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Abstract—The n-step delayed sharing information structure
is investigated. This information structure comprises of K con-
trollers that share their information with a delay of n time steps.
This information structure is a link between the classical infor-
mation structure, where information is shared perfectly between
the controllers, and a non-classical information structure, where
there is no “lateral” sharing of information among the controllers.
Structural results for optimal control strategies for systems
with such information structures are presented. A sequential
methodology for finding the optimal strategies is also derived. The
solution approach provides an insight for identifying structural
results and sequential decomposition for general decentralized
stochastic control problems.

Index Terms—Decentralized control, Non-classical information
structures, Team theory, Markov decision theory, Stochastic
control

I. INTRODUCTION
A. Motivation

One of the difficulties in optimal design of decentralized
control systems is handling the increase of data at the control
stations with time. This increase in data means that the domain
of control laws increases with time which, in turn, creates two
difficulties. Firstly, the number of control strategies increases
doubly exponentially with time; this makes it harder to search
for an optimal strategy. Secondly, even if an optimal strategy
is found, implementing functions with time increasing domain
is difficult.

In centralized stochastic control [1], these difficulties can be
circumvented by using the conditional probability of the state
given the data available at the control station as a sufficient
statistic (where the data available to a control station comprises
of all observations and control actions till the current time).
This conditional probability, called information state, takes
values in a time-invariant space. Consequently, we can restrict
attention to control laws with time-invariant domain. Such
results, where data that is increasing with time is “compressed”
to a sufficient statistic taking values in a time-invariant space,
are called structural results. While the information state and
structural result for centralized stochastic control problems is
well known, no general methodology to find such information
states or structural results exists for decentralized stochastic
control problems.
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The structural results in centralized stochastic control are
related to the concept of separation. In centralized stochastic
control, the information state, which is conditional probability
of the state given all the available data, does not depend on
the control strategy (which is the collection of control laws
used at different time instants). This has been called a one-
way separation between estimation and control. An important
consequence of this separation is that for any given choice of
control laws till time ¢ —1 and a given realization of the system
variables till time ¢, the information states at future times do
not depend on the choice of the control law at time ¢ but only
on the realization of control action at time ¢. Thus, the future
information states are separated from the choice of the current
control law. This fact is crucial for the formulation of the
classical dynamic program where at each step the optimization
problem is to find the best control action for a given realization
of the information state. No analogous separation results are
known for general decentralized systems.

In this paper, we find structural results for decentralized
control systems with delayed sharing information structures.
In a system with n-step delayed sharing, every control station
knows the n-step prior observations and control actions of all
other control stations. This information structure, proposed by
Witsenhausen in [2], is a link between the classical informa-
tion structures, where information is shared perfectly among
the controllers, and the non-classical information structures,
where there is no “lateral” sharing of information among the
controllers. Witsenhausen asserted a structural result for this
model without any proof in his seminal paper [2]. Varaiya and
Walrand [3] proved that Witsenhausen’s assertion was true for
n = 1 but false for n > 1. For n > 1, Kurtaran [4] proposed
another structural result. However, Kurtaran proved his result
only for the terminal time step (that is, the last time step in a
finite horizon problem); for non-terminal time steps, he gave
an abbreviated argument, which we believe is incomplete. (The
details are given in Section V of the paper).

We prove two structural results of the optimal control laws
for the delayed sharing information structure. We compare our
results to those conjectured by Witsenhausen and show that our
structural results for n-step delay sharing information structure
simplify to that of Witsenhausen for n = 1; for n > 1, our
results are different from the result proposed by Kurtaran.

We note that our structural results do not have the separated
nature of centralized stochastic control. That is, for any given
realization of the system variables till time ¢, the realization of
information states at future times depend on the choice of the
control law at time ¢. However, our second structural result
shows that this dependence only propagates to the next n — 1



time steps. Thus, the information states from time ¢ +n — 1
onwards are separated from the choice of control laws before
time ¢t. We call this a delayed separation between information
states and control laws.

The absence of classical separation rules out the possibility
of a classical dynamic program to find the optimum control
laws. However, optimal control laws can still be found in a
sequential manner. Based on the two structural results, we
present two sequential methodologies to find optimal control
laws. Unlike classical dynamic programs, each step in our
sequential decomposition involves optimization over a space
of functions instead of the space of control actions.

B. Notation

Random variables are denoted by upper case letters; their
realization by the corresponding lower case letter. For some
function valued random variables (specifically, 77, Tfmt in the
paper), a tilde (7) denotes their realization (for example, &f).
Xa:p 1s a short hand for the vector (X, Xo41,...,Xp) while
X< is a short hand for the vector (X ¢, X°t! ... X7). The
combined notation X¢¢ is a short hand for the vector (X7 :
i=a,a+1,...,b,j =c,c+1,...,d). P(-) is the probability
of an event, IE {-} is the expectation of a random variable. For
a collection of functions g, we use P9 (-) and 9 {-} to denote
that the probability measure and expectation depends on the
choice of functions in g. 1 4(+) is the indicator function of a
set A. For singleton sets {a}, we also denote 14} (-) by 14(-).
For a finite set A, P { A} denotes the space of probability mass
functions on A.

For two random variables X and Y taking values in X
and Y, P (X = z|Y) denotes the conditional probability of
the event {X = x} given Y and P (X |Y) denotes the
conditional PMF (probability mass function) of X given Y,
that is, it denotes the collection of conditional probabilities
{P(X =x|Y),x € X}. Finally, all equalities involving
conditional probabilities or conditional expectations are to be
interpreted as almost sure equalities (that is, they hold with
probability one).

C. Model

Consider a system consisting of a plant and K controllers
(control stations) with decentralized information. At time ¢,
t=1,...,T, the state of the plant X; takes values in a finite
set X'; the control action Utk at control station k, k =1,..., K,
takes values in a finite set /. The initial state X of the plant
is a random variable taking value in X. With time, the plant
evolves according to

Xi = fi( X1, UMW) (1)

where V; is a random variable taking values in a finite set
V. {Vi;t = 1,...,T} is a sequence of independent random
variables that are also independent of Xj.

The system has K observation posts. At time ¢, ¢ =
1,...,T, the observation Y,}* of post k, k = 1,..., K, takes
values in a finite set )*. These observations are generated
according to

Y = hi(Xe1, W) 2)

TABLE I
SUMMARY OF THE CONTROL LAWS IN THE MODEL FOR K = 2.

Controller 1 Controller 2

YL Y2 YL Y2
Observations (actual) (Ulllt:t ) Uigi*”) (Uif’;*" Ufltjt 1)
= t—n t—n =

Observations (shorthand) (A¢, A}) (A, A2)
Control action U} U?
Control laws g} g7

where W/ are random variables taking values in a finite set
Wk {WFt = 1,...,T;k = 1,...,K} are independent
random variables that are also independent of X, and {V;;
t=1,...,T}

The system has n-step delayed sharing. This means that at
time ¢, control station k observes the current observation Y;*
of observation post k, the n steps old observations Y;*% of all
posts, and the n steps old actions U} of all stations. Each
station has perfect recall; so, it remembers everything that it
has seen and done in the past. Thus, at time ¢, data available
at station k can be written as (A, AF), where

. 1K 1:K
At — (ifl:t—n7U1:t—n)
is the data known to all stations and

k. k k
At T (th—n—&-lztﬂ Ut—71,+1:t—1)

is the additional data known at station k, £k = 1,..., K. Let
D; be the space of all possible realizations of A;; and £* be
the space of all possible realizations of AF. Station k chooses
action Ut’C according to a control law gf, ie.,

UF = gr (A}, Ay). 3)

The choice of g = {gf;k = 1,....K;t = 1,...,T} is
called a design or a control strategy. G denotes the class of
all possible designs. At time ¢, a cost c;(X;, U}, ..., UK) is
incurred. The performance 7 (g) of a design is given by the
expected total cost under it, i.e.,

J(g) =E? {Z (X, UtLK)} (4)

t=1

where the expectation is with respect to the joint measure
on all the system variables induced by the choice of g. For
reference, we summarize the notation of this model in Table 1.
We consider the following problem.

Problem 1: Given the statistics of the primitive random
variables Xo, {Vi;t = 1,....7}, {(Wkk = 1,... K;
t = 1,...,T}, the plant functions {f;;t = 1,...,T}, the
observation functions {h¥;k = 1,...,K;t = 1,...,T}, and
the cost functions {c¢;;¢ = 1,...,T} choose a design g* from
G that minimizes the expected cost given by (4).

