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Abstract

We consider the decentralized bandwidth/rate allocation problem in unicast service provi-

sioning with strategic users. We present a mechanism/game form which possesses the following

properties when the users’ utilities are concave: (1) It implements in Nash equilibria the solution

of the corresponding centralized rate allocation problem in unicast service provisioning. (2) It is

individually rational. (3) It is budget-balanced at all Nash equilibria of the game induced by the

mechanism/game form as well as off equilibrium. When the users’ utilities are quasi-concave the

mechanism possesses properties (2) and (3) stated above. Moreover, every Nash equilibrium of

the game induced by the proposed mechanism results in a Walrasian equilibrium.

I. INTRODUCTION

A. Motivation and Challenges

Most of today’s networks, called integrated services networks support the delivery of a variety

of services to their users each with its own quality of service (QoS) requirements (e.g. delay,

percentage of packet loss, jitter, etc). As the number of services offered by the network and

the demand for the services increase, the need for efficient network operation increases. One of

the key factors that contributes to efficient network operation is the efficient utilization of the

network’s resources.
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The design of resource allocation mechanisms which guarantee the delivery of different

services, each with its own QoS requirements, and maximize some network-wide performance

criterion (e.g. the network’s utility to its users) is an important and challenging task. The

challenges come from: (1) the fact that the network is an informationally decentralized system;

(2) the network’s users may behave strategically (i.e. they may behave selfishly). Networks are

informationally decentralized systems. Each user’s utility is its own private information. Users

are unaware of each others’ utilities and of the resources (e.g. bandwidth, buffers, spectrum)

available to the network. The network (network manager) knows the network’s topology and

its resources but is unaware of the users’ utilities. If information were centralized, the resource

allocation problem could be formulated and solved as a mathematical programming problem or

as a dynamic programming problem. Since information is not centralized such formulations are

not possible. The challenge is: (1) to determine a message exchange process among the network

and users and an allocation rule (based on the outcome of the message exchange process) that

eventually lead to a resource allocation that is optimal for the centralized problem, (2) To take

into account, in the determination of the allocation mechanism, the possible strategic (selfish)

behavior of the network’s users.

The topic of resource allocation for informationally decentralized systems has been explored

in great detail by mathematical economists in the context of mechanism design. Decentralized

resource allocation problems arising in networks have recently attracted significant attention

among engineers. Below we present a brief survey of the existing literature on decentralized

network resource allocation and briefly refer to texts and survey articles written by mathematical

economists on mechanism design. A more detailed discussion of the existing literature on network

resource allocation, and a comparison of the results of our paper with this literature will be

presented in section I-C of the paper.

Within the context of communication networks most of existing literature (e.g. [1]–[20] and

[21]) has approached the design of decentralized resource allocation mechanisms under the

assumption that the network (network manager) and its users are cooperative (non-strategic),

that is, they obey the rules of the proposed decentralized resource allocation mechanism.

Decentralized resource allocation problems with strategic users are solved through the devel-

opment of game forms/mechanisms which together with the users’ utilities give rise to games.

Depending on the information available to the users, the game induced by the mechanism is either
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one of complete information or incomplete information ( [22]); the nature of the game dictates

the behavioral/equilibrium concept (e.g. Nash equilibrium (NE), subgame perfect equilibrium,

Bayesian Nash equilibrium, sequential equilibrium) that is appropriate/suitable for the solution

of the resource allocation problem. The allocation mechanisms specify; (1) the allocations made

at all equilibrium and non-equilibrium points of the game; and (2) the tax (positive or negative)

each user pays as a result of his/her participation in the game. Desirable properties of resource

allocation mechanisms with strategic users are: (1) the allocations corresponding to all equilibria

of the resulting game must be globally optimal; (2) the users must voluntarily participate in the

allocation process; (3) the budget must be balanced, that is the sum of taxes paid by the users

must be zero (there should be no money left to be thrown away at the end of the allocation

process).

Recently, within the context of communication networks, researchers have investigated decen-

tralized resource allocation problems under the assumption that users behave strategically (i.e.

they are not price-takers, they do not necessarily obey the rules of the mechanism but have to

be induced to follow the rules). Within the context of wired networks, decentralized resource

allocation mechanisms have been proposed and analyzed in [6], [8], [23]–[30] and [31]. A more

detailed discussion of these references and comparison with the results of this paper will be

presented in section I-C. Decentralized power allocation mechanisms for wireless networks with

strategic users where every user’s transmission creates interference to every other user or to a

subset of the network’s users were proposed and analyzed in [18], [32].

Resource allocation problems in informationally decentralized systems has been explored

in great detail by mathematical economists in the context of mechanism design. There is an

enormous economics literature for the situation where users are cooperative (e.g [33], [34]

and references therein) as well as the situation where users are strategic (e.g [33]–[35], and

references therein). For a survey on the relationship of mechanism design and decentralized

resource allocation in communication networks we refer the reader to [36].

B. Contribution of the paper

We investigate the unicast service provisioning problem in wired networks with arbitrary topol-

ogy and strategic users. The main contribution of this paper is the discovery of a decentralized

rate allocation mechanism for unicast service provisioning in networks with arbitrary/general
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topology and strategic users, which possesses the following properties.

When each user’s utility is concave, then:

• (P1) The mechanism implements the solution of the centralized unicast service provisioning

problem in Nash equilibria. That is, the allocation corresponding to each NE of the game

induced by the mechanism is a globally optimal solution of the corresponding centralized

resource allocation problem.

• (P2) The mechanism is individually rational, that is, the network users voluntarily partici-

pate in the rate allocation process.

• (P3) The mechanism is budget-balanced1 at all feasible allocations, that is, at all the

allocations that correspond to NE messages/strategies as well as at all the allocations that

correspond to off-equilibrium messages/strategies.

When each user’s utility is quasi-concave but differentiable, then:

• The mechanism possesses properties (P2) and (P3).

• (P4) Every NE of the game induced by the mechanism results in a Walrasian equilibrium

( [12] Ch. 15) , consequently, a Pareto optimal allocation.

To the best of our knowledge, none of the decentralized resource allocation mechanisms proposed

so far for the unicast service provisioning problem in communication networks possesses simul-

taneously all three properties (P1)-(P3) when the network’s topology is general/arbitrary, the

users are strategic and their utilities are concave. Furthermore, we are not aware of the existence

of any publications in unicast service provisioning containing the analysis of a decentralized

rate allocation mechanism when the users are strategic and their utilities are quasi-concave.

We now compare in more detail our contributions with the existing literature.

C. Comparison with related work

We now explain why the proposed mechanism and the above results are distinctly different

from all game forms/mechanisms proposed so far for the unicast service provisioning problem

with strategic users.

Most of the previous work on the unicast service provisioning problem in networks with

general topology is based on Vickrey-Clark-Groves(VCG)-type mechanisms, [25]–[27], [31],

1In a budget-balanced mechanism the sum of the taxes paid by a subset of users is equal to the sum of subsidies received by
the rest of the users.
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[37]–[41]. The game forms/mechanisms proposed in [31] and [25] induce games that establish

the existence of a unique Nash equilibrium at which the allocation is globally optimal under

some conditions; but these mechanisms are not budget-balanced even at equilibrium. The mech-

anisms/game forms proposed in [26], [27], [37], [38] induce games that have multiple NE; these

mechanisms are not budget-balanced even at equilibrium, and the allocations corresponding to

the Nash equilibria are not always globally optimal ( that is these mechanisms do not implement

in Nash equilibria the solution of the centralized unicast service provisioning problem). Our

mechanism is not of the VCG-type, thus, it is philosophically different from those of [25]–[27],

[31], [37], [38].

