
Power Allocation and
Spectrum Sharing in Wireless
Networks: An Implementation
Theory Approach

Ali Kakhbod, Ashutosh Nayyar, Shrutivandana Sharma and
Demosthenis Teneketzis





1 Introduction 3

1 Introduction

Today’s communication networks provide a large number of services (e.g. tele-

phone connections, live audio and video broadcasting, email, Internet etc.), each

with its own quality of service requirements, to an increasingly large number of

users. All these services are provided via the network’s infrastructure that con-

tains a limited number of resources. Thus, efficient allocation of the network’s

resources to its users is of great importance as it can have a significant impact

on network performance.

Unlike traditional communication networks where users are assumed to co-

operate with the network and accept the resource allocation decisions made by

the network manager/service provider, the modern communication technology

such as cognitive radio has enabled users to make intelligent decisions and influ-

ence the resource allocation so as to maximize their own benefit. This poses a

challenge to efficient resource allocation because it not only needs to adapt with

decentralized information about different users’ needs and preferences, but also

needs to take into account the users’ strategic behavior.

In recent years game theoretic approaches have evolved to investigate strategic

behavior of users in communication networks and their impact on resource allo-

cation and network performance. However, game theoretic methodology restricts

itself to analyzing the effects of users’ strategic interactions under specific/given

scenarios (e.g. given valuation functions and given price rules for the users).

In general, because of users’ conflicting objectives, their strategic interactions

do not result in desirable network performance. In order to achieve desirable

performance, external incentives must be provided to the users that align their

individual objectives with the network-wide performance objective. The design

of such incentives must address the following challenges: (1) It must be based on

the information revealed by the network users; and (2) It must anticipate users’

strategic behavior in their revelation of information according to the created

incentives.

Mechanism design provides a methodology to design appropriate incentives

that address the above challenges and help to achieve various performance ob-

jectives such as, maximizing the social welfare generated by the use of network

resources or maximizing the revenue collected by the network owner. In this

chapter, we introduce the concepts of implementation theory, a component of the

theory of mechanism design. Based on these concepts we present an approach for

designing decentralized mechanisms for power and spectrum allocation problems

that arise in wireless communication networks.

1.1 Chapter Organization

The chapter is organized as follows. In Section 2 we present a brief overview

of implementation theory concepts that are used in this chapter. In Section

3, we present an approach to power allocation and spectrum sharing problems
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when the mechanism designer’s objective is social welfare maximization or Pareto

optimality. In Section 4, we consider problems of revenue maximization. We

conclude in Section 5 with a critique of the implementation theory approach

and results, and a discussion of important open issues in power allocation and

spectrum sharing problems.

2 What is Implementation Theory?

Implementation theory is a component of the modern economic theory of mech-

anism design. Implementation theory provides an analytical framework for sit-

uations where resources have to be allocated among agents/users but the infor-

mation needed to make these allocation decisions is dispersed and privately held,

and the agents/users possessing the private information behave strategically and

are self-utility maximizers.

In any situation where the information needed to make decisions is dispersed, it

is necessary to have information exchange among the agents/users possessing the

information. Allocation decisions are made after the information exchange pro-

cess terminates. These decisions must optimize some pre-specified performance

metric. The objectives of implementation theory are: (1) To determine, for any

given performance metric, whether or not there exists an information exchange

process and an allocation rule that achieve optimal allocations with respect to

that metric when the users are strategic. (2) To determine systematic method-

ologies for designing information exchange processes and allocation rules that

achieve optimal allocations with respect to performance metrics for which the

answer to (1) is positive. (3) To determine alternative criteria for the design of

information exchange processes and allocation rules that lead to “satisfactory”

allocations, with respect to performance metrics for which the answer to (1) is

negative.

The key concept in the development of implementation theory is that of game

form or mechanism. A game form/mechanism consists of two components: (1)

a message/strategy space, that is, a communication alphabet through which

the agents/users exchange information with one another. (2) an allocation rule

(called outcome function) that determines the allocations after the communi-

cation and information exchange process terminates. Most mechanisms employ

monetary incentives and payments to achieve desirable resource allocations. In

such cases, the outcome function specifies the resource allocations as well as the

monetary incentives and payments.

A game form along with the agents’/users’ utilities defines a game. The al-

locations made (through the outcome function) at the equilibria of the game

determine the result of the decentralized allocation problem. The key objectives

in the design of a game form/mechanism are:
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1 To provide incentive to the strategic agents/users so that they prefer to par-

ticipate in the allocation process rather than abstain from it.

2 To obtain at one, or preferably at all, equilibria of the game induced by the

mechanism, allocations that are optimal with respect to some pre-specified

performance criterion. For example, it may be desired that the allocations

obtained by the game form/mechanism are the same as those obtained by the

solution of the corresponding centralized allocation problem.

