnosable under conditions D̂N
α and DF

α for
all α < 1 at finite expected cost if and only if the automaton is AA-diagnosable when
all event in �o are observed.

Proof (Necessity) If the system is AA-diagnosable, then after n(α, ε) events, a
diagnosis to α will be made with probability 1 − ε. Since for any ε > 0, this bound
n is finite, the number of events we need to observe to make a diagnosis to α is finite
and bounded with probability 1. Therefore the expected cost of the system is finite.

(Sufficiency) The prove for sufficiency is the same is in the case of exact diagnosis.
��

Using the results from Thorsley and Teneketzis (2005), we now state a sufficient
condition for a stochastic automaton to be diagnosable with finite expected cost.

Corollary 1 A stochastic automaton is diagnosable under condition Dα for all α < 1
at finite expected cost if the set of recurrent components in each logical element of its
stochastic diagnoser is certain.

4.7 Comments on solution methods

In general, the state estimate of a stochastic automaton is an element of an infinite
space, as there may be an infinite number of probability mass functions associated
with a given logical diagnoser state (Lunze and Schröder 2001). Thus we cannot
perform a reduction from an infinite set of string-based information states to the
finite set of state-based information states as in the logical case.

For Problem SCSD, we assign costs to certain information states as follows:

V̂(π) =
{

0 if π is safe
∞ if π is not strictly-A-diagnosable,

(167)

where an information state π = s1 + s2 + · · · + sn is defined to be strictly-A-
diagnosable if the language Lπ := P̂(s1)t1 + P̂(s2)t2 + · · · + P̂(sn)tn is strictly-A-
diagnosable, where P̂ is the projection of � onto �uo.

An optimal policy can be computed by solving the dynamic programming
equations:

V(π) = min
u∈2�co

cu +
∑

σ∈�u,obs

V(δ̂u(π, σ ))Pu(σ | π), (168)
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where Pu(σ | π) is the probability that the next observed event is σ , given the current
information state of the system is state π and the action u is implemented, and δ̂u is
given by Eqs. 79–80.

For information states that are either safe or not AA-diagnosable, Eq. 168 gives

V(π) =
{

0 if π is safe
∞ if π is not AA-diagnosable,

(169)

where an information state π is defined to be AA-diagnosable if the language Lπ is
AA-diagnosable.

While finding an optimal policy requires considering optimal action for an infinite
set of information states, we can find a suboptimal policy by modifying the limited
lookahead algorithm of Section VI to minimize the expected observation cost before
the lookahead horizon instead of the maximal observation cost.

5 Discussion

This paper provides a framework for formulating and solving various active acqui-
sition problems in discrete-event systems relating to fault diagnosis and supervisory
control. For acyclic systems, the problem of finding an optimal observation policy can
be solved in two steps: first, an appropriate filtration of σ -fields of information states
comprised of sets of strings must be identified, and then a policy can be found using
dynamic programming. This two-step process works for both logical and stochastic
models. For cyclic systems, in order to ensure that the space of information states
is finite, the set of string-based information states is reduced to the set of diagnoser
states. The dynamic programming technique results in a set of algebraic equations in
the cyclic case.

Further research is necessary in the area of computational efficiency. In acyclic
systems, the size of the space of information states is in the worst case doubly
exponential with respect to the size of the finite horizon. In cyclic systems, the set
of diagnoser states is exponential with respect to the state space of the automaton
under consideration. In this paper, we presented limited lookahead algorithms for
both classes of systems that provide a first attempt at finding efficient algorithms
for optimal and suboptimal solutions. Heuristic methods may be more successful at
finding efficient algorithms for particular classes of systems.
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In (Thorsley and Teneketzis 2007), Definition 1 is incomplete. The revised defi-
nition below states the additional necessary condition missing from Thorsley and
Teneketzis (2007).

Definition 1 An observation policy g := (g0, . . . , gT−1) is a sequence of functions gt :
LT → 2�co such that for all t, t = 0, . . . , T − 1, gt is measurable with respect to the
σ -field Gg

t , defined below (in Definition 3).

Note that for all s′ ∈ Lt and s, ŝ ∈ χt(s′), gt(s) = gt(ŝ). The statement “The func-
tions χt are used in the following definition,” found above Definition 1 in the text,
should be ignored when reading the paper.

Definition 3 is unchanged, but we restate it here for convenience.
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Definition 3 The filtration {Gg
t , t = 0 . . . T} corresponding to g is

σ
(
πt : πt ∈ Rg

t

)
, t = 0 . . . T. (11)

Note that Gg
t , t = 0 . . . T − 1, depends on g0, g1, . . . , gt−1.
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