The work in [28], [29] and [42] deals with single link networks. For these single-link networks

the authors of [29] proposed a class of efficient (optimal) allocation mechanisms, called ESPA,

for the allocation of a single divisible good. ESPA mechanisms were further developed in [28].

It is not currently known whether ESPA mechanisms implement in Nash equilibria the optimal

solution of the unicast service provisioning problem in networks with arbitrary/general topology.

The network model considered in this paper has arbitrary/general topology.

In [23], [24] the authors show that when the resource allocation mechanism proposed in

[6] is considered under the assumption that the users are strategic and NE is the equilibrium

concept, the allocations corresponding to any NE are different from any allocations that are

optimal solutions of the corresponding centralized unicast service provisioning problem; that is,

the allocation corresponding to any NE suffer from a certain efficiency loss. Particularly, in [24]

it is shown that there exists a lower bound on the efficiency loss. The mechanism we propose

in this paper is distinctly different from those of [23], [24]. Our mechanism results in the same

performance as optimal centralized allocations, that is, the allocations corresponding to any NE

of the game induced by our mechanism are efficient.

Philosophically, our work is most closely related to [30], but it is distinctly different from [30]

for the following reasons: (1) the game form proposed in our paper is distinctly different from that

of [30]. (2) The mechanism of [30] is not balanced off equilibrium. (3) In the mechanism of [30]

there is no coupling among the games that are being played at different links. In our mechanism

such a coupling exists (see section III), and results in a balanced-budget off equilibrium.

Finally, we are not aware of any publication, other than this paper, containing the analysis of

a decentralized rate allocation mechanism for unicast service provisioning when the users are
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strategic and their utilities are quasi-concave.

D. Organization of the paper

The rest of the paper is organized as follows. In section II we formulate the unicast service pro-

visioning problem with strategic users. In section III we describe the allocation mechanism/game

form we propose for the solution of the unicast service provisioning problem. In section IV we

analyze the properties of the proposed mechanism. In section V we discuss how the game

form/mechanism presented in this paper can be implemented in a network. In section VI we

investigate the properties of the game form proposed in this paper when the users’ utilities

Ui, i ∈ N , are quasi-concave. We conclude in section VII.

II. THE UNICAST PROBLEM WITH STRATEGIC NETWORK USERS, PROBLEM FORMULATION

In this section we present the formulation of the unicast problem in wired communication

networks with strategic users. We proceed as follows, In section II-A we formulate the centralized

unicast service provisioning problem the solution of which we want to implement in Nash

equilibria. In section II-B we formulate the decentralized unicast service provisioning problem

with strategic network users, we state our assumptions, our objective and provide an interpretation

of the equilibrium concept (Nash equilibrium) in which we want to implement the solution of

the centralized problem of section II-A.

A. The centralized problem

We consider a wired network with N, N > 3, users. The set of these users is denoted by N ,

i.e. N = {1, 2, · · · , N}. The network topology, the capacity of the network links, and the routes

assigned to users’ services are fixed and given. The users’ utility functions have the form

Vi(xi, ti) = Ui(xi)− ti, i = 1, 2, · · · , N. (1)

The term Ui(xi) expresses user i’s satisfaction from the service xi it receives. The term ti

represents the tax (money) user i pays for the services it receives. We assume that Ui is a

concave and increasing function of the service xi user i receives, and ti ∈ R. When ti > 0

user i pays money for the services it receives; this money is paid to other network users. When

ti < 0 user i receives money from other users. Overall, the amount of money paid by some of
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the network users must be equal to the amount of money received by the rest of the users so

that
∑

i∈N ti = 0. Denote by L the set of links of the network, by cl the capacity of link l, and

by Ri the set of links l, l ∈ L, that form the route of user i, i = 1, 2, · · · , N (as pointed out

above each user’s route is fixed). We assume that a central authority (the network manager) has

access to all of the above information. The objective of this authority is to solve the following

centralized optimization problem that we call Max.

Max max
xi

N∑
i=1

Ui(xi) (2)

subject to ∑
i:l∈Ri

xi ≤ cl, ∀ l ∈ L, (3)

xi ≥ 0, ∀i ∈ N , (4)
N∑
i=1

ti = 0, ti ∈ R, ∀i ∈ N . (5)

The inequalities in (3) express the capacity constraints that must be satisfied at each network

link. The inequalities in (4) express the fact that the users’ received services xi, i ∈ N must be

nonnegative. The equality in (5) express the fact that the budget must be balanced, i.e. the total

amount of money paid by some of the users must be equal to the amount of money received by

the rest of the users.

Let U denote the set of functions

U : R+ ∪ {0} → R+ ∪ {0}

where U is concave and increasing. Let T denote the set of all possible network topologies,

network resources and user routes. Consider problem Max for all possible realizations

(U1, · · · ,UN , T ) ∈ UN × T

of the users’ utilities, the network topology, its resources and the users’ routes. Then, the solution

of Max for each (U1,U2 · · · ,UN , T ) ∈ UN × T defines a map

π : UN × T→ A
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where A ∈ RN
+ ×RN is the set of all possible rate/bandwidth allocations to the network’s users

and the taxes (resp. subsidies) paid (resp. received) by the users. We call π the solution of the

centralized unicast service provisioning problem.

B. The decentralized problem with strategic users

We consider the network model of the previous section with the following assumptions on its

information structure.

• (A1): Each user knows only his own utility; this utility is his own private information.

• (A2): Each user behaves strategically, that is, each user is not a price-taker. The users’s

objective is to maximize its own utility function.

• (A3): The network manager knows the topology and resources of the network. This knowl-

edge is the manager’s private information. The network manager is not a profit-maker (i.e.

he does not have a utility function).

• (A4): The network manager receives requests for service from the network users. Based on

these requests, he announces to each user i, i ∈ N :

1) The set of links that form user i’s route, Ri; that is, the network manager chooses the

route for each user and this route remains fixed throughout the user’s service.

2) The capacity of each link in Ri.

• (A5) Based on the network manager’s announcement, each strategic user competes for

resources (bandwidth) at each link of his route with the other users in that link2.

From the above description it is clear that the information in the network is decentralized. Every

user knows his own utility but does not know the other users’ utilities or the network’s topology

and its resources. The network manager knows the network’s topology and its resources, but

does not know the users’ utilities. It is also clear that the network manager (which is not profit

maker) acts like an accountant who sets up the users’ routes, specifies the users competing for

resources/bandwidth at each link, collects the money from the users i that pay tax (i.e. ti > 0)

and distributes it to those users j that receive money (i.e. ti < 0).

As a consequence of assumptions (A1)-(A5) we have at each link of the network a de-

centralized resource allocation problem which can be studied/analyzed within the context of

2During the play of the game at each link l ∈ L, each user of link l learns the set of the other users competing for bandwidth
at l.
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implementation theory [33]. These decentralized resource allocation problems are not indepen-

dent/decoupled, as the rate that each user receives at any link of his own route must be the same.

This constraint is dictated by the nature of the unicast service provisioning problem and has a

direct implication on the nature of the mechanism/game form we present in section III.

Under the above assumptions the objective is to determine a game form/mechanism which

has the following properties,

• (P1). For each realization (U1,U2, · · · ,UN , T ) ∈ UN × T, the Nash equilibria of the

game induced by the mechanism result in allocations that are an optimal solution of the

corresponding centralized problem Max; that is, the mechanism implements the map π in

Nash equilibria.

