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Abstract—We consider the decentralized bandwidth/rate alloca-
tion problem in unicast service provisioning with strategic users.
We present a mechanism/game form which possesses the following
properties when the users’ utilities are concave: 1) It implements in
Nash equilibria the solution of the corresponding centralized rate
allocation problem in unicast service provisioning. 2) It is individ-
ually rational. 3) It is budget-balanced at all Nash equilibria of the
game induced by the mechanism/game form as well as off equilib-
rium. When the users’ utilities are quasi-concave the mechanism
possesses properties 2) and 3) stated above. Moreover, every Nash
equilibrium of the game induced by the proposed mechanism re-
sults in a Walrasian equilibrium.

Index Terms—Budget balance, game form/mechanism, in-
dividual rationality, Nash implementation, Unicast service
provisioning.

1. INTRODUCTION

A. Motivation and Challenges

OST of today’s networks, called integrated services net-
M works support the delivery of a variety of services to
their users each with its own quality of service (QoS) require-
ments (e.g., delay, percentage of packet loss, jitter, etc). As the
number of services offered by the network and the demand for
the services increase, the need for efficient network operation
increases. One of the key factors that contributes to efficient
network operation is the efficient utilization of the network’s
resources.

The design of resource allocation mechanisms which guar-
antee the delivery of different services, each with its own QoS
requirements, and maximize some network-wide performance
criterion (e.g., the network’s utility to its users) is an impor-
tant and challenging task. The challenges come from: 1) the fact
that the network is an informationally decentralized system; 2)
the network’s users may behave strategically (i.e., they may be-
have selfishly). Networks are informationally decentralized sys-
tems. Each user’s utility is its own private information. Users
are unaware of each others’ utilities and of the resources (e.g.
bandwidth, buffers, spectrum) available to the network. The net-
work (network manager) knows the network’s topology and its
resources but is unaware of the users’ utilities. If information
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were centralized, the resource allocation problem could be for-
mulated and solved as a mathematical programming problem or
as a dynamic programming problem. Since information is not
centralized such formulations are not possible. The challenge
is: 1) to determine a message exchange process among the net-
work and users and an allocation rule (based on the outcome of
the message exchange process) that eventually lead to a resource
allocation that is optimal for the centralized problem, 2) To take
into account, in the determination of the allocation mechanism,
the possible strategic (selfish) behavior of the network’s users.

The topic of resource allocation for informationally decen-
tralized systems has been explored in great detail by mathe-
matical economists in the context of mechanism design. Decen-
tralized resource allocation problems arising in networks have
recently attracted significant attention among engineers. Below
we present a brief survey of the existing literature on decentral-
ized network resource allocation and briefly refer to texts and
survey articles written by mathematical economists on mecha-
nism design. A more detailed discussion of the existing liter-
ature on network resource allocation, and a comparison of the
results of our paper with this literature will be presented in Sec-
tion I-C of the paper.

Within the context of communication networks most of ex-
isting literature (e.g., [1]-[21]) has approached the design of de-
centralized resource allocation mechanisms under the assump-
tion that the network (network manager) and its users are co-
operative (non-strategic), that is, they obey the rules of the pro-
posed decentralized resource allocation mechanism.

Decentralized resource allocation problems with strategic
users are solved through the development of game forms/mech-
anisms which together with the users’ utilities give rise to
games. Depending on the information available to the users,
the game induced by the mechanism is either one of complete
information or incomplete information ([22]); the nature of the
game dictates the behavioral/equilibrium concept (e.g., Nash
equilibrium (NE), subgame perfect equilibrium, Bayesian Nash
equilibrium, sequential equilibrium) that is appropriate/suit-
able for the solution of the resource allocation problem. The
allocation mechanisms specify; 1) the allocations made at all
equilibrium and non-equilibrium points of the game; and 2) the
tax (positive or negative) each user pays as a result of his/her
participation in the game. Desirable properties of resource al-
location mechanisms with strategic users are: 1) the allocations
corresponding to all equilibria of the resulting game must be
globally optimal; 2) the users must voluntarily participate in
the allocation process; 3) the budget must be balanced, that is
the sum of taxes paid by the users must be zero (there should
be no money left to be thrown away at the end of the allocation
process).
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Recently, within the context of communication networks,
researchers have investigated decentralized resource allocation
problems under the assumption that users behave strategically
(i.e. they are not price-takers, they do not necessarily obey the
rules of the mechanism but have to be induced to follow the
rules). Within the context of wired networks, decentralized
resource allocation mechanisms have been proposed and ana-
lyzed in [6], [8], [23]-[31]. A more detailed discussion of these
references and comparison with the results of this paper will
be presented in Section I-C. Decentralized power allocation
mechanisms for wireless networks with strategic users where
every user’s transmission creates interference to every other
user or to a subset of the network’s users were proposed and
analyzed in [18], [32]-[34].

Resource allocation problems in informationally decentral-
ized systems has been explored in great detail by mathemat-
ical economists in the context of mechanism design. There is
an enormous economics literature for the situation where users
are cooperative (e.g [35], [36] and references therein) as well as
the situation where users are strategic (e.g., [35]-[37], and ref-
erences therein). For a survey on the relationship of mechanism
design and decentralized resource allocation in communication
networks we refer the reader to [38].

B. Contribution of the Paper

We investigate the unicast service provisioning problem in
wired networks with arbitrary topology and strategic users. The
main contribution of this paper is the discovery of a decentral-
ized rate allocation mechanism for unicast service provisioning
in networks with arbitrary/general topology and strategic users,
which possesses the following properties.

When each user’s utility is concave, then:

e (P1) The mechanism implements the solution of the cen-
tralized unicast service provisioning problem in Nash equi-
libria. That is, the allocation corresponding to each NE of
the game induced by the mechanism is a globally optimal
solution of the corresponding centralized resource alloca-
tion problem.

e (P2) The mechanism is individually rational, that is, the
network users voluntarily participate in the rate allocation
process.

e (P3) The mechanism is budget-balanced! at all feasible
allocations, that is, at all the allocations that correspond
to NE messages/strategies as well as at all the allocations
that correspond to off-equilibrium messages/strategies.

When each user’s utility is quasi-concave but differentiable,
then:

* The mechanism possesses properties (P2) and (P3).

e (P4) Every NE of the game induced by the mechanism
results in a Walrasian equilibrium ([12] Ch. 15), conse-
quently, a Pareto optimal allocation.