3 To obtain a balanced budget at all equilibria of the game induced by the mech-

anism. That is, at all equilibria, the money received by some of the system’s

agents/users as part of the incentives provided by the mechanism must be

equal to the money paid by the rest of the agents/users.

4 To minimize the complexity of the mechanism (measured, for example, by the

dimensionality of the message space as well as by its computational complex-

ity).

In the rest of this section we will formally present the key ideas, objectives and

results of implementation theory that are relevant to the topics of this chapter.

2.1 Game Forms/Mechanisms

Resource allocation problems can be described by the following triple: (E ,A, γ).

E describes the set of all possible environments/instances of the problem. An

e ∈ E specifies the agents’ individual endowments, resource constraints, utilities

etc. The environment is defined as the set of circumstances that can not be

changed by the designer of the game form/mechanism or by the agents. The

set A is the outcome space. It is the set of all possible allocations (e.g. resource

exchanges, monetary payments) made to the system’s agents. The rule γ, is

called social choice rule/social choice correspondence/ goal correspondence. The

rule γ : E 7→ A assigns to every e ∈ E , a set γ(e) ⊂ A; γ(e) is the choice set for

the instance of the resource allocation problem corresponding to e.

The above setup describes a centralized resource allocation problem. It cor-

responds to the case where one of the system’s agents has enough information

about the environment so as to determine the outcomes that satisfy the goal

correspondence γ. Generally this is not the case. Usually, different agents have

different information about the environment. For this reason it is desired to de-

vise a mechanism for information exchange and resource allocation that leads,

for every instance e of the resource allocation problem, to an allocation in γ(e).

When the system’s agents are strategic and self-utility maximizers the resource

allocation mechanism is described by a game form. To formally define a game

form, consider a system consisting of N agents/users. Let N := {1, 2, . . . , N} be

the set of agents. The game form is defined as a pair (M, h), whereM = ΠN
i=1Mi,

Mi is the strategy/message space of agent i and h : M 7→ A is the outcome

function. Thus, for each message/strategy profile m := (m1,m2, . . . ,mN ) ∈ M,
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h(m) ∈ A represents the resulting outcome in A. The game form operates in 3

steps:

1 The mechanism designer announces the pair (M, h).

2 An instance e ∈ E of the environment is realized. The realization of envir-

onment e specifies, among other things, the utilities ui, i ∈ N of all agents.

Depending on its utilities and the specified mechanism, each agent decides

whether or not to participate in the mechanism. The agents who reject the

mechanism get some exogenously specified “reservation utility”, which is usu-

ally a number independent of the environment e; we set this number to be

zero.

3 The agents who choose to participate in the mechanism play the game induced

by the mechanism. In this game, Mi is the strategy space of player i, and for

every strategy profile m ∈ M, ui(h(m)) is the utility payoff of player i. We

denote this game by (M, h, e)

The mechanism designer is interested in the outcomes that occur at various

equilibria of the game induced by the game form. In the next section, we discuss

different notions of implementation depending on the nature of the game form

and the requirements of the mechanism designer.

2.2 Implementation in Different Types of Equilibria

An equilibrium concept for a game is a prediction of the strategic behavior of the

agents playing that game. For a given game form, (M, h), an equilibrium concept

establishes a correspondence between the space of agents’ environment and the

message space. That is, an equilibrium concept establishes a correspondence Λ

that identifies a subset Λ(M, h, e) of M as the expected message profiles of the

agents. For m ∈ Λ(M, h, e), h(m) is the resulting outcomes of the game. We

define AΛ ⊂ A as the set of outcomes associated with all the Λ-type equilibria

of the game (M, h, e),

AΛ := AΛ(M, h, e) := {a ∈ A|∃m ∈ Λ(M, h, e) s.t. h(m) = a} (0.1)

definition 1 A social choice rule/ social choice correspondence γ : E 7→ A
is said to be implementable (respectively, weakly implementable) in the equilib-

rium concept Λ if there is a game form (M, h) such that AΛ(M, h, e) = γ(e)

(respectively, AΛ(M, h, e) ⊂ γ(e)) for all e ∈ E. The game form (M, h) is said

to implement (respectively, weakly implement) the social choice rule γ in Λ.

A comparison between implementation and weak implementation appears in

(Thompson 2001). We now describe several possible choices of the equilibrium

concept used in implementation theory.

2.2.1 Dominant Strategy Equilibrium
The most desirable equilibrium concept is that of a dominant strategy equilib-

rium. The existence of a dominant strategy m∗ := (m∗1,m
∗
2, . . . ,m

∗
N ) for game
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(M, h, e) implies that for every agent i ∈ N , the choice m∗i maximizes agent i’s

utility function irrespective of the other agents’ choice of strategies. Formally,

definition 2 A strategy profile m∗ := (m∗1,m
∗
2, . . . ,m

∗N) ∈M is a dominant

strategy equilibrium for the game (M, h, e) if for all i ∈ N ,

ui(h(m∗i ,m−i)) ≥ ui(h(mi,m−i))

for all mi ∈ Mi, for all m−i := (m1,m2, . . . ,mi−1,mi+1, . . . ,mN ) ∈ Πj 6=iMj;

where ui, i ∈ N are the utility functions of the agents under the realization e of

the environment.