• (P2). The mechanism is individually rational, that is, for every realization

(U1,U2, · · · ,UN , T ) ∈ UN × T,

the network users voluntarily participate in the bandwidth allocation process.

• (P3). For every realization (U1,U2, · · · ,UN , T ) ∈ UN × T we have a balanced budget at

every equilibrium point of the corresponding game form as well as off equilibrium.

Before proceeding with the specification of our mechanism, we comment on the appropriate-

ness of Nash equilibrium as a solution concept for the decentralized problem under consideration.

Nash equilibria describe strategic behavior in games of complete information. Since in our model,

the network users do not know each others’ utilities, for any realization (U1,U2, · · · ,UN , T ) ∈

UN × T the resulting game is not a game of complete information. We can create a game of

complete information by increasing the strategy space of the game following Maskin’s approach

[35] . Such an approach, however, would result in an infinite dimensional strategy space for the

corresponding game. We do not follow Maskin’s approach but we adopt the philosophy presented

by Reichelstein and Reiter in [43] and Groves and Ledyard in [44]. Specifically:

”We interpret our analysis as applying to an unspecified (message exchange) process

in which users grope their way to a stationary message and in which the Nash property

is a necessary condition for stationarity”, Reichelstein and Reiter ( [43] pg. 664).
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” We do not suggest that each agent knows e3 when he computes mi
4, .... We do suggest,

however, that the ’complete information’ Nash equilibrium game-theoretic equilibrium

messages may be the possible equilibrium of the iterative process–that is, the stationary

messages–just as the demand-equal-supply price is thought of the equilibrium of some

unspecified market dynamic process.”, Groves and Ledyard ( [44] pp. 69-70).

A philosophy similar to ours has also been adopted by Stoenescu and Ledyard in [30].

In the following two sections we present a mechanism/game form for the problem formulated

in this section and prove that it possess properties P1− P3 stated above.

III. A MECHANISM FOR RATE ALLOCATION

In section III-A, we specify a mechanism/game form for the decentralized rate allocation

problem formulated in section II. In section III-B, we discuss and interpret the components of

the mechanism.

A. Specification of the mechanism

A game form/mechanism ( [33]) consists of two componentsM, f . The componentM denotes

the users’ message/strategy space. The component f is the outcome function; f defines for every

message/strategy profile, the bandwidth/rate allocated to each user and the tax (subsidy) each

user pays (receives).

For the decentralized resource allocation problem formulated in section II we propose a game

form/mechanism the components of which we describe below.

Message space: The message/strategy space for user i, i = 1, 2, ..., N , is given by Mi ⊂

R
|Ri|+1
+ . Specifically, a message of user i is of the form

mi = (xi, p
li1
i , p

li2
i , · · · , p

li|Ri|
i )

where 0 ≤ xi ≤ minl∈Ri
cl and 0 ≤ p

lik
i ≤ M,k = 1, 2, , · · · , |Ri|, 0 < M < ∞, M large,

and |Ri| denotes the number of links along route Ri, i ∈ N . The component xi denotes the

3In our mechanism e = (U1,U2, · · · ,UN , T ), that is, a realization of the users’ utilities as well as of the topology and
resources of the network.

4In our problem mi is the strategy of user i, i ∈ N .
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bandwidth/rate user i requests at all the links of his route. The component p
lij
i , j = 1, 2, · · · , |Ri|,

denotes the price per unit of bandwidth user i is willing to pay at link lij of his route.

As noted in section II-B, the nature of the unicast service provisioning problem dictates/requires

that the bandwidth/rate allocated to any user i, i ∈ N , must be the same at all links of his route.

Thus, the nature of message mi is a consequence of the above requirement.

Outcome Function: The outcome function f is given by

f :M1 ×M2 × · · · ×MN → (RN
+ × R× R · · · × R)

and is defined as follows. For any m := (m1,m2, · · · ,mN) ∈M :=M1 ×M2 × · · · ×MN ,

f(m) = f(m1,m2, · · · ,mN) = (x1, x2, · · · , xN , t1, t2, · · · , tN)

where xi, i ∈ N , is the amount of bandwidth/rate allocated to user i (this is equal to the amount

of bandwidth user i, i ∈ N , requests), and ti, i ∈ N , is determined by tli, the tax (subsidy) user

i pays (receives) for link l, l ∈ Ri, and by other additional subsidies Qi that user i may receive.

We proceed now to specify tli, l ∈ Ri, and Qi for every user i ∈ N .

The tax t
lij
i , j = 1, 2, · · · , |Ri|, i ∈ N , is defined according to the number of users using

link l. Let Gl denotes the set of users using link l and let |Gl| denote the cardinality of Gl. We

consider three cases5

• CASE 1 ,
∣∣G l
∣∣ = 2

Let i, j ∈ Gl. Then,

tli = pl
jxi +

(pl
i − pl

j)
2

α
− 2plj(p

l
i − plj)

(xi + xj − cl

γ

)
+

1{xi > 0}1{xi + xj − cl > 0}
1− 1{xi > 0}1{xi + xj − cl > 0}

(6)

tlj = pl
ix
l
j +

(pl
j − pl

i)
2

α
− 2pli(p

l
j − pli)

(xi + xj − cl

γ

)
+

1{xj > 0}1{xi + xj − cl > 0}
1− 1{xj > 0}1{xi + xj − cl > 0}

(7)

where α and γ are positive constants that are sufficiently large and, the function 1{A}, used

throughout the paper, is defined as follows

1{A} =

 1− ε if A holds;

0 otherwise.

5We consider only the cases where |Gl| ≥ 2. If |Gl| = 1 and i ∈ Gl, then tli = 0 · 1{xi ≤ cl}+ 1{xi>cl}
1−1{xi>cl} .
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where ε is bigger than zero and sufficiently small6; ε is chosen by the mechanism designer.

• CASE 2,
∣∣G l
∣∣ = 3

Let i, j and k ∈ Gl. Then

tli = P l
−ixi + (pl

i − P l
−i)

2 − 2P l
−i(p

l
i − P l

−i)
(E l
−i + xi
γ

)
+

1{xi > 0}1{xi + xj + xk − cl > 0}
1− 1{xi > 0}1{xi + xj + xk − cl > 0}

+ Ωl
i (8)

tlj = P l
−jxj + (pl

j − P l
−j)

2 − 2P l
−j(p

l
j − P l

−j)
(E l
−j + xj

γ

)
+

1{xj > 0}1{xi + xj + xk − cl > 0}
1− 1{xj > 0}1{xi + xj + xk − cl > 0}

+ Ωl
j (9)

tlk = P l
−kxk + (pl

k − P l
−k)

2 − 2P l
−k(p

l
k − P l

−k)
(E l
−k + xk

γ

)
+

1{xk > 0}1{xi + xj + xk − cl > 0}
1− 1{xk > 0}1{xi + xj + xk − cl > 0}

+ Ωl
k (10)

where,

P l
−i =

pl
j + pl

k

2
, P l
−j =

pl
k + pl

i

2
, P l
−k =

pl
j + pl

i

2
,

E l
−i = xj + xk − cl, E l

−j = xi + xk − cl, E l
−k = xi + xj − cl

E l
i = 2xi − cl, E l

j = 2xj − cl, E l
k = 2xk − cl, (11)

and Ωl
i is defined as

Ωl
i =

∑
r∈Gl

r 6=i

∑
s∈Gl

s 6=i,r

(
2pl

rp
l
s(1 + xr

γ
)− xrpl

s

)
(|G l| − 1)(|G l| − 2)

−

∑
j∈Gl

r 6=i
pl 2
r

|G l| − 1
− P l 2

−i − 2
E l
−iP

l 2
−i

γ
. (12)

The terms Ωl
j and Ωl

k are defined in a way similar to Ωl
i.