Remarks on the Model:

1) We assumed that all primitive random variables and all
control actions take values in finite sets for convenience
of exposition. Similar results can be obtained with
uncountable sets under suitable technical condtions.



2) In the standard stochastic control literature, the dynamics
and observations equations are defined in a different
manner than (1) and (2). The usual model is

Xiv1 = fi( X, UFE, V) 5)
VF = hi(X,, WF) (6)

However, Witsenhausen [2] as well as Varaiya and
Walrand [3] used the model of (1) and (2) in their
papers. We use the same model so that our results
can be directly compared with earlier conjectures and
results. The arguments of this paper can be used for
the dynamics and observation model of (5) and (6) with
minor changes.

D. The structural results

Witsenhausen [2] asserted the following structural result for
Problem 1.

Structural Result (Witsenhausen [2]): In Problem 1, without
loss of optimality we can restrict attention to control strategies
of the form

U =g/ (AL, P (Xeon | A)). @)

Witsenhausen’s result claims that all control stations can
“compress” the common information A; to a sufficient statistic
P(X:—n|Ay). Unlike Ay, the size of P (X;—_,, | A¢) does not
increase with time.

As mentioned earlier, Witsenhausen asserted this result
without a proof. Varaiya and Walrand [3] proved that the
above separation result is true for n = 1 but false for n > 1.
Kurtaran [4] proposed an alternate structural result for n > 1.

Structural Result (Kurtaran [4]): In Problem 1, without loss
of optimality we can restrict attention to control strategies of
the form

Uk = gf (Yz-fk—n+1:t7 ]Pgitlil (Xt*n; Utliig—‘rl:t—l | At) ) (8)

Kurtaran used a different labeling of the time indices, so the
statement of the result in his paper is slightly different from
what we have stated above.

Kurtaran’s result claims that all control stations can “com-
press” the common information A; to a sufficient statistic
Poii (Xi—n, UEE 11| A¢), whose size does not in-
crease with time.

Kurtaran proved his result for only the terminal time-step
and gave an abbreviated argument for non-terminal time-steps.
We believe that his proof is incomplete for reasons that we
point out in Section V. In this paper, we prove two alternative
structural results.

First Structural Result (this paper): In Problem 1, without
loss of optimality we can restrict attention to control strategies
of the form

UF = gF (AR, P95 (X, 4, AV A)). 9)

This result claims that all control stations can “com-
press” the common information A; to a sufficient statistic
1: K
Pt (Xt,l, AFE | At), whose size does not increase with
time.

Second Structural Result (this paper): In Problem 1, without
loss of optimality we can restrict attention to control strategies
of the form

Uf = g7 (A}, P (Xymn | Ar) ). (10)

where 7% is a collection of partial functions of the previous

n — 1 control laws of each controller,

Tf = {(gl’rcn(v Kﬁ,—n+1:t—na Ufn,—n+1:t—na Am),
m=t—n+1t—n+2,...,t—1},

for k = 1,2,..., K. Observe that 7¥ depends only on the
previous n — 1 control laws (gF_,, +1.4—1) and the realization
of A, (which consists of Y}i¥ ~ULK ). This result claims
that the belief P (X;_,, | A¢) and the realization of the partial
functions r}*¥ form a sufficient representation of A; in order
to optimally select the control action at time ¢.

Our structural results cannot be derived from Kurtaran’s
result and vice-versa. At present, we are not sure of the
correctness of Kurtaran’s result. As we mentioned before, we
believe that the proof given by Kurtaran is incomplete. We
have not been able to complete Kurtaran’s proof; neither have
we been able to find a counterexample to his result.

Kurtaran’s and our structural results differ from those as-
serted by Witsenhausen in a fundamental way. The suffi-
cient statistic (also called information state) PP (X;_, | A¢)
of Witsenhausen’s assertion does not depend on the control
strategy. That is, for any realization §; of Ay, the knowl-
edge of control laws is not required in evaluating the con-
ditional probabilities P (X;_,, = x| d;). The sufficient statis-
ticsllII{Pg%fthl (Xi—n, UEE 11 | Ay) of Kurtaran’s result and
PYrt-1 (Xt,l,Atl:K | At) of our first result depend on the
control laws used before time t. Thus, for a given realization
d¢ of A, the realization of information state depends on the
choice of control laws before time ¢. On the other hand, in
our second structural result, the belief P (X;_,, | A;) is indeed
independent of the control strategy, however information about
the previous n — 1 control laws is still needed in the form of
the partial functions r}*¥. Since the partial functions 7% do
not depend on control laws used before time ¢ — n + 1, we
conclude that the information state at time ¢ is separated from
the choice of control laws before time ¢t —n + 1. We call this
a delayed separation between information states and control
laws.

The rest of this paper is organized as follows. We prove
our first structural result in Section II. Then, in Section III we
derive our second structural result. We discuss a special case
of delayed sharing information structures in Section IV. We
discuss Kurtaran’s structural result in Section V and conclude
in Section VL.

II. PROOF OF THE FIRST STRUCTURAL RESULT

In this section, we prove the structural result (9) for optimal
strategies of the K control stations. For the ease of notation,
we first prove the result for K = 2, and then show how to
extend it for general K.



A. Two Controller system (K = 2)

The proof for K = 2 proceeds as follows:

1) First, we formulate a centralized stochastic control prob-
lem from the point of view of a coordinator who ob-
serves the shared information A;, but does not observe
the private information (A}, A?) of the two controllers.

2) Next, we argue that any strategy for the coordinator’s
problem can be implemented in the original problem
and vice versa. Hence, the two problems are equivalent.

3) Then, we identify states sufficient for input-output map-
ping for the coordinator’s problem.

4) Finally, we transform the coordinator’s problem into a
MDP (Markov decision process), and obtain a structural
result for the coordinator’s problem. This structural
result is also a structural result for the delayed sharing
information strucutres due to the equivalence between
the two problems.

Below, we elaborate on each of these stages.

Stage 1

We consider the following modified problem. In the model
described in Section I-C, in addition to the two controllers, a
coordinator that knows the common (shared) information A;
available to both controllers at time ¢ is present. At time ¢, the
coordinator decides the partial functions

LUt

for each controller k, k& = 1,2. The choice of the partial
functions at time ¢ is based on the realization of the common
(shared) information and the partial functions selected before
time ¢. These functions map each controller’s private informa-
tion A} to its control action U} at time . The coordinator then
informs all controllers of all the partial functions it selected at
time t. Each controller then uses its assigned partial function
to generate a control action as follows.
U = (A). (1n
The system dynamics and the cost are same as in the original
problem. At next time step, the coordinator observes the new
common observation

o 1 2 1 2
Zt+1 = {Yt7n+1» Y;ffn+17 Ut7n+17 Ut7n+1}-

Thus at the next time, the coordinator knows A;i;
(Zi41,4;) and its choice of all past partial functions and
it selects the next partial functions for each controller. The
system proceeds sequentially in this manner until time horizon
T.

In the above formulation, the only decision maker is the
coordinator: the individual controllers simply carry out the
necessary evaluations prescribed by (11). At time ¢, the
coordinator knows the common (shared) information A; and
all past partial functions ~;., ; and v%, ;. The coordinator
uses a decision rule 1, to map this information to its decision,
that is,

(12)

(7}7’%2) :ql)t(Ah’Y%:tfl?’Y%:tfl)’ (13)

TABLE I
SUMMARY OF THE MODEL WITH A COORDINATOR.

Coordinator Controller k
(passive)
OGRS O UES) 0 e U )
Lpsriasop A A
Control action e Uk
Control laws [ 'yf

or equivalently,

'Yf = wf(Ah’yll:t—hf}/lzzt—l)? k=1,2. (14)

For reference, we summarize the notation of this model in
Table II.

The choice of ¥ = {¢y;t = 1,...,T} is called a coordina-
tion strategy. U denotes the class of all possible coordination
strategies. The performance of a coordinating strategy is given
by the expected total cost under that strategy, that is,

T
J () = B {Zcxxh UbUE)}

t=1

15)

where the expectation is with respect to the joint measure
on all the system variables induced by the choice of 1. The
coordinator has to solve the following optimization problem.

Problem 2 (The Coordinator’s Optimization Problem):
Given the system model of Problem 1, choose a coordination
strategy t* from U that minimizes the expected cost given
by (15).