Let D(M, h, e) be the set of dominant strategy equilbria of the game (M, h, e)

and

AD := AD(M, h, e) := {a ∈ A|∃m ∈ D(M, h, e) s.t. h(m) = a} (0.2)

be the set of outcomes associated with all the dominant strategy equilibria of

the game (M, h, e). The game form (M, h) implements (respectively, weakly

implements) a social choice correspondence γ in dominant strategy equilibrium

if

AD(M, h, e) = γ(e)

(respectively, AD(M, h, e) ⊂ γ(e) ) for all e ∈ E .

2.2.2 Nash Equilibrium
For any given game (M, h, e), a pure Nash equilibrium (NE) is a message/strategy

profile m∗ := (m∗1,m
∗
2, . . . ,m

∗
N ) ∈M such that for all i ∈ N ,

ui(h(m∗i ,m
∗
−i)) ≥ ui(h(mi,m

∗
−i)), (0.3)

for all mi ∈Mi, where m∗−i := (m∗1,m
∗
2, . . . ,m

∗
i−1,m

∗
i+1, . . . ,m

∗
N ) and ui, i ∈ N

are the utility functions of the agents under the realization e of the environment.

Let NE(M, h, e) be the set of Nash equilbria of the game (M, h, e) and

ANE := ANE(M, h, e) := {a ∈ A|∃m ∈ NE(M, h, e) s.t. h(m) = a} (0.4)

The game form (M, h) implements (respectively, weakly implements) a social

choice correspondence γ in Nash equilibrium if

ANE(M, h, e) = γ(e)

(respectively, ANE(M, h, e) ⊂ γ(e)) for all e ∈ E .

2.2.3 Bayesian Nash Equilibrium
Consider next pure Bayesian Nash equilibrium (BNE) as the equilibrium concept.

The environment space is described as a product space E = E1 × E2 × . . .× EN .

Each agent i ∈ N knows its own environment ei ∈ Ei and has a pdf p(·|ei) on

the set E−i = E1 × E2 × . . . Ei−1 × Ei+1 × . . . EN of environments of all other

agents j 6= i. The functional form of p(·|ej), j ∈ N is known by the mechanism
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designer for all ej ∈ Ej , for all j ∈ N . However, the mechanism designer does

not know the realizations, ej , j ∈ N . A pure BNE is a vector of strategy rules

(σ∗1(·), σ∗2(·), . . . , σ∗N (·)) where σi : Ei 7→ Mi, which has the following property:

For every ei ∈ Ei, i ∈ N ,∫
E−i

ui(h(σ∗i (ei), σ
∗
−i(e−i)))p(e−i|ei)de−i ≥

∫
E−i

ui(h(σi(ei), σ
∗
−i(e−i)))p(e−i|ei)de−i,

(0.5)

for all σi : Ei 7→ Mi, where σ∗−i(e−i) := (σ∗1(e1), σ∗2(e2), . . . , σ∗i−1(ei−1), σ∗i+1(ei+1),

. . . , σ∗N (eN )) and ui, i ∈ N are the utility functions of the agents under the re-

alization ei of their environment. For a given realization e of the environment,

denote by BNE(M, h, e) the message profiles m ∈ M associated with all the

vectors of strategy rules that satisfy (0.5). Then, the associated outcomes are

ABNE := ABNE(M, h, e) := {a ∈ A|∃m ∈ BNE(M, h, e) s.t. h(m) = a}

The game form (M, h) implements (respectively, weakly implements) a social

choice correspondence γ in Nash equilibrium if

ABNE(M, h, e) = γ(e)

(respectively, ABNE(M, h, e) ⊂ γ(e)) for all e ∈ E .

2.2.4 Which Equilibrium Concept Should the Mechanism Designer
Use?
The equilibrium concept appropriate for a game (M, h, e) is determined by the

information the system’s agents possess about the environment (hence, about the

game). For example, when every agent has perfect knowledge about every other

agent’s environment, Nash equilibrium as well as dominant strategy equilibrium

are appropriate equilibrium concepts. When every agent only knows its own

environment and has a belief, expressed by a probability distribution on the set

of environments of all other agents conditioned on its own environment, Bayesian

Nash equilibrium and dominant strategy equilibrium are appropriate equilibrium

concepts.