• CASE 3,
∣∣G l
∣∣ > 3

Let i ∈ Gl ⊆ N . Then,

6Therefore, when A and B (both) hold, then 1{A}1{B}
1−1{A}1{B} ≈

1
0+

is well defined and it becomes a large number.
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tli = P l
−ixi + (pl

i − P l
−i)

2 − 2P l
−i(p

l
i − P l

−i)
(E l
−i + xi
γ

)
+

1{xi > 0}1{E l
−i + xi > 0}

1− 1{xi > 0}1{E l
−i + xi > 0}

+Φl
i (13)

where,

P l
−i =

∑
j∈Gl

j 6=i
pl
j

|G l| − 1
, E l

−i =
∑
j∈Gl

j 6=i

xj − cl, E l
i = (

∣∣G l
∣∣− 1)xi − cl,

and

Φl
i =

∑
j∈Gl

j 6=i

∑
k∈Gl

k 6=i,j

(
2pl

jp
l
k(1 +

xj
γ

)− xjpl
k

)
(|G l| − 1)(|G l| − 2)

+

∑
j∈Gl

j 6=i

∑
k∈Gl

k 6=i,j

∑
r∈Gl

r 6=i,j,k
2pl

k(p
l
jE l
r − xjpl

r)

γ(|G l| − 1)2(|G l| − 3)

+

∑
j∈Gl

j 6=i

∑
k∈Gl

k 6=i,j
2pl

k(p
l
jE l
k − xjpl

k)

γ(|G l| − 1)2(|G l| − 2)
−

∑
j∈Gl

j 6=i
pl 2
j

|G l| − 1
− P l 2

−i − 2
E l
−iP

l 2
−i

γ
. (14)

Next we specify additional subsidies Qi that user i, i ∈ N , may receive. For that matter we

consider all links l ∈ L such that |Gl| = 2 or |Gl| = 3. For each link l, with |Gl| = 2 we define

the quantity

Q{l:|Gl|=2} := −2
(pli − plj)2

α
− pljxi − pli + xj

[
2plj(p

l
i − plj) + 2pli(p

l
j − pli)

](xi + xj − cl

γ

)
= o(1)− pljxi − plixj; (15)

for each link with |Gl| = 3 we define

Q{l:|Gl|=3} :=
−2P l

−i
2
x−i + 2P l

−ip
l
iE l−i − 2P l

−j
2
x−j + 2P l

−jp
l
jE l−j − 2P l

−k
2
x−k + 2P l

−kp
l
kE l−k

γ
.

(16)

Furthermore for each link l ∈ L where |Gl| = 2 or |Gl| = 3 the network manager chooses at

random a user kl /∈ Gl and assigns the subsidy Ql to user kl. Let l1, l2, · · · , lr be the set of links

such that |Gli | = 2 or 3, i = 1, 2, · · · , r, and let kli , i = 1, 2, · · · , r, be the corresponding users

that receive Qli .
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Based on the above, the tax (subsidy) paid (received) by user j, j ∈ N , is the following. If

j 6= kl1 , kl2 , · · · klr then

tj =
∑
l∈Rj

tlj, (17)

where for each l ∈ Rj , tlj is determined according to the cardinality of Gl. If j = kli , i =

1, 2, · · · , r, then

tkli =
∑
l∈Rkli

tlkli
+Qli . (18)

where Qli is defined by (15) and (16).

Note that Qli is not controlled by user kli , that is, Qli does not depend on user kli’s mes-

sage/strategy. Thus, the presence (or absence) of Qli does not influence the strategic behavior of

user kli . We have assumed here that the users kl1 , kl2 , · · · , klr , are distinct. Expressions similar

to the above hold when the users kl1 , kl2 , · · · , klr are not distinct.

Remark: For each link l ∈ L with |Gl| = 2 or 3 the network manager could equally divide

the subsidy Ql among all users not in Gl instead of randomly choosing one user k /∈ Gl. Any

other division of the subsidy Ql among users not in Gl would also work.

B. Discussion/Interpretation of the Mechanism

As pointed out in section II-B, the design of a decentralized resource allocation mechanism

has to achieve the following goals. (1) It must induce strategic users to voluntarily participate

in the allocation process. (2) It must induce strategic users to follow its operational rules. (3) It

must result in optimal allocations at all equilibria of the induced game. (4) It must result in a

balanced budget at all equilibria and off equilibrium.

Since the designer of the mechanism can not alter the users’ utility functions, Ui, i ∈ N ,

the only way it can achieve the aforementioned objectives is through the use of appropriate tax

incentives/tax functions. At each link l, the tax incentive of our mechanism for user i consists of

three components ∆l
1(i), ∆l

2(i) and ∆l
3(i). We specify and interpret these components for Case

3 (Eq. (13)). Similar interpretations hold for Case 1 and Case 2.
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For Case 3 we have,

tli := ∆l
1(i) + ∆l

2(i) + ∆l
3(i) (19)

where

∆l
1(i) := P l

−ixi (20)

∆l
2(i) := (pl

i − P l
−i)

2 − 2P l
−i(p

l
i − P l

−i)
(E l
−i + xi
γ

)
+

1{xi > 0}1{E l
−i + xi > 0}

1− 1{xi > 0}1{E l
−i + xi > 0}

(21)

∆l
3(i) := Φl

i (22)

• ∆l
1(i) specifies the amount user i has to pay for the bandwidth it gets at link l. It is

important to note that the price per unit of bandwidth that a user pays is determined by the

message/proposal of the other users using the same link. Thus, a user does not control the

price it pays per unit of the service it receives.

• ∆l
2(i) provides the following incentives to the users of a link: (1) To bid/propose the same

price per unit of bandwidth at that link (2) To collectively request a total bandwidth that

does not exceed the capacity of the link. The incentive provided to all users to bid the same

price per unit of bandwidth is described by the term (pli−P l
−i)

2. The incentive provided to

all users to collectively request a total bandwidth that does not exceed the link’s capacity

is captured by the term

1{xi > 0}1{E l−i + xi > 0}
1− 1{xi > 0}1{E l−i + xi > 0}

. (23)

Note that a user is very heavily penalized if it requests a nonzero bandwidth, and, collec-

tively, all the users of the link request a total bandwidth that exceeds the link’s capacity.

A joint incentive provided to all users to bid the same price per unit of bandwidth and to

utilize the total capacity of the link is captured by the term

2P−i(p
l
i − P l

−i)
(E l
−i + xi
γ

)
(24)

• ∆l
3(i), The goal of this component is to lead to a balanced budget. That is,∑

i∈Gl
[∆l

1(i) + ∆l
2(i)] 6= 0, (25)
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but, ∑
i∈Gl

[∆l
1(i) + ∆l

2(i) + ∆l
3(i)] = 0. (26)

Note that, ∆l
3(i) is not controlled by user i’s messages (simply because there is no term in

∆l
3(i) under the control of user i), so ∆l

3(i) does not have any influence on the strategic

behavior of the user.

As indicated in (26), when the number of users at link l ∈ L is larger than three, i.e. |Gl| > 3, the

mechanism is budget-balanced at that link, that is
∑

i∈Gl t
l
i = 0. When |Gl| = 2, 3 the mechanism

is not budget balanced at link l. The amountQl = −
∑

i∈Gl
|Gl|=2,3

tli, is given as subsidy to a randomly

chosen user, say j, that does not compete for resources at link l. Such money transfers results in

an overall balanced budget, and are always possible whenever N > 3. Furthermore, the money

transfered to user j does not alter j′s strategic behavior since Ql does not depend on user j′s

strategy. The existence of the term Qlj in the tax function couples the games that are taking place

at various links of the network. The presence of Qlj implies that the designer of the mechanism

must not consider links individually; for the allocation of resources at certain links (specially

those links l with |Gl| = 2, 3) the design must consider network users that do not compete for

resources in those links.