To the best of our knowledge, none of the decentralized re-
source allocation mechanisms proposed so far for the unicast
service provisioning problem in communication networks pos-
sesses simultaneously all three properties (P1)—-(P3) when the

ITn a budget-balanced mechanism the sum of the taxes paid by a subset of
users is equal to the sum of subsidies received by the rest of the users.

network’s topology is general/arbitrary, the users are strategic
and their utilities are concave. Furthermore, we are not aware
of the existence of any publications in unicast service provi-
sioning containing the analysis of a decentralized rate alloca-
tion mechanism when the users are strategic and their utilities
are quasi-concave.

We now compare in more detail our contributions with the
existing literature.

C. Comparison With Related Work

We now explain why the proposed mechanism and the above
results are distinctly different from all game forms/mechanisms
proposed so far for the unicast service provisioning problem
with strategic users.

Most of the previous work on the unicast service provi-
sioning problem in networks with general topology is based
on Vickrey-Clark-Groves (VCG)-type mechanisms, [25]-[27],
[31], [39]-[42]. The game forms/mechanisms proposed in
[31] and [25] induce games that establish the existence of a
unique Nash equilibrium at which the allocation is globally
optimal under some conditions; but these mechanisms are not
budget-balanced even at equilibrium. The mechanisms/game
forms proposed in [26], [27], [39], [43] induce games that
have multiple NE; these mechanisms are not budget-balanced
even at equilibrium, and the allocations corresponding to the
Nash equilibria are not always globally optimal (that is these
mechanisms do not implement in Nash equilibria the solution
of the centralized unicast service provisioning problem). Our
mechanism is not of the VCG-type, thus, it is philosophically
different from those of [25]-[27], [31], [39], [43].

The work in [28], [29] and [44] deals with single link
networks. For these single-link networks the authors of [29]
proposed a class of efficient (optimal) allocation mechanisms,
called ESPA, for the allocation of a single divisible good. ESPA
mechanisms were further developed in [28]. It is not currently
known whether ESPA mechanisms implement in Nash equi-
libria the optimal solution of the unicast service provisioning
problem in networks with arbitrary/general topology. The
network model considered in this paper has arbitrary/general
topology.

In [23], [24] the authors show that when the resource allo-
cation mechanism proposed in [6] is considered under the as-
sumption that the users are strategic and NE is the equilibrium
concept, the allocations corresponding to any NE are different
from any allocations that are optimal solutions of the corre-
sponding centralized unicast service provisioning problem; that
is, the allocation corresponding to any NE suffer from a certain
efficiency loss. Particularly, in [24] it is shown that there exists a
lower bound on the efficiency loss. The mechanism we propose
in this paper is distinctly different from those of [23], [24]. Our
mechanism results in the same performance as optimal central-
ized allocations, that is, the allocations corresponding to any NE
of the game induced by our mechanism are efficient.

Philosophically, our work is most closely related to [30], but
it is distinctly different from [30] for the following reasons: (1)
the game form proposed in our paper is distinctly different from
that of [30]. (2) The mechanism of [30] is not balanced off equi-
librium. (3) In the mechanism of [30] there is no coupling among
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the games that are being played at different links. In our mech-
anism such a coupling exists (see Section III), and results in a
balanced-budget off equilibrium.

Finally, we are not aware of any publication, other than this
paper, containing the analysis of a decentralized rate allocation
mechanism for unicast service provisioning when the users are
strategic and their utilities are quasi-concave.

D. Organization of the Paper

The rest of the paper is organized as follows. In Section II
we formulate the unicast service provisioning problem with
strategic users. In Section III we describe the allocation mech-
anism/game form we propose for the solution of the unicast
service provisioning problem. In Section IV we analyze the
properties of the proposed mechanism. In Section V we discuss
how the game form/mechanism presented in this paper can be
implemented in a network. In Section VI we investigate the
properties of the game form proposed in this paper when the
users’ utilities U;, 1+ € N, are quasi-concave. We conclude in
Section VII.

II. THE UNICAST PROBLEM WITH STRATEGIC NETWORK
USERS, PROBLEM FORMULATION

In this section we present the formulation of the unicast
problem in wired communication networks with strategic
users. We proceed as follows, In Section II-A we formulate the
centralized unicast service provisioning problem the solution of
which we want to implement in Nash equilibria. In Section II-B
we formulate the decentralized unicast service provisioning
problem with strategic network users, we state our assumptions,
our objective and provide an interpretation of the equilibrium
concept (Nash equilibrium) in which we want to implement the
solution of the centralized problem of Section II-A.

A. The Centralized Problem

We consider a wired network with N, N > 3, users. The set
of these users is denoted by N, i.e. N = {1,2,---, N}. The
network topology, the capacity of the network links, and the
routes assigned to users’ services are fixed and given. The users’
utility functions have the form

VL(£Z,tL)ZUL<x’L)_tZ7 121/27/N (L
The term U; (z;) expresses user ¢’s satisfaction from the service
x; itreceives. The term ¢; represents the fax (money) user ¢ pays
for the services it receives. We assume that U; is a concave and
increasing function of the service z; user ¢ receives, and t; € R.
When ¢; > 0 user + pays money for the services it receives; this
money is paid to other network users. When ¢; < O user ¢ re-
ceives money from other users. Overall, the amount of money
paid by some of the network users must be equal to the amount
of money received by the rest of the users so that ) 3, \#; = 0.
Denote by L the set of links of the network, by ¢! the capacity of
link /, and by R; the set of links [, € L, that form the route of
user ¢, 7 = 1,2,---, N (as pointed out above each user’s route
is fixed). We assume that a central authority (the network man-
ager) has access to all of the above information. The objective of
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this authority is to solve the following centralized optimization
problem that we call Max

N
Max max Z U, () 2)
‘ i=1
subject to
> wi<c, VIeL (3)
©:lER;
z; >0, VieN 4)

N
Ztizo,ti eER, VieN. (5

=1

The inequalities in (3) express the capacity constraints that must
be satisfied at each network link. The inequalities in (4) express
the fact that the users’ received services x;, ¢+ € N must be
nonnegative. The equality in (5) express the fact that the budget
must be balanced, i.e. the total amount of money paid by some
of the users must be equal to the amount of money received by
the rest of the users.
Let U denote the set of functions

U:R; U{0} - Ry U{0}

where U is concave and increasing. Let T denote the set of all
possible network topologies, network resources and user routes.
Consider problem Max for all possible realizations

(Uy,---,Un,T)eUN xT

of the users’ utilities, the network topology, its resources
and the users’ routes. Then, the solution of Max for each
(Uy,Uy---,Up,T) € UN x T defines a map

UV xT— A

where A € Rf x RY is the set of all possible rate/bandwidth
allocations to the network’s users and the taxes (resp. subsidies)
paid (resp. received) by the users. We call 7 the solution of the
centralized unicast service provisioning problem.