2.2.5 Truthful Implementation
Game forms/mechanisms (M, h) where each agent’s message space is its en-

vironment space, that is, Mi = Ei for all i ∈ N , are called direct revelation

mechanisms. Such mechanisms have a natural appeal and have received signif-

icant attention. The interest in direct revelation mechanisms stems from the

revelation principle. The revelation principle is the observation that if a game

form (M, h) implements a social choice rule γ : E 7→ A in a certain equilibrium

concept Λ, then there is a direct revelation mechanism (E , h∗) which has the

following property: (1) Reporting one’s true environment is an equilibrium mes-

sage/strategy of the game induced by (E , h∗) in the same equilibrium concept Λ;

(2) h∗(e) ∈ γ(e), for all e ∈ E .
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Even though the direct revelation mechanism (E , h∗) has the above property, it

does not necessarily implement the social choice rule γ in the equilibrium concept

Λ. This is because the game induced by the direct revelation mechanism may have

multiple equilibria, some of which may give rise to outcomes not contained in γ(e)

for some e ∈ E . An example illustrating the above fact appears in (Dasgupta,

Hammonds & Maskin 1979).

Thus, we cannot conclude from the revelation principle that all one ever needs

to consider are direct revelation mechanisms. Only under certain conditions a so-

cial choice rule can be implemented by a direct revelation mechanism (Dasgupta

et al. 1979). Nevertheless, a special concept of implementation associated with

direct mechanisms, called truthful implementation, is of interest in some appli-

cations (as we will see in Section 4). Truthful implementation in the equilibrium

concept Λ requires that: (R1) For every environment e ∈ E , truth-telling should

be an Λ-equilibrium of the game (E , h∗, e); (R2) The outcome achieved at the

truth-telling equilibrium of the game (E , h∗, e) should be in the social choice

set, that is, h∗(e) ∈ γ(e), for all e ∈ E . Truthful implementation imposes no

restrictions on outcomes achieved at any equilibria other than the truth-telling

equilibrium.

2.3 Desirable Properties of Game Forms

In addition to implementation in an equilibrium concept, the mechanism designer

should try to achieve the other objectives mentioned in Section 2. We formally

define the properties of a mechanism associated with those objectives in this

section.

2.3.1 Individual Rationality
One of the objectives in the design of a game form is to incentivize all the

agents to voluntarily participate in the allocation process under any possible

environment. Consider any environment e ∈ E . If under e, agent i decides not

to participate, its overall utility is zero (see Section 2.1). If agent i decides to

participate in the game induced by the mechanism, its utility is ui(h(m∗)) where

m∗ is an equilibrium of the game induced by the mechanism. Under e ∈ E , an

agent participates in the game (M, h, e) if for all equilibria m∗ of the game,

ui(h(m∗)) ≥ 0. We can now define individually rational mechanisms as follows:

definition 3 A mechanism/game form (M, h) is individually rational if

for all e ∈ E, for all equilibria m∗ of the game (M, h, e) and for all i ∈ N ,

ui(h(m∗)) ≥ 0, where ui is the utility function of agent i in the environment e,

and 0 is the reservation utility a user receives if it rejects the mechanism (cf.

Section 2.1).

2.3.2 Budget Balance
Strategic agents are often incentivized to follow the rules of the mechanism

through monetary tax and subsidy. Some agents are induced to accept allo-
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cations that may not be their most preferred ones (under the realization e of

the environment) by offering them money (subsidy). Conversely, some agents

are induced to pay money (tax) for receiving their most preferred allocations. It

is desirable that for any environment e ∈ E , at every equilibrium of the game

(M, h, e) the sum of taxes paid by the agents should be equal to the sum of sub-

sidies received by the agents. Any mechanism (M, h) that possesses the above

property is said to be budget balanced at equilibrium. Budget balance is also de-

sirable off-equilibrium for the following practical reason. Suppose the mechanism

designer specifies, along with the mechanism, an iterative message exchange pro-

cess (tâtonnement process) which for any environment e ∈ E is guaranteed to

converge to an equilibrium of the game induced by the mechanism. In practice,

the message exchange process may terminate when it reaches sufficiently close

to the equilibrium (but not the equilbrium). If the mechanism is not budget bal-

anced at these out of equilibrium terminal messages, then possible large amounts

of unclaimed money may be left. This is why budget balance is desirable at all

out of equilibrium messages.

2.4 Key Results on Implementation Theory

We discuss implementation in three types of equilibria: dominant strategy, Nash

equilibrium and Bayesian Nash equilibrium.

2.4.1 Implementation in Dominant Strategies
We desire implementation of a social choice rule/correspondence in dominant

strategies, because in such a situation each agent’s optimal strategy is indepen-

dent of other agents’ strategies. Unfortunately, as we discuss below, implemen-

tation in dominant strategies is in most cases impossible. This is why we resort

to implementation in NE or BNE.