IV. PROPERTIES OF THE MECHANISM

We prove that the mechanism proposed in section III has the following properties: (P1) It

implements the solution of Problem Max in Nash equilibria. (P2) It is individually rational. (P3)

It is budget-balanced at every feasible allocation, that is the mechanism is budget-balanced at

allocations corresponding to all NE messages as well as those corresponding to off-equilibrium

messages. We also prove the existence of NE of the game induced by the mechanism and

characterized all of them.

We establish the above properties by proceeding as follows. First we prove that all Nash

equilibria of the game induced by the game form/mechanism of section III result in feasible

solutions of the centralized problem Max, (Theorem 1). Then, we show that network users

voluntarily participate in the allocation process. We do this by showing that the allocations they

receive at all Nash equilibria of the game induced by the game form of section III are weakly
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preferred to the (0, 0) allocation they receive when they do not participate in the allocation

process (Theorem 4). Afterwards, we establish that the mechanism is budget-balanced at all

Nash equilibria; we also prove that the mechanism is budget-balanced off equilibrium (Lemma

2). Finally, we show that the mechanism implements in Nash equilibria the solution of the

centralized allocation problem Max (Theorem 5).

We present the proofs of the following theorems and lemmas in the Appendix.

Theorem 1. (FEASIBILITY): If m∗ = (x∗,p∗) is a NE point of the game induced by the game

form and the users’ utility(outcome) functions presented in section III, then the allocation x∗ is

a feasible solution of Problem Max.

The following lemma presents some key properties of NE prices and rates.

Lemma 2. Let m∗ = (x∗,p∗) be a NE. Then for every l ∈ L and i ∈ G l, we have,

p∗li = p∗lj = P ∗l−i := p∗l, (27)

p∗l
(E∗l
γ

)
= 0, (28)

∂tli
∂xi

∣∣∣∣
m=m∗

= p∗l, (29)

where E∗l =
∑

i∈Gl x∗i − cl.

An immediate consequence of Lemma 2 is the following. At every NE point m∗ of the game

induced by the mechanism the tax function has the following form,

tli(m∗) =


p∗lx∗i if |Gl| = 2;

p∗l(x∗i − x∗−i) +
(p∗l)2(cl−E∗l−i)

γ
if |Gl| = 3;

p∗l(x∗i − x∗−i) if |Gl| > 3.

(30)

Thus, by (15), (16), (17), (18) and Lemma 2 we have,

ti(m∗) =
∑
l∈Ri

tli(m∗), (31)

for i 6= kl1 , kl2 , · · · , klr , (cf section III), and for i = klj , j = 1, 2, · · · , r,
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tklj (m∗) = Q∗lj +
∑
l∈Rklj

tlklj
(m∗). (32)

In the following lemma, we prove that the proposed mechanism is always budget balanced.

Lemma 3. The proposed mechanism/game form is always budget balanced at every feasible

allocation. That is, the mechanism is budget-balanced at all allocations corresponding to NE

messages as well as at messages that are off equilibrium.

The next result asserts that the mechanism/game form proposed in section III is individually

rational.

Theorem 4. (INDIVIDUAL RATIONALITY): The game form specified in section III is individually

rational, that is at every NE of the game induced by the mechanism the corresponding allocation

(x∗, t∗) is weakly preferred by all users to the initial allocation (0, 0).

Finally, we prove that the mechanism of section III implements in NE the correspondence π

defined by the solution of Problem Max.

Theorem 5. (NASH IMPLEMENTATION): Consider any NE m∗ of the game induced by the

mechanism of section III. Then, the allocation (x∗, t∗) corresponding to m∗ is an optimal solution

of the centralized problem Max.

EXISTENCE AND CHARACTERIZATION OF THE NASH EQUILIBRIA:

So far, we have assumed the existence of NE of the game induced by the proposed game

form/mechanism. In the following theorem, we prove that NE exist (recall the interpretation of

NE we have given at the end of section II) and characterize all of them.

Theorem 6. Let (x∗1, x
∗
2, · · · , x∗N) be an optimal solution of Problem Max and λ∗l, l ∈ L, be the

corresponding Lagrange multipliers of the Karush-Kuhn-Tucker (KKT) conditions. Then

m∗ := (x∗1, x
∗
2, · · · , x∗N , p∗l1 , p∗l2 , · · · , p∗lL)

with p∗l = λ∗l, l ∈ L is a NE of the game induced by the proposed game form.
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V. IMPLEMENTATION OF THE DECENRALIZED MECHANISM

First, we discuss how the mechanism specified by the game form of section III can be

implemented at equilibrium. Then, we address the computation of the NE of the game induced

by the game form of this paper.

We present one way of implementing the proposed mechanism at equilibrium. Consider an

arbitrary link l of the network. The users of that link communicate their equilibrium messages

to one another and to the network manager. The network manager determines the rate and tax

(or subsidy) of each user and announces this information to the user. The users i, i ∈ N with

tax tli > 0 pay the amount tli to the network manager; the network manager redistributes the

amount of money it receives to the users j ∈ N with tlj < 0. In the situation where the number

of users in the link is equal to two (resp. three) the network manager chooses randomly a user

not using that link to whom it gives the subsidy Q∗{l:|Gl|=2} (resp. Q∗{l:|Gl|=3}) defined by (15)

(resp. (16)). The above described process is repeated/takes place at every network link. This

process implements the mechanism described in the paper at equilibrium.

Even though for the specific form of the tax we have provided a complete characterization of

the NE of the game induced by the game form proposed in the paper, currently we do not have

an algorithm for the computation of these equilibria. Based on preliminary investigation, we

believe that best response algorithms do not, in general, guarantee convergence to NE equilibria,

because the game induced by the game form proposed in this paper is not supermodular (Ch.

12, [22]) (due to the capacity constraint present at each link). Thus, the algorithmic computation

of the NE of the game induced by the game form proposed in the paper remains as an open

problem.

VI. AN EXTENSION

So far we required that the users’ utility functions be concave. We now weaken this require-

ment; we assume that the users’ utilities are quasi-concave. We consider the game form proposed

in section III. By repeating the arguments of Theorem 1, Lemma 2, Lemma 3 and Theorem 4

we can show that: every NE of the game induced by the game form is feasible; the game

form/mechanism is individually rational and budget-balanced at all feasible allocations, i.e. at

every NE and off equilibrium. In the following theorem we prove that every NE of the game

induced by the proposed game form results in a Walrasian Equilibrium (WE) [12].
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Theorem 7. Consider the game (M, f,Vi, i = 1, 2, · · · , N), induced by the game form of section

III, with continuous and quasi-concave utilities Ui, i ∈ N . Then, every NE m∗ of this game results

in a Walrasian equilibrium, hence a Pareto optimal allocation (x∗, t∗).

VII. CONCLUSION

We have proposed a mechanism for rate/bandwidth allocation in unicast service provisioning

and performed an equilibrium analysis of the mechanism. We discovered that when the users’

utilities are concave, the mechanism possesses the following properties: (i) It implements in

Nash equilibria the solution of the corresponding centralized rate allocation problem. (ii) It

is individually rational. (iii) It is budget-balanced at all feasible allocations, i.e. at all Nash

equilibria of the game induced by the mechanism/game form as well as off equilibrium. When

the users’ utilities are quasi-concave the proposed mechanism possesses properties (ii) and (iii)

stated above. Moreover, every Nash equilibrium of the game induced by the proposed mechanism

results in a Walrasian equilibrium, hence a Pareto optimal allocation.