Stage 2

We now show that the Problem 2 is equivalent to Problem 1.
Specifically, we will show that any design g for Problem 1 can
be implemented by the coordinator in Problem 2 with the same
value of the problem objective. Conversely, any coordination
strategy 1) in Problem 2 can be implemented in Problem 1
with the same value of the performance objective.

Any design g for Problem 1 can be implemented by the
coordinator in Problem 2 as follows. At time ¢ the coordinator
selects partial functions (v;,v2) using the common (shared)
information J; as follows.

’Ytk() = Qf('v o) = 7/’5(5::)7

Consider Problems 1 and 2. Use design g in Problem 1
and coordination strategy v given by (16) in Problem 2. Fix a
specific realization of the initial state X, the plant disturbance
{Vi;t = 1,...,T}, and the observation noise {W;}, W2
t = 1,...,T}. Then, the choice of % according to (16)
implies that the realization of the state {X;;t = 1,...,T}, the
observations {Y;',Y;?;t = 1,..., T}, and the control actions
{UL, U3t = 1,...,T} are identical in Problem 1 and 2.
Thus, any design g for Problem 1 can be implemented by
the coordinator in Problem 2 by using a coordination strategy
given by (16) and the total expected cost under g in Problem 1
is same as the total expected cost under the coordination
strategy given by (16) in Problem 2.

k=1,2. (16)



By a similar argument, any coordination strategy 1y for
Problem 2 can be implemented by the control stations in
Problem 1 as follows. At time 1, both stations know d7; so,
all of them can compute v = 9{(d1), v# = 1$(1). Then
station k chooses action uf = F(A\¥). Thus,

g’f(A’f»(Sl) = ﬂ”f(‘sl)()\]f)a

At time 2, both stations know d3 and ~i,~Z, so both of them
can compute 7§ = 5(02,71,~%), k = 1,2. Then station k
chooses action u§ = 5 (\5). Thus,

g5 (N5, 82) = 05 (62,71,77) (A5),

Proceeding this way, at time ¢ both stations know ¢; and
Yi.,_1 and 42,1, so both of them can compute (71.;,v%,) =
e (84,7441, 73,_1)- Then, station k chooses action uf
AF(AF). Thus,

gf()\fv 5t> = wf(ataVllzt—lﬁr)/l%t—l)()\f)’ k= 1a 2.

Now consider Problems 2 and 1. Use coordinator strategy
in Problem 2 and design g given by (17) in Problem 1. Fix a
specific realization of the initial state X, the plant disturbance
{Vi;t = 1,...,T}, and the observation noise {W,}, W2
t = 1,...,T}. Then, the choice of g according to (17)
implies that the realization of the state {X;;¢t = 1,...,T}, the
observations {Y,',Y;?;¢t = 1,..., T}, and the control actions
{U}, U3t = 1,...,T} are identical in Problem 2 and 1.
Hence, any coordination strategy 1) for Problem 2 can be
implemented by the stations in Problem 1 by using a design
given by (17) and the total expected cost under v in Problem 2
is same as the total expected cost under the design given
by (17) in Problem 1.

Since Problems 1 and 2 are equivalent, we derive structural
results for the latter problem. Unlike, Problem 1, where we
have multiple control stations, the coordinator is the only
decision maker in Problem 2.

k=1,2. (17a)

k=1,2. (17b)

(17¢)

Stage 3

We now look at Problem 2 as a controlled input-output
system from the point of view of the coordinator and iden-
tify a state sufficient for input-output mapping. From the
coordinator’s viewpoint, the input at time ¢ has two compo-
nents: a stochastic input that consists of the plant disturbance
V; and observation noises W', W7?; and a controlled input
that consists of the partial functions v},~?Z. The output is
the observations Z;; given by (12). The cost is given by
ci(Xy, UL, U?). We want to identify a state sufficient for input-
output mapping for this system.

A variable is a state sufficient for input output mapping of a
control system if it satisfies the following properties (see [5]).

P1) The next state is a function of the current state and the
current inputs.

P2) The current output is function of the current state and
the current inputs.

P3) The instantaneous cost is a function of the current state,
the current control inputs, and the next state.

We claim that such a state for Problem 2 is the following.

Definition 1: For each t define

Sy = (X1, A, AD) (18)

Next we show that Sy, t = 1,2,...,T+1, satisfy properties
(P1)—(P3). Specifically, we have the following.
Proposition 1:

1) There exist functions ft, t =2,...,T such that

Sit1 = fer1(S:, Vi, Wi, WEi,7,7%)- (19)

2) There exist functions fzt, t=2,...,T such that
Zy = hy(Sy_1). (20)

3) There exist functions ¢;, t = 1,...,7T such that
ct(Xe, U, UP) = &(Se, 7577 Sen)- - (21)

Proof: Part 1 is an immediate consequence of the def-
initions of S; and A¥, the dynamics of the system given
by (1), and the evaluations carried out by the control stations
according to (11). Part 2 is an immediate consequence of the
definitions of state Sy, observation Z;, and private information
AF. Part 3 is an immediate consequence of the definition of
state and the evaluations carried out by the control stations
according to (11). |

Stage 4

Proposition 1 establishes S; as the state sufficient for input-
output mapping for the coordinator’s problem. We now define
information states for the coordinator.

Definition 2 (Information States): For a coordination strat-
egy v, define information states 11, as

I, (s;) == P¥ (St =5 | At,’hl:t—la’ﬁ:t—l) : 22)

As shown in Proposition 1, the state evolution of S; de-
pends on the controlled inputs (v}, ~?) and the random noise
(Ve, Wt 1, W2 ;). This random noise is independent across
time. Consequently, II; evolves in a controlled Markovian
manner as below.

Proposition 2: Fort =1,...,T — 1, there exists functions
F; (which do not depend on the coordinator’s strategy) such
that

Wey1 = Fopr (e, vy, 770 Zes)- (23)

Proof: See Appendix A. [ ]
At t = 1, since there is no shared information, II; is simply
the unconditional probability IP (S1) = IP (X, Y7, Yi?). Thus,
II; is fixed a priori from the joint distribution of the primitive
random variables and does not depend on the choice of coor-
dinator’s strategy . Proposition 2 shows that at ¢t = 2,...,7T,
II; depends on the strategy %) only through the choices of
1,1 and ~3, ;. Moreover, as shown in Proposition 1,
the instantaneous cost at time ¢ can be written in terms of
the current and next states (S, S¢+1) and the control inputs
(74,72). Combining the above two properties, we get the
following:



Proposition 3: The process II;, t = 1,2,...,T is a con-
trolled Markov chain with v}, v? as the control actions at time
t, 1.e.,

P (g1 | A e, v, 795) = P (Mg | My, 1,75

=P (i1 [T 57)
24

Furthermore, there exists a deterministic function C; such that

E {ét(St7’715177t27 St+1) ’ Ah Hl:t;’yll:h’)/%:t} = Ct(Hta’Y%”yz)

(25
Proof: See Appendix B. [ |
The controlled Markov property of the process {Il;,t =
1,...,T} immediately gives rise to the following structural
result.
Theorem 1: In Problem 2, without loss of optimality we
can restrict attention to coordination strategies of the form

(v 72) = (L), (26)

Proof: From Proposition 3, we conclude that the opti-
mization problem for the coordinator is to control the evolution
of the controlled Markov process {II;, t = 1,2,...,T}
by selecting the partial functions {v},~2, t = 1,2,...,T}
in order to minimize Y, E{C;(Il;,~¢,7?)}. This is an
instance of the well-known Markov decision problems where
it is known that the optimal strategy is a function of the current
state. Thus, the structural result follows from Markov decision

t=1,...,T.

theory [1]. [ |
The above result can also be stated in terms of the original
problem.