The most general results on implementation in dominant strategies are impos-

sibility results. One of the main results on this topic is the Gibbard-Satterthwaite

theorem. It was discovered independently in the 1970s by Gibbard (1973) and

Satterthwaite (1975). It is a negative (impossibility) result that has shaped the

course of research on implementation theory to a great extent. The theorem

shows that for a very general class of problems there is no hope of implementing

satisfactory social choice rules in dominant strategies. Specifically, the Gibbard-

Sattethwaite theorem states that under certain assumptions on the set of the

users’ utility functions and the allocation space (see (Mas-Colell, Whinston &

Green 2005, Chapter 23), (Osborne & Rubinstein 1994, Chapter 10)) a social

choice function γ is truthfully implementable in dominant strategies if and only

if it is dictatorial (see (Mas-Colell et al. 2005, Chapter 21) for the definition of

a dictatorial choice function).

Given the negative conclusion of the Gibbard Satterthwaite theorem, if we

are to have any hope of implementing desirable social choice rules, we must

either consider implementation in a less robust equilibrium concept (e.g. NE,
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BNE), or we must focus on more restricted environments E . In the remainder

of this section we present positive results on the implementation of desirable

social choice rules in dominant strategies when the users’/agents’ utilities are

quasilinear. Afterwards, in sections 2.4.2 and 2.4.3 we present key results on

implementation in NE and BNE, respectively.

Quasilinear utilities have the form

ui(αi) = vi(xi)− ti, i ∈ N , where, αi := (xi, ti), i ∈ N , (0.6)

vi is specified by the realization of the environment, xi denotes the allocation to

agent i, and ti ∈ R denotes the transfer of money to agent i; ti > 0 implies that

agent i pays a tax, whereas ti < 0 implies that agent i receives a subsidy. For the

class of environments where the users’/agents’ utilities are quasilinear we have

the following positive result.

theorem 1 ((Mas-Colell et al. 2005)) Assume that the users’/agents’ utilities

are quasilinear and let, for every e ∈ E, (x∗1(e), x∗2(e), · · · , x∗N (e)) be an allocation

such that

N∑
i=1

vi(x
∗
i (e)) ≥

N∑
i=1

vi(xi) (0.7)

for any other feasible allocation (x1, · · · , xN ) ∈ A. The social choice rule γ :

E → A, which for each e ∈ E selects allocations satisfying (0.7), is truthfully

implementable in dominant strategies if for all i ∈ N ,

t∗i (e) = −
∑
j 6=i

vj(x
∗
j (e))− t̂i(e−i), (0.8)

where t̂i(e−i) is an arbitrary function of e−i, e−i := (e1, e2, · · · , ei−1, ei+1, · · · , eN ).

A direct revelation mechanism (E , h∗) where h∗(e) = (x∗1(e), x∗2(e), · · · , x∗N (e),

t∗1(e), · · · , t∗N (e)), x∗i (e), i ∈ N , satisfy (0.7) and t∗i (e), i ∈ N , satisfy (0.8) is

called a Vickrey-Clark-Groves (VCG) mechanism. A special case of the VCG

mechanism is the pivotal mechanism (Mas-Colell et al. 2005, page 878). It should

be noted that while the VCG mechanism results in truthful implementation

in dominant strategies, it does not guarantee budget balance. If the budget

balance condition for all environments e ∈ E is required to be satisfied and

E is sufficiently rich, then there is no social choice rule γ : E → A, γ(e) :=

(x1(e), x2(e), · · · , xN (e)), t1(e), t2(e), · · · , tN (e) that is truthfully implementable

in dominant strategies (Green & Laffont 1979).

2.4.2 Implementation in Nash equilibria
In his seminal paper, Maskin (Maskin 1999) characterized social choice rules that

can be implemented in NE. A key property that a social choice rule must possess

in order to be implemented in NE is monotonicity (Maskin 1999). Monotonicity
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is satisfied by many social choice rules including the “social welfare maximiz-

ing correspondence” and the “Pareto correspondence”1(Mas-Colell et al. 2005,

Maskin n.d., Jackson 2001, Hurwicz, Maskin & Postlewaite 1995). Monotonicity

along with no veto power, (Maskin 1999), and N ≥ 3, are sufficient conditions

to guarantee implemtation of a social choice rule in NE. Weak no veto power is

satisfied by most social choice rules (see example in (Maskin n.d.)).

Maskin’s fundamental result is the following.

theorem 2 ((Maskin 1999)) If a social choice rule γ : E → A is implementable

in NE then it must be monotonic. Furthermore, if γ is monotonic and satisfies

the weak no-veto power condition and the number of users is at least 3, then γ

is implementable in NE.