B. The Decentralized Problem With Strategic Users

We consider the network model of the previous section with

the following assumptions on its information structure.

* (Al): Each user knows only his own utility; this utility is
his own private information.

* (A2): Each user behaves strategically, that is, each user is
not a price-taker. The users’s objective is to maximize its
own utility function.

* (A3): The network manager knows the topology and re-
sources of the network. This knowledge is the manager’s
private information. The network manager is not a profit-
maker (i.e. he does not have a utility function).

* (A4): The network manager receives requests for service
from the network users. Based on these requests, he an-
nounces to each user 7,7 € N

1) The set of links that form user 2’s route, R;; that is, the
network manager chooses the route for each user and
this route remains fixed throughout the user’s service.

2) The capacity of each link in R;.
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* (A5) Based on the network manager’s announcement, each
strategic user competes for resources (bandwidth) at each
link of his route with the other users in that link.2

From the above description it is clear that the information in
the network is decentralized. Every user knows his own utility
but does not know the other users’ utilities or the network’s
topology and its resources. The network manager knows the
network’s topology and its resources, but does not know the
users’ utilities. It is also clear that the network manager (which
is not profit maker) acts like an accountant who sets up the users’
routes, specifies the users competing for resources/bandwidth at
each link, collects the money from the users ¢ that pay tax (i.e.
t; > 0) and distributes it to those users j that receive money (i.e.
t; < 0).

As a consequence of assumptions (A1)—(AS) we have at each
link of the network a decentralized resource allocation problem
which can be studied/analyzed within the context of implemen-
tation theory [35]. These decentralized resource allocation prob-
lems are not independent/decoupled, as the rate that each user
receives at any link of his own route must be the same. This
constraint is dictated by the nature of the unicast service pro-
visioning problem and has a direct implication on the nature of
the mechanism/game form we present in Section III.

Under the above assumptions the objective is to determine a
game form/mechanism which has the following properties,

* (P1). For each realization (U, Us,---, Uy, T) € UV x
T, the Nash equilibria of the game induced by the mech-
anism result in allocations that are an optimal solution of
the corresponding centralized problem Max; that is, the
mechanism implements the map 7 in Nash equilibria.

e (P2). The mechanism is individually rational, that is, for
every realization

(U17U27"'7UN7T) eu]\r x T

the network users voluntarily participate in the bandwidth
allocation process.

* (P3). For every realization (U1, U, ---, Un, T) € UV x
T we have a balanced budget at every equilibrium point of
the corresponding game form as well as off equilibrium.

Before proceeding with the specification of our mechanism,

we comment on the appropriateness of Nash equilibrium as a
solution concept for the decentralized problem under consid-
eration. Nash equilibria describe strategic behavior in games
of complete information. Since in our model, the network
users do not know each others’ utilities, for any realization
(U1, Uy, ---,Un,T) € UN x T the resulting game is not a
game of complete information. We can create a game of com-
plete information by increasing the strategy space of the game
following Maskin’s approach [37]. Such an approach, however,
would result in an infinite dimensional strategy space for the
corresponding game. We do not follow Maskin’s approach but
we adopt the philosophy presented by Reichelstein and Reiter
in [45] and Groves and Ledyard in [46]. Specifically:

“We interpret our analysis as applying to an unspecified
(message exchange) process in which users grope their way

2During the play of the game at each link I € L, each user of link / learns the
set of the other users competing for bandwidth at [.

to a stationary message and in which the Nash property is
a necessary condition for stationarity“, Reichelstein and

Reiter ([45] pg. 664).

“We do not suggest that each agent knows e3 when he
computes m;,* . . .. We do suggest, however, that the ‘com-
plete information’ Nash equilibrium game-theoretic equi-
librium messages may be the possible equilibrium of the it-
erative process-that is, the stationary messages-just as the
demand-equal-supply price is thought of the equilibrium
of some unspecified market dynamic process. “, Groves and
Ledyard ([46, pp. 69-70]).

A philosophy similar to ours has also been adopted by Stoe-
nescu and Ledyard in [30].

In the following two sections we present a mechanism/game
form for the problem formulated in this section and prove that
it possess properties P1-P3 stated above.

III. A MECHANISM FOR RATE ALLOCATION

In Section III-A, we specify a mechanism/game form for the
decentralized rate allocation problem formulated in Section II.
In Section III-B, we discuss and interpret the components of the
mechanism.

A. Specification of the Mechanism

A game form/mechanism ([35]) consists of two components
M, f. The component M denotes the users’ message/strategy
space. The component f is the outcome function; f defines for
every message/strategy profile, the bandwidth/rate allocated to
each user and the tax (subsidy) each user pays (receives).

For the decentralized resource allocation problem formulated
in Section II we propose a game form/mechanism the compo-
nents of which we describe below.

Message Space: The message/strategy space for user 4,7 =
1,2,...,N,isgivenby M, C le I+ Specifically, a message

of user ¢ is of the form

- b Lo li\’RiI
m; = xz;pi 7p1' 7"'7pi

. l;
where 0 < z; < mingeRg, cand 0 < p,* < M,k =

1,2,---,|Ri|, 0 < M < oo, M large, and |R;| denotes the
number of links along route R;, 7 € N. The component z; de-
notes the bandwidth/rate user ¢ requests at all the links of his
route. The componentp,”’, j = 1,2, -+, |R;|, denotes the price
per unit of bandwidth user 7 is willing to pay at link /;, of his
route.

As noted in Section II-B, the nature of the unicast service
provisioning problem dictates/requires that the bandwidth/rate
allocated to any user 4,7 € N, must be the same at all links of
his route. Thus, the nature of message m; is a consequence of
the above requirement.

Outcome Function: The outcome function f is given by

frMix Mox - x My — (RY xRxR--- xR)

3In our mechanism e = (U, Uy, ---, Uy, T), that is, a realization of the
users’ utilities as well as of the topology and resources of the network.

4In our problem m; is the strategy of user 7,7 € N.
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and is defined as follows. For any m := (mj,mo,---,my) €
M = Ml XM2 X ---XMN
flm)=f(my,my, -, my)=(v1,22, -, 2N, t1,t2, -, IN)

where z;, 1 € N, is the amount of bandwidth/rate allocated to
user 4 (this is equal to the amount of bandwidth user 7,7 € N,
requests), and ¢;, i € N, is determined by #., the tax (subsidy)
user ¢ pays (receives) for link /,/ € R;, and by other additional
subsidies Q° that user i may receive. We proceed now to specify
ti, 1 € R;, and Q' for every useri € N.