Theorem 2 (Structural Result): In Problem 1 with K = 2,
without loss of optimality we can restrict attention to coordi-
nation strategies of the form

UF =gk (AFTL), k=1,2 27)

where

I, = POt (X,_y AL AZ|A)  (28)

where II; = P (Xo,Y{",Y?) and for ¢t = 2,...,T, II, is
evaluated as follows:

Mys1 = Fop1 (g, g7 (10, 67 (5 11), Ziga)

Proof: Theorem 1 established the structure of the optimal
coordination strategy. As we argued in Stage 2, this optimal
coordination strategy can be implemented in Problem 1 and is
optimal for the objective (4). At ¢ =1, I} = P (Xo, Y7, Y7)
is known to both controllers and they can use the optimal
coordination strategy to select partial functions according to:

(’Y%aﬁ) =1 (1)

(29)

Thus,

Uf =21 (A7) = ¢f(IL)(A}) = gr (AT, Th), k=1,2.
(30)
At time instant ¢ + 1, both controllers know II; and
the common observations

they

1 2
(Y;—n—&-l ’ Yz-t—n+1 ’
partial ~ functions

ZtJrl =

1 2 )
Ui i1 Ui i1)s use the

(gt (-, 1L;), g?(+,11;)) in equation (23) to evaluate II;,;.
The control actions at time ¢ + 1 are given as:

= Y1 (1) (Afy )
= gf—&—l (Af-i-lv Ht-‘rl)’

k k k
Ut+1 = ’Vt+1(At+1)

E=1,2. (31)

Moreover, using the design g defined according to (31), the
coordinator’s information state 1I; can also be written as:

Ht = IPU’ (Xt—lvAt17A? | Ata’yll:t—la’y%:t—l)
=PI (X; 1, A, A7 [ A g2 (), -, 902 (5 T )
— Pi—1:9T0-1) (thhA%,A? ’ At) (32)

where we dropped the partial functions from the condi-
tioning terms in (32) because under the given control laws
(9%.;_1,9%.+_1), the partial functions used from time 1 to t — 1
can be evaluated from A, (by using Proposition 2 to evaluate
IMy¢—1). u

Theorem 2 establishes the first structural result stated in
Section I-D for K = 2. In the next section, we show how to
extend the result for general K.

B. Extension to General K

Theorem 2 for two controllers (K = 2) can be easily
extended to general K by following the same sequence of
arguments as in stages 1 to 4 above. Thus, at time ¢, the
coordinator introduced in Stage 1 now selects partial functions
vk LE — U, for k = 1,2,..., K. The state sufficient for
input output mapping from the coordinator’s perspective is
given as S; = (X;_1,A}¥) and the information state II; for
the coordinator is

I(se) = P¥ (S, = s, | Ay, 7). (33)

Results analogous to Propositions 1-3 can now be used to
conclude the structural result of Theorem 2 for general K.

C. Sequential Decomposition

In addition to obtaining the structural result of Theorem 2,
the coordinator’s problem also allows us to write a dynamic
program for finding the optimal control strategies as shown
below. We first focus on the two controller case (K = 2) and
then extend the result to general K.

Theorem 3: The optimal coordination strategy can be found
by the following dynamic program: For ¢t = 1,..., T, define
the functions J; : P {S} — R as follows. For m € P {S} let

Jr(r) = inf Cp(m,3',5%). (34)
,91);92
Fort=1,...,7—1, and m € P {S} let

Ji(m) = inf, (Culm.3,77)

+ E{Jpp1 (M) | T = 7,92 = 772} } (35)

The arg inf (y,>',~;"%) in the RHS of .J;() is the optimal
action for the coordinator at time ¢ then II; = 7. Thus,

(i) = 65 ()



The corresponding control strategy for Problem 1, given
by (17) is optimal for Problem 1.

Proof: As in Theorem 1, we use the fact that the coor-
dinator’s optimization problem can be viewed as a Markov
decision problem with II; as the state of the Markov process.
The dynamic program follows from standard results in Markov
decision theory [1]. The optimality of the corresponding
control strategy for Problem 1 follows from the equivalence
between the two problems. ]

The dynamic program of Theorem 3 can be extended to
general K in a manner similar to Section II-B.

D. Computational Aspects

In the dynamic program for the coordinator in Theorem 3,
the value functions at each time are functions defined on the
continuous space P {S}, whereas the minimization at each
time step is over the finite set of functions from the space
of realizations of the private information of controllers (Ek,
k = 1,2) to the space of control actions (U*, k = 1,2).
While dynamic programs with continuous state space can be
hard to solve, we note that our dynamic program resembles
the dynamic program for partially observable Markov decision
problems (POMDP). In particular, just as in POMDP, the
value-function at time 7' is piecewise linear in Il and by
standard backward recursion, it can be shown that value-
function at time ¢ is piecewise linear and concave function
of 1I;. (See Appendix C). Indeed, the coordinator’s problem
can be viewed as a POMDP, with .S; as the underlying partially
observed state and the belief II; as the information state of the
POMDP. The characterization of value functions as piecewise
linear and concave is utilized to find computationally efficient
algorithms for POMDPs. Such algorithmic solutions to general
POMDPs are well-studied and can be employed here. We
refer the reader to [6] and references therein for a review of
algorithms to solve POMDPs.

E. One-step Delay

We now focus on the one-step delayed sharing information
structure, i.e., when n = 1. For this case, the structural
result (7) asserted by Witsenhausen is correct [3]. At first
glance, that structural result looks different from our structural
result (9) for n = 1. In this section, we show that for n = 1,
these two structural results are equivalent.

As before, we consider the two-controller system (K = 2).
When delay n = 1, we have

Ay = (Yll:t—17Y12:t—17U11:t—1a U12:t—1)a
Ai = (), Af= (YD),
and
Ziyr = (Y, Y2 UL UD).

The result of Theorem 2 can now be restated for this case
as follows:

Corollary 1: In Problem 1 with K = 2 and n = 1, without
loss of optimality we can restrict attention to control strategies
of the form:

UF = gF(YFIL), k=1,2. (36)

where

L= PO (X Y V2| A) G

We can now compare our result for one-step delay with
the structural result (7), asserted in [2] and proved in [3]. For
n = 1, this result states that without loss of optimality, we can
restrict attention to control laws of the form:

UF = gf (VP (X1 | Ay), k=12 (38)

The above structural result can be recovered from (37) by
observing that there is a one-to-one correspondence between
IT; and the belief P (X;_1 | A;). We first note that

I, = Pie-1:970-1) (Xt—h)/tlv}/tz | At)
B (V[ X) P (VP Xi)

CPULe9Te1) (X, g | A) (39)

As pointed out in [2], [3] (and proved later in this paper in
Proposition 4), the last probability does not depend on the
functions (gi., 1,9%.,_,). Therefore,

I =P (V| Xeo1) - P (Y72 | Xim1) - P(Xy—1|Ay)  (40)

Clearly, the belief P (X;_1|A;) is a marginal of II; and
therefore can be evaluated from IT;. Moreover, given the belief
P(X;—1|A;), one can evaluate II; using equation (40). This
one-to-one correspondence between IT; and P (X;_1|A;)
means that the structural result proposed in this paper for
n = 1 is effectively equivalent to the one proved in [3].

III. PROOF OF THE SECOND STRUCTURAL RESULT

In this section we prove the second structural result (10).
As in Section II, we prove the result for K = 2 and
then show how to extend it for general K. To prove the
result, we reconsider the coordinator’s problem at Stage 3 of
Section II and present an alternative characterization for the
coordinator’s optimal strategy in Problem 2. The main idea
in this section is to use the dynamics of the system evolution
and the observation equations (equations (1) and (2)) to find
an equivalent representation of the coordinator’s information
state. We also contrast this information state with that proposed
by Witsenhausen.

A. Two controller system (K = 2)

Consider the coordinator’s problem with K = 2. Re-
call that v} and ~? are the coordinator’s actions at time
t. F maps the private information of the k" controller
Y 1.6 UF i1.—1) to its action Uf. In order to find an
alternate characterization of coordinator’s optimal strategy, we
need the following definitions:

Definition 3: For a coordination strategy 1), and for ¢t =
1,2,...,T we define the following:

1) @t =P (thn | At)

2) For k = 1,2, define the following partial functions of

Vi

rfﬁ,t(.) = ,yfn(’ YTZ*’I’LJrl:tfn’ U'r]izfnJrl:tfn)’

m=t—n+1t—mn+2,....t—1 41)



Since  ~k is a  function  that  maps
k k k k :

(Ym—7n+1:7rz’ Um—n+1:m—1) to Um’ Tm,t(') 1Is a

function that maps (Y,* 1., Uf_ 4 1.0—1) t0 UL We

define a collection of these partial functions as follows:
+()ym=t-—n+lt-—n+2,...,t-1) (42)

Note that for n = 1, rf is empty.