Maskin’s proof of Theorem 2 is constructive. Given a social choice rule γ that

satisfies monotonicity and weak no veto power, Maskin constructs a game form

that implements γ. Maskin’s mechanism requires, in general, an infinite dimen-

sional message space (see (Maskin 1999)). That is why the engineering (Sharma

& Teneketzis 2009, Kakhbod & Teneketzis 2012b, Kakhbod & Teneketzis 2012c,

Kakhbod & Teneketzis 2012a, Stoenescu & Ledyard 2006) and some of the eco-

nomic literature ((Reichelstein & Reiter 1988), (Groves & Ledyard 1987)) on

implementation in NE has not followed Maskin’s approach. The methodology

and mechanisms adopted in this chapter for implementation in NE will be pre-

sented in Section 3.

2.4.3 Implementation in BNE
In the Bayesian framework each agent i ∈ N knows its own environment ei and

has a pdf p(·|ei) on the set E−i := E1 × E2 × . . . × Ei−1 × Ei+1 × . . . × EN of

environments of all other agents j 6= i. While the functional forms p(·|ej) are

known to all agents and the mechanism designer for all ej ∈ Ej , for all j ∈ N ,

only agent i knows the true realization of ei.

In this situation there are results that identify properties of social choice rules

under which implementation in BNE is assured. The revelation principle then

ensures that truthful implementation in BNE is possible.

The key properties that a social choice rule γ : E 7→ A must possess so that it

can be implemented in BNE are Bayesian incentive compatibility and Bayesian

monotonicity. We formally introduce Bayesian incentive compatibility, as it is

critical for our analysis in Section 4, and we briefly discuss Bayesian monotonic-

ity.

definition 4 (Bayesian Incentive Compatibility) A social choice function

γ : E 7→ A is Bayesian incentive compatible if and only if for every i ∈ N ,∫
E−i

ui(γ(ei, e−i))p(e−i|ei)de−i ≥
∫
E−i

ui(γ(e′i, e−i))p(e−i|ei)de−i, (0.9)

1 In Section 3, the social choice rule/goal correspondence is the social welfare maximizing or
the Pareto correspondence.



3 Nash implementation for social welfare maximization and Pareto optimality 13

The intuition behind this condition is the following. Consider the mechanism

(E , γ). The left hand side of (0.9) is agent i’s expected payoff when the envir-

onment is e = (ei, e−i) and every agent (including i) uses a truthful strategy.

The right hand side of (0.9) is agent i’s expected payoff when the environment

is e = (ei, e−i), every agent j 6= i uses a truthful strategy and agent i reports

e′i 6= ei. The inequality in (0.9) says that the social choice function γ is Bayesian

incentive compatible if and only if the truthful strategy/truth telling is an equi-

librium of the game induced by (E , γ). The collection of inequality conditions

(0.9) is called Bayesian incentive compatibility conditions. Bayesian incentive

compatibility is essential for implementation in BNE. Any social choice function

that is not Bayesian incentive compatible cannot be implemented in BNE.

Bayesian monotonicity was defined and interpreted in (Palfrey & Srivastava

1989, Palfrey & Srivastava n.d.a, Jackson 1991). In (Palfrey & Srivastava 1989),

it is formally shown that Bayesian monotonicity is an extension of Maskin’s

monotonicity condition.

Bayesian incentive compatibility and Bayesian monotonicity are necessary con-

ditions for the implementation of a social choice correspondence in BNE. Specif-

ically the following result holds:

theorem 3 ((Palfrey & Srivastava n.d.b), page 26) If the social choice corre-

spondence γ : E 7→ A is implementable in BNE then,

1 γ satisfies Bayesian monotonicity.

2 γ is Bayesian incentive compatible.

Bayesian incentive compatibility, Bayesian monotonicity along with some ad-

ditional technical conditions stated in (Jackson 1991, Palfrey & Srivastava n.d.b,

Palfrey & Srivastava 1989, Palfrey 1994), are sufficient for the implementation

of a social choice correspondence in BNE.

3 Nash implementation for social welfare maximization and
Pareto optimality

In this section we consider power allocation and spectrum sharing problems

arising in wireless networks where the goal correspondence is either the social

welfare maximizing correspondence (Section 3.4) or the Pareto correspondence

(Section 3.5). We formulate these problems within the framework of implemen-

tation theory that was presented in Section 2. We choose Nash equilibrium as a

solution/equilibrium concept and we adopt Nash’s “mass-action” interpretation

of NE that we discuss in Section 3.6. We present mechanisms/game forms that

are individually rational, budget balanced, and implement in Nash equilibria

the social welfare correspondence or the Pareto correspondence, both defined in

Section 3.2.
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3.1 The model (MPSA)

Consider a wireless communication network consisting of spatially separated

transmitters and receivers (some transmitters and receivers may be colocated

as well). Each transmitter intends to communicate with a unique and fixed re-

ceiver; we call such a transmitter-receiver pair a user. Suppose there are N users

in the system. Let N := {1, 2, . . . , N} denote the set of these users. Each user can

communicate 2 over a set B := {1, 2, . . . , B} of possible frequency bands. Within

each frequency band j ∈ B, a user i ∈ N can communicate using a transmission

power 3 level pij which can lie either in a convex set Pij := [0, Pmaxij ] or in a

discrete (quantized) set Qij := {φ,Q1
ij , Q

2
ij , . . . , Q

max
ij }. When the power levels

are discrete, pij = φ implies that user i does not use frequency band j. The total

transmission power user i ∈ N can use across all frequency bands must lie within

its transmission power capacity P totali , i.e.
∑
j∈B pij ≤ P totali .