The tax ti” ,i=1,2,---,|R;|, i € N, is defined according
to the number of users using link /. Let G! denotes the set of
users using link / and let |G!| denote the cardinality of G'. We
consider three cases’

e CASEL, |G =2

Leti,j € G!. Then

(v} —p})” zi+;—c
té :péxi + TJ - 2p§' (pi _p;') <+)

Yz > 0} 1{z; + 7; — c' > 0}
1—1{z; > 0}1{x; + z; — c! > 0}

2
(pé _pi) _ 2pl (pl- —pl) z; + X4 — Cl
a 1 \l'g [ v

(6)

[ |
tj =piT; +

Hz; > 0}1{z; + z; — c' > 0}
1—1{z; > 0}1{z; + 2; — c! > 0}

)

where o and vy are positive constants that are sufficiently
large and, the function 1{ A}, used throughout the paper, is
defined as follows:

1 — ¢ if A holds;
1{A} = { ;
{4} 0 otherwise

where € is bigger than zero and sufficiently small;® € is
chosen by the mechanism designer.

s CASE2,|G!| =3
Leti, j and k € G'. Then

=Pl o + (pi - Pl_i)2 +1; +
l ,
— 2P, (pi _ plﬂ) (M) (8)
Y
gy + Q)

+
)

EL+
_2pik (pgc_pik) (L”)

Y

) 1 1 l
t; =P+ (P PL))

—2pP;

(10)

where

Hai > 0} 1{z; + 75 + 71, — ¢t > 0}
1—1{z; >0} 1{x; + z; + 1, — c! > 0}’

SWe consider only the cases where |G!| > 2.If |G| = 1 and i € G', then
tt =0 -1u; <c'} 4+ (1, >c'}/(1—1{z; >c'})).

STherefore, when A and B (both) hold, then (1{A}1{B}/(1 —
1{A}1{B})) ~ (1/0%) is well defined and it becomes a large number.

I =
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. Hazy > 0}{x; + xj + 2, — c' > 0}
1= 1{z; > 0} {x; + 7 + 7 — ! >0}
Wy > 0} {x; + 2 + 2, — ¢! > 0}

|] =
P T 1{z, > 0 1{z; + x; + 35 — > 0}
1 1
Pl—z pJ+pk,Pl_:p§g+pz Pl p]+p7f,
2 j 2 2

l

l l l
E_i—a:j+a:k—c,5_]-::vi+$k—c,

5lk:$i+$j—cl

€ =20, —cl, € = 20—l L =2~ ()

and Q! is defined as

. Zrej’ > ig’ (2plrpi (1 + ai_,r) - xrpi)
Ol = ri i
’ (16" = 1) (Ig' - 2)
Zjegl Pﬁ? gl .pi2
T#i l2 —t —1
_|gl|—_1 — —2———. (12)

The terms Q§ and % are defined in a way similar to €2}
« CASE3,|GY >3
Leti € G' C \V. Then

I
t =Pl + (ph — PL,)? —2PL, (o — PL,) (5

_i‘i‘l’i
Y

Hz; > 031 {€L; + z; > 0}

+ ol 13
1= oy > 0}1{EL; + 2 > 0} (13)
where
L Zje;ég’ p] l l
PL= o fam mee
jeglt
J#i
&= (16" - 1) wi —
and
E Sy (o (1+2) -2
Pl = i kFi.j J ¥
L (16— 1) (19" - 2)
Yot Lpeat 2 ;egz 2pl, (pl€L — w;p!)
v (16" - 1)* (1G] - 3)
Yieot Xreat 2k (PiEk — pk)
»J 5
(16" =17 (19" - 2)
ELP l_'i
DL AR S (14)
jegl Y
J#i

Next we specify additional subsidies Q' that user 4,i € N,
may receive. For that matter we consider all links [ € L such
that |[G!| = 2 or |G!| = 3. For each link /, with |G!| = 2 we
define the quantity

Q{z:|gl|=2} — _9 (pi —pz')z
«

. . _ el
+ 295 (v — 75) (mfjc)

! l
— DjTi — DTy
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zrl—xj—cl)

+ 2p} (p — p}) ( 5

=o(1) - pé-xi — pla; (15)
for each link with |G!| = 3 we define
oluld'l=3} .~ —2Pl_i2x_i + 2P plet, — 2Pij2x_j’y
L 2PLplel; - 2P o i+ 2P €L, 6

v

Furthermore for each link [ € L where |G| = 2 or |G!| = 3
the network manager chooses at random a user k; ¢ G' and
assigns the subsidy Q! to user k;. Let I1,1ls,-- -, 1, be the set
of links such that |G%| = 2 or3,i = 1,2,---,7, and let k;,,
i=1,2,---,r, be the corresponding users that receive Q.

Based on the above, the tax (subsidy) paid (received) by user
J»j € N, is the following. If j # ki, , k1, - - - ki, then

@-:Zté

IER;

7)

where foreachl € R;, tlj is determined according to the cardi-
nality of G'. If j = k;,, i = 1,2,---,r, then

tk’i = Z tﬁ“li + Qli

lER,.

(18)

where Q' is defined by (15) and (16).

Note that Q' is not controlled by user k;,, that is, Q' does not
depend on user k;,’s message/strategy. Thus, the presence (or
absence) of Q' does not influence the strategic behavior of user
ki,. We have assumed here that the users ki, , ki, ,-- -, ki, are
distinct. Expressions similar to the above hold when the users
ki, ki,,- - -, ki, are not distinct.

Remark: For each link [ € £ with |G!| = 2 or 3 the network
manager could equally divide the subsidy Q' among all users
not in G' instead of randomly choosing one user k ¢ G'. Any
other division of the subsidy Q' among users not in G would
also work.

B. Discussion/Interpretation of the Mechanism

As pointed out in Section II-B, the design of a decentral-
ized resource allocation mechanism has to achieve the following
goals. 1) It must induce strategic users to voluntarily participate
in the allocation process. 2) It must induce strategic users to
follow its operational rules. 3) It must result in optimal alloca-
tions at all equilibria of the induced game. 4) It must result in a
balanced budget at all equilibria and off equilibrium.

Since the designer of the mechanism can not alter the users’
utility functions, U;, 7 € N, the only way it can achieve the
aforementioned objectives is through the use of appropriate fax
incentives/tax functions. At each link [, the tax incentive of our
mechanism for user i consists of three components A (i), AL(7)
and A} (7). We specify and interpret these components for Case
3 ((13)). Similar interpretations hold for Case I and Case 2.