We need the following results to address the coordinator’s
problem:
Proposition 4: 1) For t = 1,...,T — 1, there exists
functions Q;, QF, k = 1,2, (which do not depend on
the coordinator’s strategy) such that

Or41 = Q(0, Zi11)

i = QF(rf, Zui1, 7)) 43)

2) The coordinator’s information state II; is a function of
(©4,71,72). Consequently, for t = 1,..., T, there exist

functions C; (which do not depend on the coordinator’s
strategy) such that

E {ét(st;’)’tlyfyga StJrl) ‘ At>H1:t7711:t7712:t}
:Ot(@tarwtlvrfvrytl?ryf) (44)

3) The process (0,7}, 72), t =1,2,...,T is a controlled
Markov chain with ~/},~7 as the control actions at time
t, ie.,

1 2 1 .2 1 2
P (9t+1, T4 i1 ‘ Ay, @1:t7T1:t77”1:t7’71;t7’Y1:t>
_ 1 2 1,2 1 .2
=P (@t—Ha Tei1sTea1 | O1:t5 14 T1t5 Vet 71:t)
1 2 1.2 1.2
=P (@t-‘rlart-i,-lart-i-l | G)tyrtaTta%a%) . (45

Proof: See Appendix D. [ |

At t = 1, since there is no sharing of information, ©
is simply the unconditioned probability P (Xy). Thus, O,
is fixed a priori from the joint distribution of the primitive
random variables and does not depend on the choice of the co-
ordinator’s strategy . Proposition 4 shows that the update of
O, depends only on Z; 1 and not on the coordinator’s strategy.
Consequently, the belief ©; depends only on the distribution
of the primitive random variables and the realizations of Z.;.
We can now show that the coordinator’s optimization problem
can be viewed as an MDP with (O, 7},73), t = 1,2,...,T
as the underlying Markov process.

Theorem 4: (©,71,r?) is an information state for the
coordinator. That is, there is an optimal coordination strategy
of the form:

(ngvf)zwt(etvrtlvrf)v t:]-a"'vT' (46)
Moreover, this optimal coordination strategy can be found by
the following dynamic program:

Jr(0,7,7) = inf B{C1(Or,7},7F,77,77) |
Y

eT —_ 97,,,%_‘:2 — 7‘;1:2, %1:2 — ~1:2}‘ (47)

Fort=1,...,7 —1, let

Jt(ga 'Fla 7;2) = :Yilngz E{ét(gta Ttla Tt2a '7%7 '7t2)
+ Jea1(Oeg1, 7y 15T ) ’

97&, — 0,7"}:2 _ 7:1:27,%1:2 _ ,3/1:2} (48)

where § € P{X}, and 7',7? are realizations of partial
functions defined in (41) and (42). The arg inf (;"',~;?)
in the RHS of (48) is the optimal action for the coordinator
at time ¢ when (©y,7},7?) = (0,7%,72). Thus,

*,1 %2 *
(’Yt )Vt ) - wt (@tvrtlﬂﬁ?)

The corresponding control strategy for Problem 1, given
by (17) is optimal for Problem 1.

Proof: Proposition 4 implies that the coordinator’s opti-
mization problem can be viewed as an MDP with (O, r}, r?),
t = 1,2,...,7 as the underlying Markov process and
Cy(©y,7},r2,4},42) as the instantaneous cost. The MDP
formulation implies the result of the theorem. [ ]

The following result follows from Theorem 4.

Theorem 5 (Second Structural Result): In Problem 1 with
K = 2, without loss of optimality we can restrict attention to
coordination strategies of the form

UF = gk(AF 04,71 1), k=12 (49)
where
O =P (Xi—n |Ay) (50)
and
Tf = {(g’I’jI:’L(’ Y'r]rezfnJrl:tfn’ Uﬁlfn+1:t7n’ Am)7
t—n+1<m<t—1} (51)

Proof: As in Theorem 2, equations (17) can be used to
identify an optimal control strategy for each controller from
the optimal coordination strategy given in Theorem 4. [ ]

Theorem 4 and Theorem 5 can be easily extended for K
controllers by identifying (0, 71%) as the information state
for the coordinator.

B. Comparison to Witsenhausen’s Result

We now compare the result of Theorem 4 to Witsenhausen’s
conjecture which states that there exist optimal control strate-
gies of the form:

U = gF(AF P (Xion | Ay)). (52)

Recall that Witsenhausen’s conjecture is true for n = 1 but
false for n > 1. Therefore, we consider the cases n = 1 and
n > 1 separately:

Delay n = 1: For a two-controller system with n = 1, we
have

Ay = (Yllztflv Y12:t715 Ull:t717 U12:t71)7
A% = (Ytl)v Af = (Yt2)v
and

=0, r2=10



Therefore, for n = 1, Theorem 5 implies that there exist
optimal control strategies of the form:

UF = gF(AF P (X0 |Ay), k=1,2. (53)

Equation (53) is the same as equation (52) for n = 1. Thus, for
n = 1, the result of Theorem 4 coincides with Witsenhausen’s
conjecture which was proved in [3].

Delay n > 1: Witsenhausen’s conjecture implied that
the controller k£ at time ¢ can choose its action based only
on the knowledge of A¥ and P (X;_, |A;), without any
dependence on the choice of previous control laws (g1:Z ;). In
other words, the argument of the control law gf (that is, the
information state at time t) is separated from g;:? ;. However,
as Theorem 5 shows, such a separation is not true because of
the presence of the collection of partial functions 71,77 in the
argument of the optimal control law at time ¢. These partial
functions depend on the choice of previous n — 1 control laws.
Thus, the argument of g depends on the choice of g{ 2, 1.,_;.
One may argue that Theorem 5 can be viewed as a delayed or
partial separation since the information state for the control
law gF is separated from the choice of control laws before
time ¢ —n + 1.

Witsenhausen’s conjecture implied that controllers employ
common information only to form a belief on the state X;_,;
the controllers do not need to use the common information to
guess each other’s behavior from t—n—1 to the current time .
Our result disproves this statement. We show that in addition
to forming the belief on X;_,,, each controller should use the
common information to predict the actions of other controllers

by means of the partial functions 7}, 2.

IV. A SPECIAL CASE OF DELAYED SHARING
INFORMATION STRUCTURE

Many decentralized systems consist of coupled subsystems,
where each subsystem has a controller that perfectly observes
the state of the subsystem. If all controllers can exchange
their observations and actions with a delay of n steps, then
the system is a special case of the n-step delayed sharing
information structure with the following assumptions:

1) Assumption 1: At time t = 1,...,T, the state of the
system is given as the vector X; = (X}*¥), where X}
is the state of subsystem 1.
2) Assumption 2: The observation equation of the k'
controller is given as:

vk =X}, (54)
This model is similar to the model considered in [7]. Clearly,
the first structural result and the sequential decomposition of
Section 1T apply here as well with the observations Y;* being
replaced by XF. Our second structural result simplifies when

specialized to this model. Observe that in this model

At = (Ylltffrw Ulltiin) = (Xlit*n*h Ulltlin) (55)
and therefore the belief,
O =P (Xip|A) =P (Ximn | Xemn1, UFE)  (56)

where we used the controlled Markov nature of the system
dynamics in the second equality in (56). Thus, O, is a function
only of X;_,_1, Utlffl . The result of Theorem 4 can now be
restated for this case as follows:

Corollary 2: In Problem 1 with assumptions 1 and 2, there
is an optimal coordination strategy of the form:

(’Ytla 71&2) = ¢t(Xt—n—17 Utl—na Utz—na Ttla T?)a t=1,...,T.
(57)
Moreover, this optimal coordination strategy can be found by
the following dynamic program:

Jr(z,ut, u?, 7 72)
= inf E{CA(X 1,2 1 24|y _
:Ylln:yz {T( T*"’TTJAT’,YT”YT)’ T-n—-1=17,

— 5/1:2}. (58)

1:2 _ ,1:2 1:2 _ ~1:2 1:2
UT—n_u y'pr =T YT

Fort=1,...,7 —1, let
Jt(xa ula u23 7:17 7:2) = ~ilnf2 E{ét(thny Ttl7 Tt2a Vlla 71&2)
aatel
+ Ji 1 (Xin 1,15 ") | Xene1 = @,
Ut1i2n — u1:27rtl:2 _ 51:2,,%51:2 _ ;?1:2}. (59)
We note that the structural result and the sequential decompo-
sition in the corollary above is analogous to [7, Theorem 1].