The development of algorithms that guarantee convergence to Nash equilibria of the game

corresponding to the mechanism of this paper is an important problem. We have not studied

this problem in detail. Preliminary investigation indicates that best response algorithms do not

guarantee convergence to Nash equilibria, since the game induced by the game form developed

in this paper is not supermodular (due to the capacity constraint present in the game played at

each link).
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APPENDIX

Proof of Theorem 1: By the construction of the mechanism x∗i ≥ 0 for all i ∈ N . Suppose

that x∗ = (x∗1, · · · , x∗N) is such that the capacity constraint is violated at some link l and x∗j > 0

(i.e. user j will be heavily charged because
1{x∗j>0}1{E∗l−j+x∗j>0}

1−1{x∗j>0}1{E∗l−j+x∗j>0} ≈
1

0+
which is a large number).
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Now, Consider xj such that: (i) either xj > 0 and
∑

k∈Gl
k 6=j

x∗k + xj ≤ cl; or (ii) xj = 0. Then,

1{xj>0}1{E∗l−j+xj>0}
1−1{xj>0}1{E∗l−j+xj>0} = 0, therefore,

Vj(mj,m∗−j) > Vj(m∗j ,m
∗
−j), (33)

and (33) contradicts the fact that m∗ = (m∗j ,m∗−j) is a NE. Consequently, x∗ is a feasible

allocation of problem Max.

Proof of Lemma 2: We prove this lemma by considering the case |Gl| > 3. The cases

|Gl| = 2 and |Gl| = 3 can be proved similarly. A detailed proof for |Gl| = 2 and |Gl| = 3 is

available in [45].

Consider user i ∈ Gl (|Gl| > 3). Since user i does not control Φl
i defined by (14), (i.e. Φl

i does

not depend on xi and pli),

∂Φl
i

∂xi
=
∂Φl

i

∂pl
i

= 0. (34)

Eq. (13) along with (34) imply

∂tli
∂pl

i

|m=m∗ = 2

[
(p∗li − P ∗l−i)− P ∗l−i

(E∗l−i + x∗i
γ

)]
= 0. (35)

Summing Eq. (35) over all i ∈ G l, we get,

∑
i∈Gl

∂tli
∂pl

i

|m=m∗ =
∑
i∈Gl

[
(p∗li − P ∗l−i)− P ∗l−i

(E∗l−i + x∗i
γ

)]
=
∑
i∈Gl

−P ∗l−i
(E∗l−i + x∗i

γ

)
= 0, (36)

which, because of Theorem 1 and the positivity of prices, implies

− P ∗l−i
(E∗l−i + x∗i

γ

)
= 0. (37)

for every i ∈ G l. Then Eq. (37) gives

p∗li = P ∗l−i. (38)

for all i ∈ Gl. From Eqs. (37) and (38) it follows that,
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p∗l
(E∗l
γ

)
= 0, (39)

p∗li = p∗lj = P ∗l−i = p∗l. (40)

Eqs. (39) and (40) along with (13) give

∂tli
∂xi
|m=m∗ = p∗l. (41)

By (40), (39) and (41)7 the proof is complete.

Proof of Lemma 3: Equation (30) together with (31) and (32) imply that
∑

l∈L
∑

i∈Gl t
∗l
i =

0. Now, we prove that the proposed mechanism is also budget balanced off equilibrium. First

we show that, for every l ∈ L where |Gl| > 3∑
i∈Gl,|Gl|>3

tli = 0. (42)

By a little algebra we can show the following equalities,

∑
i∈Gl

pli
2

=
∑
i∈Gl

[∑
j∈Gl

j 6=i
pl 2
j

|G l| − 1

]
, (43)

∑
i∈Gl

(
2pliP

l
−i + 2P l

−ip
l
i

xi
γ
− P l

−ixi

)
=

∑
i∈Gl

[∑
j∈Gl

j 6=i

∑
k∈Gl

k 6=i,j

(
2pl

jp
l
k(1 +

xj
γ

)− xjpl
k

)
(|G l| − 1)(|G l| − 2)

]
, (44)

∑
i∈Gl

P l
−ip

l
i

E l−i
γ

=
∑
i∈Gl

[∑
j∈Gl

j 6=i

∑
k∈Gl

k 6=i,j

∑
r∈Gl

r 6=i,j,k
2pl

kp
l
jE l
r

γ(|G l| − 1)2(|G l| − 3)
+

∑
j∈Gl

j 6=i

∑
k∈Gl

k 6=i,j
2pl

kp
l
jE l
k

γ(|G l| − 1)2(|G l| − 2)

]
, (45)

∑
i∈Gl

P l
−i

2xi
γ

=
∑
i∈Gl

[∑
j∈Gl

j 6=i

∑
k∈Gl

k 6=i,j

∑
r∈Gl

r 6=i,j,k
xjp

l
r

γ(|G l| − 1)2(|G l| − 3)
+

∑
j∈Gl

j 6=i

∑
k∈Gl

k 6=i,j
xjp

l
k

γ(|G l| − 1)2(|G l| − 2)

]
. (46)

7Note that, since the derivative of an indicator function is a Dirac delta function ( [46], p. 94), to have a well defined derivative
of ti with respect to xi at the boundary, i.e., when

∑
i∈Gl xi = cl, the differentiation is from the left. This observation holds

throughout the proofs appearing in this Appendix.
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From (43)-(46) we conclude that∑
i∈Gl

[
P l
−ixi + (pl

i − P l
−i)

2 − 2P l
−i(p

l
i − P l

−i)
(E l
−i + xi
γ

)]
= −

∑
i∈Gl

Φl
i (47)

Eq. (47) along with Eq. (13) imply that
∑

i∈Gl,|Gl|>3 t
l
i = 0.

Next consider all links l ∈ L where |Gl| = 2, 3. In accordance with the notation in section III,

let these links be l1, l2, · · · , lr. Then, by the specification of the tax function (cf. section III-A,

Eqs. (6)-(10)) we obtain,

r∑
j=1

{[
t
lj
ilj,1

+ t
lj
ilj,2

]
1{|Glj | = 2}+

[
t
lj
ilj,1

+ t
lj
ilj,2

+ t
lj
ilj,3

]
1{|Glj | = 3}

}
+

r∑
j=1

Qlj = 0, (48)

where if |Glj | = 2 then {ilj,1 , ilj,2} = Glj and if |Glj | = 3 then {ilj,1 , ilj,2 , ilj,3} = Glj , j =

1, 2, · · · , r.

Finally note that,

N∑
i=1

ti =
∑

l∈L:|Gl|=2

∑
i∈Gl

tli +
∑

l∈L:|Gl|=3

∑
i∈Gl

tli +
∑

l∈L:|Gl|>3

∑
i∈Gl

tli +
r∑
j=1

Qlj = 0. (49)

Proof of Theorem 4: We need to show that Vi(x∗, t∗i ) ≥ Vi(0, 0) = 0 for every i ∈ N . By

the property of NE it follows that

Vi(x∗, t∗) ≥ Vi(x∗−i, xi, ti, t∗−i) ∀ (xi, ti). (50)

So, it is enough to find (xi,pi) ∈Mi such that

Vi(x∗−i, xi, ti, t∗−i) ≥ 0. (51)

We set xi = 0 and examine the cases |Gl| = 2, |Gl| = 3 and |Gl| > 3, separately.