For Case 3 we have

ti = AL(i) + AY(d) + A§(d) (19)

where
Al (i) == PL;x; (20)
Abi) = (p} - PL,)°
L4
_9P!, (s~ PL) (—_”)
v
Ha; > 0}1{&EY, + 2; > 0} o
1—{z; > 0}1{EL; + z; > 0}

Ab(i) ==}, (22)

« Al (i) specifies the amount user i has to pay for the band-
width it gets at link /. It is important to note that the price
per unit of bandwidth that a user pays is determined by the
message/proposal of the other users using the same link.
Thus, a user does not control the price it pays per unit of
the service it receives.

« AlL(i) provides the following incentives to the users of a
link: (1) To bid/propose the same price per unit of band-
width at that link (2) To collectively request a total band-
width that does not exceed the capacity of the link. The in-
centive provided to all users to bid the same price per unit
of bandwidth is described by the term (p! — PL;)?. The in-
centive provided to all users to collectively request a total
bandwidth that does not exceed the link’s capacity is cap-
tured by the term

Hz; > 0}1{&L; + =; > 0}
1—1{z; > 0}1 {€L, + =; > 0}

(23)

Note that a user is very heavily penalized if it requests a
nonzero bandwidth, and, collectively, all the users of the
link request a total bandwidth that exceeds the link’s ca-
pacity. A joint incentive provided to all users to bid the
same price per unit of bandwidth and to utilize the total ca-
pacity of the link is captured by the term

l .
2P_; (pl — PL;) <ﬂ>

(24)
Y

« Al(4), The goal of this component is to lead to a balanced
budget. That is

> [ALGE) + A4(@)] #0 (25)
ieg!
but
> [AL(E) + AL(i) + Aj(4)] = 0. (26)

1€G!

Note that, AL(i) is not controlled by user i’s messages
(simply because there is no term in A4 () under the control
of user ), so AL(i) does not have any influence on the
strategic behavior of the user.
As indicated in (26), when the number of users at link [ € L
is larger than three, i.e. |G!| > 3, the mechanism is budget-bal-
anced at that link, that is .. t; = 0. When |G| = 2, 3
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the mechanism is not budget balanced at link [. The amount

Q= > ..ot ti, is given as subsidy to a randomly chosen
L lgl|=23 .
user, say j, that does not compete for resources at link /. Such

money transfers results in an overall balanced budget, and are al-
ways possible whenever N > 3. Furthermore, the money trans-
fered to user j does not alter j’s strategic behavior since Q' does
not depend on user j’s strategy. The existence of the term Q;,
in the tax function couples the games that are taking place at
various links of the network. The presence of Q' implies that
the designer of the mechanism must not consider links individ-
ually; for the allocation of resources at certain links (specially
those links [ with |G!| = 2, 3) the design must consider network
users that do not compete for resources in those links.

IV. PROPERTIES OF THE MECHANISM

We prove that the mechanism proposed in Section III has the
following properties: (P1) It implements the solution of Problem
Max in Nash equilibria. (P2) It is individually rational. (P3) It
is budget-balanced at every feasible allocation, that is the mech-
anism is budget-balanced at allocations corresponding to all NE
messages as well as those corresponding to off-equilibrium mes-
sages. We also prove the existence of NE of the game induced
by the mechanism and characterized all of them.

We establish the above properties by proceeding as follows.
First we prove that all Nash equilibria of the game induced by
the game form/mechanism of Section III result in feasible solu-
tions of the centralized problem Max, (Theorem 1). Then, we
show that network users voluntarily participate in the allocation
process. We do this by showing that the allocations they receive
at all Nash equilibria of the game induced by the game form
of Section III are weakly preferred to the (0, 0) allocation they
receive when they do not participate in the allocation process
(Theorem 4). Afterwards, we establish that the mechanism is
budget-balanced at all Nash equilibria; we also prove that the
mechanism is budget-balanced off equilibrium (Lemma 2). Fi-
nally, we show that the mechanism implements in Nash equi-
libria the solution of the centralized allocation problem Max
(Theorem 5).

We present the proofs of the following theorems and lemmas
in the Appendix.

Theorem 1. (Feasibility): If m* = (x*,p*) is a NE point of
the game induced by the game form and the users’ utility(out-
come) functions presented in Section III, then the allocation x*
is a feasible solution of Problem Max.

The following lemma presents some key properties of NE
prices and rates.

Lemma 2: Letm* = (x*,p*) be a NE. Then for every [ € L
and i € G', we have

it =pjl = P = p* @7
g*l
p* (—) =0 (28)
Y
ot .

*l * 1
where £ = ) i oiw) — ¢
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An immediate consequence of Lemma 2 is the following. At
every NE point m* of the game induced by the mechanism the
tax function has the following form:

pHay if [G'] = 2;
% wl\2 C’—E*l- .
ti(m*) = ¢ p* (7 —2%;) + W if |G!| = 3;
p* (zf —z%,) if |G!| > 3.
(30

Thus, by (15), (16), (17), (18) and Lemma 2 we have

Y ti(m?)

lER;

t;(m*) = (31)

fori # ki, ki,,- -+, ki, (cf Section III), and for 7 = ki, j =
1,27
te, (M) = Q" + 3 1, (m"). (32)

lER,
J

In the following lemma, we prove that the proposed mecha-
nism is always budget balanced.

Lemma 3: The proposed mechanism/game form is always
budget balanced at every feasible allocation. That is, the mech-
anism is budget-balanced at all allocations corresponding to NE
messages as well as at messages that are off equilibrium.

The next result asserts that the mechanism/game form pro-
posed in Section III is individually rational.

Theorem 4. (Individual Rationality): The game form speci-
fied in Section III is individually rational, that is at every NE
of the game induced by the mechanism the corresponding al-
location (x*, t*) is weakly preferred by all users to the initial
allocation (0, 0).

Finally, we prove that the mechanism of Section III imple-
ments in NE the correspondence 7 defined by the solution of
Problem Max.

Theorem 5. (Nash Implementation): Consider any NE m* of
the game induced by the mechanism of Section III. Then, the
allocation (x*,t*) corresponding to m* is an optimal solution
of the centralized problem Max.

Existence and Characterization of the Nash Equilibria: So
far, we have assumed the existence of NE of the game induced
by the proposed game form/mechanism. In the following the-
orem, we prove that NE exist (recall the interpretation of NE
we have given at the end of Section II) and characterize all of
them.

Theorem 6: Let (x7,z35,---, 2% ) be an optimal solution of
Problem Max and \*!, [ € L, be the corresponding Lagrange
multipliers of the Karush-Kuhn-Tucker (KKT) conditions. Then

* *[q *ly
?