A. An Example
We consider a simple example of a delayed sharing infor-
mation structure with two controllers (KX = 2), a time horizon
T = 3 and delay n = 2. Varaiya and Walrand [3] used this
example to show that Witsenhausen’s proposed structure was
suboptimal.
The system dynamics are given by
Xo = (Xév Xg)
Xy = (X1, X7) = (Xg + X5,0)
X5 = (X5, X3) = (X3 — X7 —U3,0)
= (Xp + X5 - U3 = Us,0)
X{, X3 are zero-mean, jointly Gaussian random variables with

variance 1 and covariance —0.5. The observation equations

are:
k _ k
Y =X

and the total cost function is
J(9) = E7 {(X3)* + (U3)*}

We can now specify the common and private informations.
Common Information:

A =0, Ay=0,
Az = {Yll’Y12’U117U12} = {X(%anlelyU%}

(60)

Private Information for Controller 1:
A ={"'} = {X5},
A% = {YllaY217 Ull} = {Xév (Xé + Xg)? Ull}
A%} = {Y2171/317 U21} = {(Xé + Xg)v (Xé + Xg)v UQI}



Private Information for Controller 2:
AT = {Y?} = {X5},
A = {¥7, Y7, U} = {X§,0,U7}
Ag, = {Y22> Y327 U22} = {07 U22a U22}

The total cost can be written as:

JI(g) +(U3)?}

Thus, the only control actions that affect the cost are U3 and
Ui . Hence, we can even assume that all other control laws
are constant functions with value 0 and the performance of a
design is completely characterized by control laws g3 and g3.
Using the fact that all control actions other than U3 and U3
are 0, we get the following simplified control laws:

U3 = g5(A3, A2) = g3(X7)
Uz = g5(A3, As) = g3((Xg + X§), Xg, X¢)
= g:% (X(%’ Xg)
Now consider control laws of the form given in Theorem 5
given by

=E9 {(X) + X§ — U3 — U3)* (61)

UF = gF (A}, ©4,11,77) (62)

For k = 2 and t = 2, ©5 is a fixed prior distribution of X,
while r}, 73 are constant functions. Hence, Oy, r},r? provide
no new information and the structure of equation (62) boils
down to

U3 = g5(A3) = g5(X3) (63)
For k=1and ¢t = 3,
O3 =P (X1 |A3) =P ((X; + X5,0) | X5, X3)

and
T:%:{(g () Yn% 117U7%l,
{(g%( 7Yl 7U1uA2)}
= {(¢3(- X3)} = U3,

while 71 are partial functions of constant functions. Therefore,
equation (62) can now be written as:

1;17Am);2 <m< 2}

U3 = g5((X5 + X3). P ((X§ + X3.0) | X5, X3) . US)

= g5((Xg +X3), (X + X3), U3) (64)
= g3((Xg + X3), U3) (65)
where we used the fact that knowing

P ((X§ + X2,0)| X, X¢) is same as knowing the value of
(X¢ + X2) in (64).

The optimal control laws can be obtained by solving the co-
ordinator’s dynamic program given in Theorem 4. Observe that
03 =P ((X§ + X2,0)| X, XZ) is equivalent to (X§ + X3)
and that 73 is equivalent to UZ. Thus, the dynamic program
can be simplified to:

T((h + 22),42)
—infE {<X§>2 Uy
,Yl

(Xo JFXO) (5 + 27), }
U2 _u27'7 :/1

where, for the given realization of ((z§ + 22),u3), ¥* maps
A} = (X} + X@) to U3. Further simplification yields:

J3((xg + 5), u3)

= ipr{(Xg + X2 - U2 - U3)* + (U3)?
,-Yl

(X3 + XD = (ab + o), UF = g =71}

> (20 + 25 — u3)*/2, (66)

where the right hand side in (66) is the lower bound on the
expression (z§ +x3 —u3 —u})? + (u})? for any u}. Given the
fixed realization of ((z{ 4+ x3), u3), choosing v! as a constant
function with value (z$+ 3 —u3)/2 achieves the lower bound
in (66). For t = 2, the coordinator has no information and the
value function at time ¢t = 2 is

2 =B {J5((X5 + X3).U3) |73 =%}

=i E{(X5 + X5 - U3)*/2|5 =7} (6D
where 4% maps A} = (X2) to U3. The optlmlzatlon problem
in (67) is to choose, for each value of xo, the best estimate (in
a mean squared error sense) of (X} +X2). Given the Gaussian
statistics, the optimal choice of 42 can be easily shown to be
v (xf) = 3 /2.

Thus, the optimal strategy for the coordinator is to choose
v3(x3) = x3/2 at time t = 2, and at t = 3, given the fixed
realization of ((x§+x3),u3), choose y!(-) = (v} +x2—u2)/2.
Thus, the optimal control laws are:

Ui = g3(X3) = X5 /2 (68)
Us = g5((Xg + X3).U3)
= (X5 + X5 -U3)/2 (69)

These are same as the unique optimal control laws identified
in [3].

V. KURTARAN’S SEPARATION RESULT

In this section, we focus on the structural result proposed by
Kurtaran [4]. We restrict to the two controller system (K = 2)
and delay n = 2. For this case, we have

A = (Yllt 27Y12t 2;U11:t72aU12:t72)a
Al (Ytletl 1»Ur 1) A?: (YtQaYtQ—hUtQ—l)’
and

Zig1 = (Y, Y20, UL, U ).

Kurtaran’s structural result for this case states that without
loss of optimality we can restrict attention to control strategies
of the form:

UF = g7 (A}, @), k=12, (70)

where
P, = P9 (Xt—Qa Utl—lv Ut{l ‘ At) :

Kurtaran [4] proved this result for the terminal time-step 7'
and simply stated that the result for ¢t = 1,...,7 — 1 can



be established by the dynamic programming argument given
in [8]. We believe that this is not the case.

In the dynamic programming argument in [8], a critical step
is the update of the information state ®;, which is given by [8,
Eq (30)]. For the result presented in [4], the corresponding
equation is

Qytq :Ft((I)t’Ytl—hY?—laUtl—laUE—l)' (71)

We believe that such an update equation cannot be established.

To see the difficulty in establishing (71), lets follow an
argument similar to the proof of [8, Eq (30)] given in [8,
Appendix B]. For a fixed strategy g, and a realization ;41 of
Ay¢41, the realization @441 of ®yyq is given by

1,2
pry1 =P (xt—lautvut | 5t+1)
_ 1,2 1 2 1 2
=P (xtflautvut ‘ Oty Yp—1+Yi—1+ utflvutfl)
1,2 .1 2 1 2
P (iEt—hUt,Ut yYt—15Yp—1, U1, Up_1 | 5t)

>

(z/,a',a2)EX xUL xU?

P(X; 1 =2',U} =a',U} = a?,
Yi—15Yi—15 W15 Uiy | Or)
(72)

The numerator can be expressed as:

1 2 1 2 1 2
P (xtfla ut ) ut ) yt717 yt—h utflv utfl ’ 675)
_ 1 2 1 2
= E ]P(xtflauwupytfl?ytfl’

1,2 yl.y2 1 2 1,2
(2,5 97) XYY Up_ 15 Uy 1s Te—2, Yy » Ui |Ot)

->

(Tt—2,y3,y7)EX-Y1-Y?

1
Lgr ooty ut b [tie]

2
Lgo(s0u2_ w7y ) [z]

P (g | 201) Py | 21a)
-P (xt—l ‘ Tt—2, u%—lau?—l)

1
]19%—1(&*1)“%—2’%1—2)ytl—l) [utfl}

2
]19?(5%1’“12,72@12,72’912,71) [ut_ﬂ

Py |wi2) P (yi | 7i-2)
P (iUth | 5t) (73)
If, in addition to ¢, y; 1, y2 1, ui_,, and u?_;, each term
of (73) depended only on terms that are being summed
over (xi_o, ytl yf), then (73) would prove (71). However,
this is not the case: the first two terms also depend on d;.
Therefore, the above calculation shows that ¢, is a function
of vy, Y11, Y2 UL ,U2 | and &;. This dependence on J;
is not an artifact of the order in which we decided to use the
chain rule in (73) (we choose the natural sequential order in
the system). No matter how we try to write ¢;4; in terms of
¢, there will be a dependence on &;.

The above argument shows that it is not possible to estab-
lish (71). Consequently, the dynamic programming argument
presented in [8] breaks down when working with the informa-
tion state of [4], and, hence, the proof in [4] is incomplete.
So far, we have not been able to correct the proof or find a
counterexample to it.