If two or more users use the same frequency band to communicate and they

are spatially close, they create interference to one another. The communication

of users in a given frequency band j ∈ B and the resulting interference can

be represented by a directed graph Gj as shown in Fig. 0.1. Each node in this

graph represents a user. A directed edge from user k to user i indicates that the

receiver of user i is within reach of the transmitter of user k; hence if user k

uses a positive transmission power, it creates interference to user i’s reception

in the given frequency band. Based on the interference pattern, we can define a

set Rij ⊂ N of user i’s neighbors who can potentially create interference to its

reception in frequency band j. Similarly, we can define a set Ckj ⊂ N of user k’s

neighbors who would experience interference from its transmission in frequency

band j. From the graph shown in Fig. 0.1, the neighbor sets Rij and Ckj can be

defined as follows:

Rij := {k ∈ N | k → i in Gj},
Ckj := {i ∈ N | k → i in Gj},

(0.10)

i.e. Rij is the set of users from whom there is a directed edge to user i, and Ckj
is the set of users to which there is a directed edge from user k. Because of inter-

ference, the quality of a user’s communication depends not only on the power of

the signal received from its own transmitter but also on the powers of interfering

signals. Let hkij denote the channel gain between the transmitter of user k and

the receiver of user i in frequency band j. This implies that in frequency band j,

the signal transmitted by user k with power pkj reaches user i with power p̂kij :=

pkjhkij . Based on the received powers, the quality of a user’s communication can

be quantified by a valuation function v̂i((p̂kij)k∈Rij ,j∈B), where (p̂kij)k∈Rij ,j∈B
denotes the vector of powers of all signals received by user i across all frequency

2 By communication of a user, we imply the communication between its corresponding
transmitter and receiver.

3 The transmission power of a user implies the transmission power used by the

corresponding transmitter. Similarly, whenever we say the power received by a user, it will

imply the power received by the corresponding receiver.
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bands. If the channel gains hkij , k ∈ Rij , j ∈ B, are known, then one can define

an equivalent valuation function vi((pkj)k∈Rij ,j∈B) = v̂i((p̂kij)k∈Rij ,j∈B) of user

i in terms of the transmission powers of the interference generating users. Thus

the domain of vi is Di := {(pkj)k∈Rij ,j∈B | pij ∈ Pij (or Qij), j ∈ B;
∑
j∈B pij ≤

P totali ; pkj ∈ R+ (or Qkj), k ∈ Rij\{i}, j ∈ B}. Henceforth, in this chapter

we will use the function vi(·) to represent user i’s valuation of the power and

spectrum allocation for simplicity of exposition.

Now suppose that all users in the network are selfish and want to maximize

their respective values from power and spectrum allocation. Suppose further that

the users are strategic and hence may not want to reveal their true valuations of

power and spectrum allocation. In order to provide incentives to these strategic

users to reveal information that helps obtain social welfare maximizing alloca-

tions, each user i ∈ N is charged a tax ti ∈ R. This tax is set based on the users’

messages according to a prespecified mechanism. As discussed in Section 2 it is

desirable to achieve budget balance (i.e.
∑
i∈N ti = 0) when taxes are involved.

Budget balance requires collection and redistribution of taxes, and this is done

by a network operator who is a separate entity from all the users, and who is

not a profit maker.

Because a user’s allocation preference is altered by the tax, to describe the over-

all satisfaction of a user from the value it receives from power and spectrum allo-

cation and the tax it pays for it, we define a utility function ui((pkj)k∈Rij ,j∈B, ti)

for each i ∈ N as follows:

ui((pkj)k∈Rij , j∈B, ti) :=
vi((pkj)k∈Rij ,j∈B)− ti, if pij ∈ Pij (or Qij), j ∈ B;

∑
j∈B pij ≤ P totali ;

pkj ∈ R+ (or Qkj), k ∈ Rij\{i}, j ∈ B,
−∞, otherwise.

(0.11)

We make the following assumptions on the wireless network model described

above.

assumption 1 For all i ∈ N and j ∈ B, Rij = Cij, i.e. if user i creates inter-

ference to some user k in frequency band j, then user k also creates interference

to user i in frequency band j.