. Lk * * *[
m = (:Ll'/'ilj27"'7'117]\7717 P D L)

with p* = X\*', [ € L is a NE of the game induced by the

proposed game form.

V. IMPLEMENTATION OF THE DECENRALIZED MECHANISM

First, we discuss how the mechanism specified by the game
form of Section III can be implemented at equilibrium. Then,
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we address the computation of the NE of the game induced by
the game form of this paper.

We present one way of implementing the proposed mecha-
nism at equilibrium. Consider an arbitrary link [ of the network.
The users of that link communicate their equilibrium messages
to one another and to the network manager. The network man-
ager determines the rate and tax (or subsidy) of each user and
announces this information to the user. The users 7,7 € N with
tax t\ > 0 pay the amount ¢! to the network manager; the net-
work manager redistributes the amount of money it receives to
the users j € N with tlj < 0. In the situation where the number
of users in the link is equal to two (resp. three) the network man-
ager chooses randomly a user not using that link to whom it
gives the subsidy Q*{:19'1=2} (resp. Q*{119'1=3}) defined by
(15) (resp. (16)). The above described process is repeated/takes
place at every network link. This process implements the mech-
anism described in the paper at equilibrium.

Even though for the specific form of the tax we have provided
a complete characterization of the NE of the game induced by
the game form proposed in the paper, currently we do not have
an algorithm for the computation of these equilibria. Based on
preliminary investigation, we believe that best response algo-
rithms do not, in general, guarantee convergence to NE equi-
libria, because the game induced by the game form proposed in
this paper is not supermodular (Ch. 12, [22]) (due to the capacity
constraint present at each link). Thus, the algorithmic computa-
tion of the NE of the game induced by the game form proposed
in the paper remains as an open problem.

VI. AN EXTENSION

So far we required that the users’ utility functions be con-
cave. We now weaken this requirement; we assume that the
users’ utilities are quasi-concave. We consider the game form
proposed in Section III. By repeating the arguments of Theorem
1, Lemma 2, Lemma 3 and Theorem 4 we can show that: every
NE of the game induced by the game form is feasible; the game
form/mechanism is individually rational and budget-balanced
at all feasible allocations, i.e. at every NE and off equilibrium.
In the following theorem we prove that every NE of the game
induced by the proposed game form results in a Walrasian Equi-
librium (WE) [12].

Theorem 7: Consider the game (M, f,V;, 1 =1,2,---, N),
induced by the game form of Section III, with continuous and
quasi-concave utilities U;, 2 € N. Then, every NE m* of this
game results in a Walrasian equilibrium, hence a Pareto optimal
allocation (x*,t*).

VII. CONCLUSION

We have proposed a mechanism for rate/bandwidth alloca-
tion in unicast service provisioning and performed an equilib-
rium analysis of the mechanism. We discovered that when the
users’ utilities are concave, the mechanism possesses the fol-
lowing properties: 1) It implements in Nash equilibria the solu-
tion of the corresponding centralized rate allocation problem.
ii) It is individually rational. iii) It is budget-balanced at all fea-
sible allocations, i.e., at all Nash equilibria of the game induced
by the mechanism/game form as well as off equilibrium. When
the users’ utilities are quasi-concave the proposed mechanism

possesses properties ii) and iii) stated above. Moreover, every
Nash equilibrium of the game induced by the proposed mecha-
nism results in a Walrasian equilibrium, hence a Pareto optimal
allocation.

The development of algorithms that guarantee convergence
to Nash equilibria of the game corresponding to the mechanism
of this paper is an important problem. We have not studied this
problem in detail. Preliminary investigation indicates that best
response algorithms do not guarantee convergence to Nash equi-
libria, since the game induced by the game form developed in
this paper is not supermodular (due to the capacity constraint
present in the game played at each link).

APPENDIX

Proof of Theorem 1: By the construction of the mechanism
xzf > 0 forall ¢ € N. Suppose that x* = (z7,---,z%) is
such that the capacity constraint is violated at some link / and
x% > 0 (i.e. user j will be heavily charged because ((1{z} >
0}1{5 +a7 > 0})/(1 - Yz} > 0}1{5 St > 0}))
(1/0%) which is a large number) Now, Con31der x; such that:
i) either z; > 0 and Zkegz i+ 15 < c!; orii) x; = 0. Then,

(H{z; > 0}1{EY, + 5 g 04)/(1 = 1{z; > 0}1{&E + z; >
0}) =0, therefore
Vj (mj,mZ;) > V; (mj, mZ ) (33)
and (33) contradicts the fact that m* = (m}, m* ;) is a NE.
Consequently, x* is a feasible allocation of problem Max. =
Proof of Lemma 2: We prove this lemma by considering the
case |G!| > 3. The cases |G!| = 2 and |G| = 3 can be proved
similarly. A detailed proof for |G!| = 2 and |G!| = 3 is available
in [47].
Consider useri € G (|G!| > 3). Since user i does not control
®! defined by (14), (i.e., ! does not depend on z; and p!)

o0, 09

= 34
afl?i 8]75 ( )
Equation (13) along with (34) imply
l ExL 4 p*
= -y - P (S |
apz m=m?* v
(35)

Summing (35) over all i € G, we get

IRAT Y

[ — pr) - P (M)
8pi ieg! "

ieg! m=m*
S*l' + *
=) P4 <— z) =0 (36)
ieg! K
which, because of Theorem 1 and the positivity of prices, im-
plies
ExL 4 x*

_p [T ) g, 37)

v

for every i € G'. Then (37) gives
= pr (38)
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for all i € G'. From (37) and (38) it follows that:

g*l
*l ( > =0 (39)
g
*l __ *l *l
p; = pj =P* =p™. (40)
Equations (39) and (40) along with (13) give
otl .
G =p*. 41
| p (4D
By (40), (39) and (41)7 the proof is complete. [ ]

Proof of Lemma 3: Equation (30) together with (31) and (32)
imply that 3, cp, > icor t:! = 0. Now, we prove that the pro-
posed mechanism is also budget balanced off equilibrium. First
we show that, for every [ € L where |G!| > 3

Z th=o. (42)
i€gh,|G! >3
By a little algebra we can show the following equalities:
> ieqt pl.z
12 _ iz
Zpi - Z G —1 (43)
ieg! ieg!
N CHCER TRy
! v
D iegt 2 ket (2p§p2 (1-+ ?&) —-xjpi)
Z J#i k#i,j (44)

(191 =1 (6" = 2)

Zjeg’ Zkeg’ Z regt 2pkplgl
Z J#i k#i,j r#i,j,k
2 09— D79 - 9)
> jegt Zkegl 2pkpjgl
T ., 49)
v(g' - 1) (|g|_2)

Zjegl Zkecl E regl x]’pi

k#i,5 r#i,jk

i
—1L

€G!