VI. CONCLUSION

We studied the stochastic control problem with n-step delay
sharing information structure and established two structural
results for it. Both the results characterize optimal control laws
with time-invariant domains. Our second result also establishes
a partial separation result, that is, it shows that the information
state at time t is separated from choice of laws before time
t—n+1. Both the results agree with Witsenhausen’s conjecture
for n = 1. To derive our structural results, we formulated
an alternative problem from the point of a coordinator of the
system. We believe that this idea of formulating an alternative
problem from the point of view of a coordinator which has
access to information common to all controllers is also useful
for general decentralized control problems, as is illustrated
by [9] and [10].

APPENDIX A
PROOF OF PROPOSITION 2

Fix a coordinator strategy ). Consider a realization d;y1
of the common information Ay ;. Let (34.,,7%,) be the
corresponding realization of partial functions until time £.
Assume that the realization (§;11, 1.4, V1., 7+.;) has non-zero
probability. Then, the realization 7, of 1I;4; is given by

Ter1(Sep1) = P¥ (S1 = 041 | Se4 1, 10, 90) - (T4)

Using Proposition 1 , this can be written as

2.

5t7vt7wt1+17wt2+1
~IP(V;5:vt)oIP(Wt1 = w;} )
+1 t+1

- (Wt2+1 = wtgﬂ) - PY (St =S¢ | 5t+1a’ﬁ;tﬁ%zt> :
(75)

]lst+1 (ftJrl (5757 Ut wz}+17 thJrlv ’?tlv :Yt2>)

Since ;41 = (64, 2t41), the last term of (75) can be written
as

IP¢ (St = St ‘ 5t7 Zt+1, ’?%:tvﬁ/%:t)
. IPlp (St = S¢, Zt+1 = Zt+1 | 6757:7]%:1555/12:75)
Zs/ ]P’d’ (St = Slv Zt+1 = Zt+1 |5t7 ﬁ%:t’&%:t)

Use (20) and the sequential order in which the system
variables are generated to write

(76)

PY (Sy = 84, Zus1 = 241 | 62, A1et> Vit)
= ]l;}t(st)(zﬂrl) Y (St = S5t ’5&’5’%::5717’712:1571) )
= ]ll}t(st)(zﬂrl) - (5¢). (78)
where 7},4? are dropped from conditioning in (77) because
for the given coordinator’s strategy, they are functions of the

rest of the terms in the conditioning. Substitute (78), (76), and
(75) into (74), to get

Ter1(Se41) = Fogr (T, 34 37+ 2e41) (S041)

where Fy;1(+) is given by (74), (75), (76), and (78).



APPENDIX B
PROOF OF PROPOSITION 3

Fix a coordinator strategy 1. Consider a realization ;11 of
the common information A, ;. Let m1.; be the corresponding
realization of IIy.; and (%1.,,7%,) the corresponding choice
of partial functions until time ¢. Assume that the realization
(8¢41,m1:6,Y14,7%;) has a non-zero probability. Then, for
any Borel subset A C P {S}, where P {S} is the space of
probability mass functions over the finite set S (the space of
realization of S;), use Proposition 2 to write

P (Ht+1 €A | 5t777'1:t7:>/11:ta7~/12:t)
= > Va(Feir(m, 737 2641))

Zt41

P (Zt+1 = Zt+1 | 5ta7rl:t7:7%:ta:y%:t) (79
Now, use (20), to obtain

P (Zt+1 = Zt+1 | 5t; T1: tai/ll:tv:yf:t)

fZﬂ J(ze) P (Se = 50| 00, T, A )
:Z hoton (Z1) - (1) (80)

St
where we wused the fact that for any realization

(8¢, 1.4, V4.4y¥3.4) Of positive probability, the conditional
probability P (S, = s, | O, Tty Vie» Vie) 1S same as mi(sy).
Substitute (80) back in (79), to get

P (Ht+1 €A | ¢, Wl:ta’?%:taﬁ/%:t)

= Z Z La(Fpr (7o, 30375 2041))

Zep1 St
]lﬁt(st)<zt+1) -me(ste)
=P (Ht+1 € A‘7t7’7t175/t2) )
thereby proving (24).
Now, use Proposition 1 to write,

81

E {ét(stv 72517’71‘,2? St+1) ’ 6t7 7T-1:137’3/11:1‘» :}/12:t}

:Z ét(staﬁ/tlf??aftJrl(StavtawtlJrlvw?Jrl?’?tlaﬁ/g))
Stavt7wi+17w?+1
P(Vi=w) P (Wt1+1 = wt1+1)
P (Sy = s¢ | ¢, 71t Ve Viet)
= Z ét(sta:}/tla:}/?aft+1(3t7Utawt1+17wt2+17%517:7t2))
stvvtthl+17w?+1
P (V=) P (Wh, =wi,)
P (Wt2+1 = wt2+1) - (se)

(Wt+1 wt2+1)

. ~1 z2
= Ce(me, 7> Ve )- (82)
This proves (25).
APPENDIX C
PIECEWISE LINEARITY AND CONCAVITY OF VALUE
FUNCTION
Lemma 1: For any realization 72 of ~}2, the cost

Cy(my, 7, 47) is linear in 7.

Proof:
Ct(ﬂ-tv;ytl?’?f)
=E {ét(Stavtl?rY?v St-‘rl | Ht = 7Tt7’)/t1 2 = &tlﬂ}
= Zét(stﬁl Y, frea (se,ve, wi g, wiy g 75 5%)
P(V; =v) P (WL =wi)) - m(se)
where the summation is over all realizations of (s, vy, wj?).
Hence Cy(m;, 7}, 72) is linear in 7. ]
We prove the piecewise linearity and concavity of the value
function by induction. For t = T,

JT(,/T) = llllfz CT(Wv’S/g?’??)'
Yt

Lemma 1 implies that Jp () is the inifimum of finitely many
linear functions of 7. Thus, Jr(w) is piecewise linear and
concave in 7. This forms the basis of induction. Now assume
that J;41 () is piecewise linear and concave in 7. Then, J; 41
can be written as the infimum of a finite family I of linear

functions as
1n§ { Zai(s) -7(s) + bl},

Ji1(m) =
sES
where a;(s), b;, i € I, s € S are real numbers. Using this, we
will prove that the piecewise linearity and concavity of J;(7).
Jt (7'(') = inf

&kaQ[CE(W

+ B {Jip1 (M) | T, = 7,902 = 512} } (84)

(83)

AN A2)

For a particular choice of 5/1:2, we concentrate on the terms
inside the square brackets. By Lemma 1 the first term is linear
in 7. The second term can be written as

E{Jip1 (M) | 0 = 7,92 = 512}
= Z Jir1 (B (1,3 72, 2e41))

Zt+1

P (Zt+1 = Zt+1 ’Ht = 7T7’th:

=3 [ { S

(85)

_;5/12)

(Fraa(m, 7' 3% 2000)) () + bi )

Zt41
P (Zir = 2o [T =7,y = 35 2)] (86)
where the last expression follows from (83).
Note that
P (Ziy1 = 201 [T = 7,92 = 512)
= > 1,y (z) () 87

s'eS
Focus on each term in the outer summation in (86). For
each value of 2,41, these terms can be written as:

inf{zaz( ) - (Fga(m, At 52, 2041))(s)
’ Z ]liz,t(s’)(ZH»l) (s

s'eS
m(s")

LR DETHNEE

s'eS

(88)



The second summand is linear in 7. Using the characterization
of Fyy; from the proof of Proposition 2 (Appendix A), we can
write the first summand as

w{ X

1 2
St,Ve, W g, Wiy g

P (Vi =) P (Wi =w)

]ls(ft-‘rl(st; V¢, wt1+1a wt2+1a :Ytla ’?1&2))

: ]liz(st)(zt'i'l)ﬂ-(st)}
which is also linear in 7. Substituting (88) and (89) in (86), we
get that for a given choice of 4!, 72, the second expectation
in (84) is concave in 7. Thus, the value function J¢(7) is the
minimum of finitely many functions each of which is linear
in 7. This implies that J; is piecewise linear and concave in
m. This completes the induction argument.

(89)

APPENDIX D
PROOF OF PROPOSITION 4

We prove the three parts separately.