• CASE 1,
∣∣G l
∣∣ = 2

With xi = 0, plj = p∗l and xj = x∗j , Eq. (6) defines the following function F2(pl
i):

F2(pl
i) :=

(pli − p∗l)2

α
− 2∗l(pli − p∗l)

(
x∗j − cl

γ

)
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Clearly, at

pli = p∗l (52)

F2(p∗l) = 0. Then, from Eq. (6) it follows that

tli(x
∗
−i, 0,p

∗
−i, p

∗l) = 0. (53)

• CASE 2,
∣∣G l
∣∣ = 3

Denote by i, j, k the users of link l. With xi = 0, xj = x∗j , xk = x∗k and plj = plk = p∗l, Eq.

(8) defines the following function F3(pl
i):

F3(pl
i) := (pl

i − p∗l)2 − 2p∗l(pl
i − p∗l)

(
x∗j + x∗k − cl

γ

)
+ Ω∗li

= pl
i

2 − 2pl
ip
∗l
(

1 +
E∗l−i
γ

)
+ p∗l

2
(

1 + 2
E∗l−i
γ

)
+ Ω∗li (54)

F3(pl
i) is a quadratic polynomial in pli. Setting F3(pl

i) = 0 we obtain the root

℘l
i,3 = p∗l

(
1 +
E∗l−i
γ

)
+

√(
p∗l
E∗l−i
γ

)2

+ x∗−ip
∗l +

p∗l
2
(cl − E∗l−i)
γ

(55)

Since by its definition γ is sufficiently large, it follows from Eq. (55) that ℘l
i,3 > 0, i.e. ℘l

i,3

is a feasible price. Therefore, from Eq. (8) we obtain

tli(x
∗
−i, 0,p

∗
−i, ℘

l
i,3) = 0. (56)

• CASE 3,
∣∣G l
∣∣ > 3

With xi = 0, xj = x∗j ∀j 6= i, j ∈ Gl, plj = p∗l, j ∈ Gl, Eqs. (13) and (14) define (after a

little algebra) the following function F>3(pl
i),
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F>3(pl
i) := (pl

i − p∗l)2 − 2p∗l(pl
i − p∗l)

(E∗l−i
γ

)
+ Φ∗li

= pl
i

2 − 2pl
ip
∗l
(

1 +
E∗l−i
γ

)
+ p∗l

2
(

1 + 2
E∗l−i
γ

)
− x∗−ip∗l (57)

F>3(pl
i) is a quadratic polynomial in pli. Setting F>3(pl

i) = 0 we obtain the root

℘l
i,>3 = p∗l

(
1 +
E∗l−i
γ

)
+

√(
p∗l
E∗l−i
γ

)2

+ x∗−ip
∗l (58)

where

x∗−i :=

∑
j 6=i x

∗
j

|Gl| − 1
. (59)

Since by its definition γ is sufficiently large, it follows from Eq. (58) that ℘l
i,>3 > 0 (i.e.

℘l
i,>3 is a feasible price). Therefore, from Eq. (13) we get

tli(x
∗
−i, 0,p

∗
−i, ℘

l
i,>3) = 0. (60)

Consequently, at mi = (xi,pi) = (0, p
li1
i , p

li2
i , · · · , p

li|Ri|
i ), (where, p

lik
i , k = 1, 2, · · · , |Ri|,

are defined either by (52) or (55) or (58), depending on the cardinality Glik , k = 1, 2, · · · , |Ri|),

we obtain

Vi(x, t)
∣∣∣∣

m=(mi,m∗−i)

= Ui(0)−
|Ri|∑
k=0

t
lik
i (x∗−i, 0,p

∗lik
−i , p

lik
i ) = Ui(0) = 0. (61)

when i 6= kl1 , kl2 , · · · , klr .

When i = klj , j = 1, 2, · · · , r,

Vi(x, t)|m=(mi,m∗−i)
= Ui(0)−

|Ri|∑
k=0

t
lik
i (x∗−i, 0,p

∗lik
−i , p

lik
i )−Q∗lj = −Q∗lj ≥ 0, (62)

where Q∗lj = Q∗{lj :|Glj |=2} or Q∗lj = Q∗{lj :|Glj |=3}. Combining (50), (61) and (62) we obtain

Vi(x∗i , t∗) ≥ Vi(x, t)
∣∣∣∣
m=(mi,m∗−i)

≥ 0 (63)
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and this establishes (51) and completes the proof.

Proof of Theorem 5: Let (x∗,p∗) be an arbitrary NE of the game (M, f,V) induced by

the proposed game form. Then by the properties of NE, we must have that for every user i ∈ N ,

∂Vi(m)

∂xi
|m=m∗ =

[
∂Ui(xi)

∂xi
− ∂ti(m)

∂xi

]
|m=m∗ = 0. (64)

By Lemma 2, Eq. (64) is equivalent to

∂Ui(xi)

∂xi
−
∑
l∈Ri

p∗l = 0. (65)

Furthermore, by Lemma 2 we have p∗lE∗l/γ = 0 and since γ > 0

p∗lE∗l = p∗l
[∑
k∈Gl

x∗k − cl
]

= 0 (66)

Equation (64) holds for every user i ∈ N ; equation (66) holds for every link l ∈ L.

Consider now the centralized problem Max. Since the functions Ui, i ∈ N are concave and

differentiable and the constraints are linear, Slater’s condition ( [47]) is satisfied, the duality gap

is equal to zero, and the Karush Kuhn Tucker (KKT) conditions are necessary and sufficient to

guarantee the optimality of any allocation x := (x1, x2, · · · , xN) that satisfies them. Let λl be the

Lagrange multiplier corresponding to the capacity constraint for link l and νi be the Lagrange

multiplier corresponding to the demand constraint. The Lagrangian for problem Max is

L(x, λ, ν) =
∑
i∈N

Ui(xi)−
∑
l∈L

λl
(∑
i∈Gl

xi − cl
)

+
∑
i∈N

νixi (67)

and the KKT conditions are:

∂L(x∗, λ∗, ν∗)

∂xi
=
∂Ui(x

∗
i )

∂xi
−
∑
l∈Ri

λ∗l + ν∗i = 0 (68)

λ∗l
(∑
i∈Gl

x∗i − cl
)

= 0 ∀ l ∈ L (69)

ν∗i x
∗
i = 0 ∀i ∈ N (70)

Since the KKT conditions are necessary and sufficient to guarantee the optimality of any

allocation x = (x1, x2, · · · , xN) that satisfies them, it is enough to find ν∗i and λ∗l, l ∈ L, such
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that Eqs. (68), (69) and (70) are satisfied.

Set ν∗i = 0, i ∈ N , and λ∗l = p∗l, l ∈ L. Then (70) is satisfied and (68) and (69) become,

∂Ui(x
∗
i )

∂xi
−
∑
l∈Ri

p∗l = 0 (71)

p∗l
(∑
i∈Gl

xi − cl
)

= 0 ∀ l ∈ L (72)

respectively, and they are satisfied because they are identical to Eqs. (64) and (66), respectively.

Furthermore, by the construction of the game form
∑N

i=1 t
∗
i = 0. Consequently, the solution

x∗ = (x∗1, x
∗
2, · · · , x∗N) of (71) and (72) along with the specification of t∗i , i = 1, 2, · · · , N, are

an optimal solution of Problem Max. At the same time (71) and (72) and
∑N

i=1 t
∗
i = 0 are

satisfied by the allocation f(m∗) corresponding to the NE m∗. Consequently, the NE m∗ results

in allocation f(m∗) = (x∗1, x
∗
2, · · · , x∗N , t∗1, t∗2, · · · , t∗N) that is an optimal solution of Problem

Max. Since the NE m∗ was arbitrarily chosen, every NE m∗ of the game form proposed in

section III results in an optimal solution of Problem Max.