LD

ieg! v ieg! (|gl| - 1) (|gl - 3)
Z.7§g_’ Zke_g’_ ll?jpfc
JFi 12075”--_7 ( )
v(19'1 =1 (9" - 2)

From (43)-(46) we conclude that

Z Pl + (Pi - Pii)Q
ieg!
L+
2Pl (ph = PL) [ = | | ==Y el @)
7 ieg!
Equation (47) along with (13) imply that Ziegl 1G!>3 té =0.

"Note that, since the derivative of an indicator function is a Dirac delta func-
tion ([48, p. 94]), to have a well defined derivative of ¢; with respect to ; at the
boundary, i.e., when Zl cgl Ti = c!, the differentiation is from the left. This
observation holds throughout the proofs appearing in this Appendix.
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Next consider all links [ € L where |G| = 2, 3. In accordance
with the notation in Section III, let these links be I, 15, -, 1.
Then, by the specification of the tax function (cf. Section III-A,
(6)—(10)) we obtain

o[t +te, +th J1{gb1=5)+
J=1 '
e+ ] Tig =2+ 000 =0 6y

i=1 i=1

where if |G| = 2 then {i;, ,,i;,,} = G' and if |G| = 3 then
{ilj,17ilj,27ilj,3} = gl]-’ J=12--r
Finally note that

SUEED VD SRS S !

leL:|G!=21ieg! leL-IQ’\—Sieg’

+ 2:1Zﬂ£zg
leL:|G!|>3ieg!
=0. (49)
|
Proof of Theorem 4: We need to show that V;(x*,t) >
V;(0,0) = 0 for every ¢ € N. By the property of NE it fol-
lows that:

VL' (X* t*) Z V, (thj,xqj,ti, ti,) V(:I?i, tq) (50)
So, it is enough to find (z;, p;) € M, such that
Vi (xZ, @i, ti,t2;) > 0. (51)

We set 7; = 0 and examine the cases |G!| = 2, |G!| = 3 and
|G!| > 3, separately.

With z; = 0, pz- = p*
following function 5 (pl):

(P} — p*l)Q w1 s [ Y
Fo(pi) = — 2 (pi — p*")

*_Cl
5 .

pi=p* (52)

, (6) defines the

and z; = 3:

Clearly, at

Fo(p*!) = 0. Then, from (6) it follows that:

th(x2,;,0,p;, p") = 0. (53)
« Case2, |Gl =3
Denote by 1, j, k the users of link [. With z; = 0, z; = x7,
z, = =z, and pJ = pk = p*!, (8) defines the following
function F3(pl):

+at—cl
Fs (1) = (0} — p)” — 29" (5} — p) (7>

v
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2 gilz
=p; —2pip™ (1 - —)
Y
12 5ilz *[
+p 142 5 +Q;

F3(pl) is a quadratic polynomial in pl. Setting F3(p!) = 0
we obtain the root

2
] *[2 1 _ eoxl
<p*l%> + xiip*l + p((:—g_l)

(54)

gl

* gilL
+p (1+7>. (55)

Since by its definition v is sufficiently large, it follows from
(55) that g} 5 > 0, i.e. g} ; is a feasible price. Therefore,
from (8) we obtain
th(x*,,0,p%,, 0t 3) = 0. (56)
» CASE3,|G! >3
With z; = 0,2 = 23 Vj # i, j € G', pl = p*, j € G,
(13) and (14) define (after a little algebra) the following
function Fs3(p!):

exl
fBMM):(M—pﬂz—%WOﬁ—ﬁ5<”/>+¢?

2 Eill
=pi —2pip* 1+ —
~
12 £ 1
+pt | 1+2— | —alyp’
g

Fs3(pl) is a quadratic polynomial in pl. Setting
]:>3(p,li) = 0 we obtain the root

2
L £*L L& R
Pi>3 =P 1+ 5 + p T +£L’_ip (58)

where

(57)

o 2z

L= G (59)

Since by its definition v is sufficiently large, it follows from
(58) that p§7>3 > 0 (ie. pﬁ-’>3 is a feasible price). There-
fore, from (13) we get

ti (Xiw 07 piz, @é,>3) =0. (60)

Consequently, at

l;
m; = (x”PL) — <07pé’17pi’27. S D; Ri)

(where, pik Jk=1,2,---,|R;|, are defined either by (52)
or (55) or (58), depending on the cardinality G'x, k =
1,2,---,|R:]), we obtain

IR
Vi@, )= (m; e ) = Ui(0) = Zt?’”’ (XinO-,Pf%"-,pé”)
- k=0
=U;(0)
—0. ©61)
when ¢ # k‘ll,klw---,klr.
Wheni = ki, j = 1,2,---,7
Ll sl L
Vil O)loue(amme ) = Ui (0) = 28 (x5, 0007 9y )
- k=0
— Qi
— _ Q*lj
>0 (62)

where Q*l = Q{1;:1971=2} or Q9+ = Q*{1::19"71=3}  Com-
bining (50), (61) and (62) we obtain
Vi (vat*) Z Vz(wt”m

=L (63)

- m*
—(m“m_i

and this establishes (51) and completes the proof. [ |
Proof of Theorem 5: Let (x*,p*) be an arbitrary NE of the

game (M, f,V) induced by the proposed game form. Then by

the properties of NE, we must have that for every user i € N’

aaii

o 8Ul(a:1) _ 8t1(m)
- (9.701 axl

} ‘ =0. (64)

‘m:m*

By Lemma 2, (64) is equivalent to

—Zp*lzo.

leR;

Ay (65)

Furthermore, by Lemma 2 we have p*'£*'/y = 0 and since
v >0

p*lg*l _ p*l Z xz _ Cl = 0.
keg!

(66)

Equation (64) holds for every user i € A/; (66) holds for every
link [ € L.

Consider now the centralized problem Max. Since the func-
tions U;, « € N are concave and differentiable and the con-
straints are linear, Slater’s condition ([49]) is satisfied, the du-
ality gap is equal to zero, and the Karush Kuhn Tucker (KKT)
conditions are necessary and sufficient to guarantee the opti-
mality of any allocation x := (x1,22,---,zy) that satisfies
them. Let \! be the Lagrange multiplier corresponding to the
capacity constraint for link / and v; be the Lagrange multiplier
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corresponding to the demand constraint. The Lagrangian for
problem Max is

Lz, \v) ZU Z;) Z)\Z(in—cl)—f—szi
ieEN leEL i€G; ieEN
(67)
and the KKT conditions are
OL(z*, \*, 1/*) Iy, ( ul _
B le Z M4 ur=0 (68)
lER;
XA ap-c =0 VieL (69)
€G!
vizi;=0 VieN. (70)

Since the KKT conditions are necessary and sufficient to guar-
antee the optimality of any allocation x = (z1, 22, - -, 2 ) that
satisfies them, it is enough to find v and M1 € L, such that
(68)—(70) are satisfied.