Part 1)

We first prove that ©.y; is a function of ©; and Z;;.
Recall that Zt-‘rl = (}/1&1—7z+1’}/t2—n+17Utl—n+17Ut2—n+1) and
Apy1 = (Ay, Ziyq1). Fix a coordination strategy ) and
consider a realization ;1 of Ayy 1. Then,

Or41(Tt—n+1)
= P(Xt_n+1 = xt—n-&-1‘6t+1)
=P(Xt—ny1 = Ttnt1lds, y251:—2n+17 yt2—n+17 U%:—Qn-u)
= Z P(Xi—nt1 = Tmnt1| Xemn = 2,02, 1)
zeX
-P(Xy—p = x|dy, ytlfnJrh U%iwl)
= Z P(Xt—ni1 = Tipni1| Xemn = 2,4 1)
TeX
P(Xi—p =z, ytl:}nJru U%?n+1|5t)
- Zm’ IP(Xt—n =, ytlz—2n+17 U%Z—Qn-&-l‘(;t)
Consider the second term of (90), and note that under any

coordination strategy 1, the variables u{?, | ; are deterministic
functions of y/*2, . | and &, (which is same as yii7_,,, uiis_,).
Therefore, the numerator of the second term of (90) can be

written as

(90)

PY (l'tfnvytl?nJrlvu%?n%»l ’(St)
PY (2 | T4, 6t) P¥ (2420 | 61)
= IP'QZ’ (u%:—2n+1 | ytl:—2n+175t)
-P (ytl’_2n+1 | xt—n) : ot(xt—n) ©On
Substitute (91) in (90) and cancel P¥ (w2, 1 | yi2 0,60
from the numerator and denominator. Thus, 6;; is a function
of 6; and z¢41.

Next we prove that rfﬂ is a function of 7%, Z;,1 and F.
Recall that

k . k
Tt+1 = (T’m_’(t+1),t_n+2 § m S t)

k

We prove the result by showing that each component r;7, (t+1)

t—n+2<m<tis a function of 7¥, Z;,1 and ~F.
1) For m = t, we have 7}, ) = (-, Y}, ). Since
V1 is a part of Zypr, 7,y is a function of ~f
and Zyy.
2) Form=t—n+2t—m+3,...,t—1,

t+1)

k Ak k k
Tm,t+1(') = 'Ym('vym—n+1:t+1—nv Um—n+1:t+1—n)
_ Ak k k k k
- ’Ym('v th—n—H, Ut—n+1a Ym—n+1:t—na Um—n+1:t—n)
_ .k k k
= rm,t('7 Y s Ut7n+1) (92)

Thus, form=t—n+2,t—n+3,...,t—1, rfth is
a function of 7, ; and Z; 1.

Part 2)

First, let us assume that the coordinator’s belief II; defined
in (22) is a function of (O, r}, r?), that is, there exist functions
Hy, fort=1,2,...,T, such that

My = Hy(O4,17,77) (93)
From (25) of Proposition 3, we have that
E {&(St, 7,775 Ser1) | At e, Yo, 73 }
= Cy(Ty, 71, 77)
= Ci(O 11,78, (94)

where the last equation uses (93). Thus, to prove this part of
the proposition, only need to prove (93). For that matter, we
need the following lemma.

Lemma 2: S; = (X;_1,A}, A?) is a deterministic function
of (Xi—ns Vicnt 14— 1. Wi pyries Wipynu i, 77), that is,
there exists a fixed deterministic function D; such that

St = (thla A%, A?)

= Dy(Xt—n, Vicns1—1, WL L) (95)

Proof: We first prove a slightly weaker result: for ¢ —n +
1 < m <t —1, there exists a deterministic function D,, ;
such that

1:2 1:2
(Xt*’ﬂ+1:ma thfnJrlzmv UtfnJrl:m)
- 1:2 1:2
= Dm,t (Xt—’ru ‘/t—n—i-l:m; Wt—n-t,-l:ma rt—n-',-l:m,t) (96)

using induction. First consider m = ¢t —n+1. For this case, the
LHS of (96) equals (X;—n41, Y52 1, Uf2, ). Fork =1,2,

k k k
Y;fnJrl = ht7n+1(Xt*’ﬂ7 Wt7n+1)
k k k
Ut—n+1 = rt—n—i—l,t(ift—n—i-l)
Furthermore, by the system dynamics,
1:2
Xt7n+1 = ft(Xt7n7 Ut7n+1a ‘/tfnJrl)

Thus (X;—nt1, V52,1, Uf2, ) is a deterministic function
of (Xp—n, Wr% 1, Vicny1,742,41,4). This proves (96) for
m =t —n + 1. Now assume that (96) is true for some m,
t—n+1<m <t—1. We show that this implies that (96) is
also true for m + 1. For k =1, 2,

Yv]ﬁb+1 = hlﬁn+1(Xm7 WTIZH)

k _ ..k k k
Um+1 - Tm+1,t(y;7n+1:m+17 UtfnJrl:m)



Furthermore, by the system dynamics,

Xm+1 = ft(X U +17Vm+1)

Thus, (Xom41, Y52, UL3,) is a deterministic function of

(St = s¢|0¢)

= Y B 2e1) P
= 3 Mo o) mils0)

St

(X’rmyt n41: m’U —n+1: mvwl +1’Vm+1’r717;,%1-1,t) = Z]lfzt(st)<zt+1) 'Ht(etvftlvfb(st) (100)
Combining this with the induction hypothesis, we conclude o o .
that (X;_ n+1 s }/tl:%z—&-l:m—&-l’ Ut1;2n+1:m+1) is a function of Substituting (100) back in (99), we get
(Xt n Wt n+1 m+1> V;—n-ﬁ-l:m-‘rla rt1:—n+1:m+1,t)' Thus’ by P (@t+1 = 9t+17 Ttlfl = ’Ftlfl | (St, 91:,5,")/1 t2’ f% t2)
induction (96) is true fort —n+1<m <t —1.
Now we use (96) to prove the lemma. For k = 1,2 = Z Lo,y (Qer1 (01, 2e41))
Zt41,St
E_ 1k k 1 -
Ytk o h}i (Xe1, W) : 1F}+1<Q%+1(r1}a71:17 zt+1))
Ty = Tt—n+1:t—1,t ]lft2+1 (Q?Jrl(f?, ’%2, Zt+1))
Cqmblmng thlS. \.)v1t.h (96) for m =t — 1 implies that there ]lﬁt(st)(zt-ﬁ-l) CHy (0,7, 72) (s0)
exists a deterministic function D; such that 12 -1
=P (011 = Oppr,ri = 7 [ 60,72, 702) (101

1:2 1:2
(Xt—n+1:t—1a }/t—n—',-l:h Ut—n+1:t—1)
a 1:2 1:2
= Dt(Xt—m Vientiit—1, Wt_n+1;t7 Ty )

This implies that there exists a function D, such that Lemma 2
is true. ]
Now consider

Iy (s¢) = PY (St = St |Ata711;t—1a712;t—1)
= Z ﬂst {Dt(xt—na Vt—n+1:t—1, wtl:—2n+1:t5 ftlzz}

P (Ti—n, Ve—nt1a—1, w2 T ’ Ay, 1it-1)
o7
where the summation is over all choices of (Z¢—p, Vt—nt1:4—1,
w2, 14,7+ 2). The vectors 72 are completely deter-
mined by A; and ~{ ;; the noise random variables
vt,n+1:t,1,wtli2n+1:t are independent of the conditioning
terms and X;_,,. Therefore, we can write (97) as

Z L, {Di(x—ns Ve—pti:t—1, wtlfn+1;t, 7))
P (Ut—n+1:t—1a wtl:—2n+1:t) : 1@1,@2 (rt17 th)
. ]P (xt—'n, | Ata ﬂ}&:t—l& szt—l)

In the last term of (98), we dropped 7{Z ; from the
conditioning terms because they are functions of A;. The last
term is therefore same as P (x4_,, | A;) = ©;. Thus, II; is a
function of ©; and r},r?, thereby proving (93).

(1]
[2]
[3]
[4]

[5]

[6]
[7]

[8]

9]
(98)

[10]

Part 3)
Consider the LHS of (45)
(@t+1 =041, Tt+1 = 7}+17 | ¢, 91::&771 it 77:% t2)

= Z Lo,y (Qui1(0r, 2e41)) - L (Qiyr (74,31 241))

Zt41

t+1

7‘1+1 (Qt+1(7"t A7 241))
P (Zeg1 = 2041 | 66, 17 Flps it 99)
The last term of (99) can be written as
P (Zi1 = 241 | 66 10 Phots Phat)

= Z ]lht(St)(th) -P (St = St | 5ta5/11::t2af%:t77:%:t)

thereby proving (45).
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