Proof of Theorem 6:

First we note that an optimal solution (x∗, t∗) = (x∗1, x
∗
2, · · · , x∗N , t∗1, t∗2, · · · , t∗N)(where ti, i =

1, 2, · · · , N , are defined by (15),(16),(30),(31) and (32)) of Problem Max exists. This follows

from: (i) the fact that each Ui, i ∈ N , is concave and the space of the constraints described by

Eqs. (3) and (4) is convex; (ii) the fact that
∑N

i=1 t
∗
i = 0 by the construction of the game form.

The KKT conditions for problem Max result in the following equations,

∂Ui(x
∗
i )

∂x∗i
−
∑
l∈Ri

λ∗l + ν∗i = 0 (N equations) (73)

λ∗l(
∑
i∈Gl

x∗i − cl) = 0 (L equations) (74)

ν∗i x
∗
i = 0 (N equations) (75)

We have N + L+N equations in L+N unknowns, λ∗l, l ∈ L and ν∗i , i ∈ N . In general we

have multiple solutions.

We want to show that for every solution (λ∗l, ν∗i , l = 1, 2, · · · , L, i = 1, 2, · · · , N) of Eqs.

(73), (74) and (75) the message m̄ = (m̄1, m̄2, · · · , m̄N), m̄i = (x̄i, p̄
l
i : l ∈ Ri) with x̄i = x∗i and
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p̄li = λ∗l for all i ∈ N and l ∈ Ri, is a Nash equilibrium of the game induced by the proposed

game form.

For that matter we note that by the selection of m̄ we have

p∗li = p∗lj = λ∗l = p∗l (76)

for every i and j ∈ Gl. By (74) and (76)

p∗l
(∑
j∈Gl

x∗j − cl
)

= λ∗l
(∑
j∈Gl

x∗j − cl
)

= 0 (77)

and by (30) we obtain

∂t∗li
∂x∗i

= p∗l = λ∗l (78)

for every l ∈ Ri and every i ∈ N . Therefore, the message m̄ satisfies all the conditions of

Lemma 2.

Next we show that for every i ∈ N , m̄i is a solution of the problem,

max
mi∈Mi

{
Ui(xi)−

∑
l∈Ri

tli(m̄−i,mi)
}

subject to

xi ≥ 0, pli ≥ 0 ∀l ∈ Ri. (79)

Any maximizing solution of (79) must satisfy

∂Ui(xi)
∂xi

−
∑

l∈Ri

∂tli(m̄−i,mi)

∂xi
+ ri = 0 (80)

∂Ui(xi)

∂pli
−
∑

l∈Ri

∂tli(m̄−i,mi)

∂pli
+ qli = 0 (81)

∀ l ∈ Ri, where ri and qli are the Lagrange multipliers associated with the constraints xi ≥ 0,

and pli ≥ 0, l ∈ Ri, respectively. We set ri = ν∗i and qli = 0 for every l ∈ Ri. At mi = m̄i, Eq.

(80) is satisfied because of Eq. (73) and Eq. (78).
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Furthermore at mi = m̄i Eq. (81) is satisfied since

∂Vi
∂pli
|m=m̄ = −

∑
l∈Ri

∂tli
∂pli
|m=m̄ (82)

and

∂tli
∂pli
|m=m̄ =


0 if |Gl| = 2;

−2p∗l
[
x∗i +x∗j+x∗k−cl

γ

]
= 0 if |Gl| = 3;

−2P ∗l−i

[
E∗l−i+x

∗
i

γ

]
= 0 if |Gl| > 3,

(83)

for any l ∈ L because of (77). Hence, (x∗1, x
∗
2, · · · , x∗N , λ∗l1 , λ∗l2 , · · · , λ∗lL) is a NE point of the

game induced by the game form proposed in section III.

Proof of Theorem 7: Since any NE of the game induced by the mechanism proposed

in section III, (if such an equilibrium exists), results in a feasible allocation of Problem Max,

(see Theorem 1), we restrict attention to the space M′ =M′
1×M′

2 · · ·M′
N of strategies that

result in feasible allocations of Problem Max. Then, the users’ utilities Vi(xi, ti) = Ui(xi)− ti,

i = 1, 2, · · · , N , (where ti is specified by the game form of section III) are quasi-concave

in mi = (xi,pi) and continuous in m = (m1, · · · ,mN) = ((x1,p1), (x2,p2), · · · , (xN ,pN)).

Furthermore, the message/strategy spaces M′
i are compact, convex and non-empty. Therefore,

by Glicksberg’s theorem [22], there exists a pure NE of the game (M, f,Vi, i = 1, 2, · · · , N)

induced by the game form of section III.

Let m∗ be a NE of this game. Then, for every user i ∈ N ,

Vi(m∗) ≥ Vi(m∗−i,mi) for every mi ∈Mi. (84)

That is,

Ui(x
∗
i )−

∑
l∈Ri

t∗li (m∗) ≥ Ui(xi)−
∑
l∈Ri

tli(m∗−i,mi) ∀ mi ∈Mi, (85)

where ∑
l∈Ri

t∗li (m∗) =
∑
l∈Ri

p∗lx∗i +
∑
l∈Ri

|Gl|=3

Ω∗li +
∑
l∈Ri

|Gl|>3

Φ∗li +
r∑
j=1

Q∗lj1{i = klj}, (86)
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Q∗lj is given by Q∗{l:|Gl|=2} or Q∗{l:|Gl|=3} (cf. Eqs. (15) and (16)), and∑
l∈Ri

tli(m∗−i,mi) =
∑
l∈Ri

|Gl|=2

Π2(m∗−i,mi) +
∑
l∈Ri

|Gl|=3

Π3(m∗−i,mi) +
∑
l∈Ri

|Gl|>3

Π>3(m∗−i,mi)

+
r∑
j=1

Q∗lj1{i = klj}, (87)

where

Π2(m∗−i,mi) := p∗lxi +
(pli−p∗l)2

α
− 2p∗l(pli − p∗l)

(
xi+x

∗
j−cl

γ

)
,

Π3(m∗−i,mi) := p∗lxi + (pli − p∗l)2 + Ω∗li − 2p∗l(pli − p∗l)
(
xi+x

∗
j+x∗k−cl

γ

)
,

Π>3(m∗−i,mi) := p∗lxi + (pli − p∗l)2 + Φ∗li − 2p∗l(pli − p∗l)
(
xi+E∗l−i

γ

)
. (88)

Since (85) holds for every feasible (xi, Pi), setting pli = p∗l for every l ∈ Ri we obtain,

Vi(x∗i , P∗) = Ui(x
∗
i )−

∑
l∈Ri

p∗lx∗i ≥ Vi(xi, P∗) = Ui(xi)−
∑
l∈Ri

p∗lxi (89)

for every feasible xi. Therefore, for every i = 1, 2, · · · , N ,

x∗i = arg maxxi∈D∗−i

{
Ui(xi)−

∑
l∈Ri

p∗lxi

}
(90)

where D∗−i :=

{
xi : 0 ≤ xi ≤ minl∈Ri

{cl −
∑

j∈Gl
j 6=i

x∗j}
}
. Consequently, (x∗,p∗) is a Walrasian

equilibrium, therefore (x∗, t∗) is Pareto optimal ( [12] Chapter 15).
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