Setvf = 0,7 € N, and \* =
satisfied and (68) and (69) become

-y o=

IER;

p*', 1 € L. Then (70) is
(71)

in—cl =0 VlieL
€G!

(72)

respectively, and they are satisfied because they are identical
to (64) and (66), respectively. Furthermore, by the construc-
tion of the game form Ef\;l t; = 0. Consequently, the solu-
tion x* = (x7,25,---,2%) of (71) and (72) along with the
specification of ¢}, 7 = 1,2,---, N, are an optimal solution of
Problem Max. At the same time (71) and (72) and ZlNzl ;=0
are satisfied by the allocation f(m*) corresponding to the NE
m*. Consequently, the NE m* results in allocation f(m™*) =
(23,25, -+, 2N, 15,85, -+, %) that is an optimal solution of
Problem Max. Since the NE m* was arbitrarily chosen, every
NE m* of the game form proposed in Section III results in an
optimal solution of Problem Max. [ |

Proof of Theorem 6: First we note that an optimal solu-
tion (x*,t*) = (7,25, -, 2%, t5, 85, -, tN) [where ¢;,
1 =1,2,---, N, are defined by (15), (16), (30), (31) and (32)]
of Problem Max exists. This follows from: i) the fact that
each U;, ¢« € N, is concave and the space of the constraints
described by (3) and (4) is convex; ii) the fact that Zl 1t =0
by the construction of the game form. The KKT conditions for
problem Max result in the following equations:

ou; (z}
% — Z Ay vi =0 (N equations) (73)
H leR;
A Z i —c'| =0 (L equations) (74)
€G!
viz; =0 (N equations). (75)
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We have N + L + N equations in L + N unknowns, \*!,
I € Land v}, i € V. In general we have multiple solutions.

We want to show that for every solution (\*, v
I = 12,---,L,+ = 1,2,---,N) of (73), (74) and (75)
the message m = (mj, my,---,my), m; = (7;, 7. : | € R;)
with #; = 7 and p} = \*! forall i € A" and | € R;, is a Nash
equilibrium of the game induced by the proposed game form.

For that matter we note that by the selection of m we have

*
7

pi'=pt == (76)
for every i and j € G'. By (74) and (76)
p*! Za:;-—cl =\ Zx;—cl =0 T7)
Jj€eG! JjEG!
and by (30) we obtain
oty .
R 1 S )\*l 78
9 — P (78)

3

for every | € R; and every i € N. Therefore, the message m
satisfies all the conditions of Lemma 2.
Next we show that for every ¢ € N, m; is a solution of the

problem
{ U,L' (JZZ) —

subject to

max
m; EM;

> tﬁ(mi:mi)}

leER;

z; >0,pt >0 VIieR,. (79)
Any maximizing solution of (79) must satisfy
8UL(:EL) 8té(ﬁ’l_i, mL) _
—Gu Z — om +7; =0 (80)
lER;
8Ul(a:1) atl-(ﬁ’l_i m,i) !
Z ) ey =0 81
op! ZEZR. ol +4q; (81)

V1 € R;, where r; and ¢! are the Lagrange multipliers asso-
ciated with the constraints x; > 0, and p,lL- > 0,1l € R;, re-
spectively. We set r; = ¥ and ¢! = 0 for every [ € R;. At
m,; = m;, (80) is satisfied because of (73) and (78).
Furthermore at m; = m; (81) is satisfied since

AV; 6tl
oy ®
P; m=m 1ER; pl m=m
and
0 if |GY] = 2;
* *® >‘<_Cl .
A e e B LG
opt| _ . V‘
—2pP* [—5*1‘;’“} =0 if |G!| > 3
(83)
for any [ € L because of (77). Hence,
(z%, 28, o, AN Aty is a NE - point
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of the game induced by the game form proposed in
Section III. ]

Proof of Theorem 7: Since any NE of the game in-
duced by the mechanism proposed in Section III, (if such
an equilibrium exists), results in a feasible allocation of
Problem Max, (see Theorem 1), we restrict attention to
the space M’ = M| x Mj--- M/, of strategies that
result in feasible allocations of Problem Max. Then, the
users’ utilities V;(x;,t;) = U;(z;) — t;, ¢ = 1,2,---, N,
(where t; is specified by the game form of Section III)
are quasi-concave in m; = (z;,p;) and continuous in
(my,---,my) =((z1,p1), (z2,P2), ", (Tn,PN))-
Furthermore, the message/strategy spaces M/ are compact,
convex and non-empty. Therefore, by Glicksberg’s the-
orem [22], there exists a pure NE of the game (M, f,V;,
1=1,2,---,N)induced by the game form of Section III.

Let m* be a NE of this game. Then, for every user i € N

m =

V;(m*) >V; (m*;, m;) Vm; € M,. (84)
That is
U, (27) — Y ti'(m*) > Ui(x)
lER;
- > ti(m*;,m;) Vm; €M, (85)
lER;
where
PACYED SR SR S
lER; lER; leER; LeER;
|gt|=3 Igt1>3
+y QI {i=k,} (86)
j=1

0+l is given by Q*{:19'1=2} or Q*{E:19'1=3} (¢f. (15) and (16)),
and

Z tt (m*;, m;)

leR;
= Z Il (m?;, m;) + Z I3 (m*;, m;)
LER; leER;
|Gl|=2 1g!|=3
+ 3 Mg (mfm) + 3 QUI{i=h,} ®87)
LER; j=1
1gt1>3
where
L xl 2
I, (m*;, m;) :=p*'z; + (v ap )

Since (85) holds for every feasible (z;, P;), setting p} = p*! for
every | € R; we obtain

Vi (@}, PY) =U; (2f) = Y p™laf 2 Vi, P*)

lER;
=U(w) - Z Pl
leR;
for every feasible z;. Therefore, for every: =1,2,--- | N

x; = arg maxg,en- U,(z;) — Z p*la; (88)

lER;

where D*; := {z; : 0 < z; < minjeg,{c! — Dot TjH

J#i
Consequently, (p*,p*) is a Walrasian equilibrium, therefore
(x*,t*) is Pareto optimal ([12, Ch.15]). [ |
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