Such a symmetry holds if the physical path of transmission from user i to j is

similar to that from user j to i.

assumption 2 For each i ∈ N and j ∈ B, the sets Rij and Cij are inde-

pendent of the power allocation pij , i ∈ N , j ∈ B. In other words, these sets

are solely determined by the spatial separation of the users; hence any change

in transmission power levels does not change these sets as long as the spatial

separation of users does not change over the time period of interest.

The above assumption holds in scenarios where the transmission power fluctu-

ations resulting from a power allocation mechanism are not large. As a result, if
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two users are in the interference range of each other at some transmission power

level, they continue to be in each other’s interference range at any other power

levels determined by the mechanism.

assumption 3 The network is static, i.e. the sets N ,B,Pij (or Qij),Rij , Cij ,
j ∈ B, i ∈ N , the values P totali , hkij , k ∈ Rij , j ∈ B, i ∈ N , and the functions

vi(·), i ∈ N , do not change over the time period of interest.

The sets Pij (or Qij), j ∈ B, i ∈ N , and the transmission power capacities

P totali , i ∈ N , are constrained by the transmitter device capabilities and hence

are static. On the other hand constant channel gains can be thought of as ap-

proximations of slowly changing cahnnel gains in networks where users have

slow or zero mobility and the wireless channel conditions vary slowly compared

to the time period of interest. The above factors together with Assumption 1

also imply that the set of users who create interference to one another continue

to create the interference for the time period of interest; as a result the sets

Rij , Cij , j ∈ B, i ∈ N , remain fixed.

assumption 4 For each user i ∈ N , its transmission capacity P totali , the

sets Pij (or Qij), j ∈ B, representing its transmission capability, and its valua-

tion function vi(·) are its private information. Each user i ∈ N also knows its

neighbor sets Rij , Cij , j ∈ B, and all channel gains hkij , k ∈ Rij , j ∈ B.

The private knowledge of P totali and the sets Pij (or Qij), j ∈ B, is a result

of the differences in transmitter devices of the users whose specifications may

not be known to other users in the network. A detailed discussion of how each

user can determine its neighbor sets and the respective channel gains is given in

(Kakhbod & Teneketzis 2012c).

assumption 5 When pij ∈ Pij ∀ i ∈ N , j ∈ B, the valuation function vi(·) :

Di → R+ is concave in its argument for each i ∈ N .

It is shown in (Sharma & Teneketzis 2009, Sharma & Teneketzis 2011) that

in a wireless network where users’ use Code Division Multiple Access technology

(CDMA) to transmit data and employ Minimum Mean Square Error Multi-User

Detector (MMSE-MUD) receivers, the utility functions of the users are close to

concave. Thus, the above assumption can be thought of as an approximation to

such scenarios.

assumption 6 Each user is selfish, strategic, and a self utility maximizer, i.e.

each user i ∈ N intends to maximize its own utility ui((pkj)k∈Rij , j∈B, ti).

The above scenario can arise very often in modern wireless networks where

users possess privately operated devices that can be programed to optimize their

respective utilities.

assumption 7 The network operator does not derive any utility from power

and spectrum allocation or tax distribution. It simply acts as an accountant col-

lecting and redistributing the tax according to the specifications of the mechanism.
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In order to facilitate the collection and redistribution of tax, we also make the

following assumption.

assumption 8 The network operator knows all the sets Rij , Cij , ∀ j ∈
B, ∀ i ∈ N in the network, and all channel gains hkij , ∀ k ∈ Rij , ∀ j ∈
B, ∀ i ∈ N .

The process by which the network operator can determine the neighbor sets

of all users and all the channel gains can be found in (Kakhbod & Teneketzis

2012c). The process used by the network operator also enables the users to

determine their respective neighbor sets and channel gains as mentioned after

Assumption 4.

Finally we make the following assumption about the common knowledge in

the network.

assumption 9 The set B of frequency bands and the facts given by Assump-

tions 1–8 are common knowledge among all the users and the network operator.

With the above assumptions, we formulate a power and spectrum allocation

problem for the network (MPSA).

3.2 The power allocation and spectrum sharing problem

For the Model (MPSA) we wish to determine, under the decentralized informa-

tion constraints implied by Assumptions 1–9, power and spectrum allocations

that maximize the social welfare. Below we formulate this decentralized power

and spectrum allocation problem in the framework of implementation theory in-

troduced in Section 2. We first specify the environment space and the outcome

space of the problem based on the description of Model (MPSA) in Section 3.1.

We then define the goal correspondence, and specify the objective for the solution

of the decentralized power and spectrum allocation problem.

• Environment space: The environment ei of each user i ∈ N consists of the

sets Pij (or Qij),Rij , Cij , j ∈ B, the values P totali , hkij , k ∈ Rij , j ∈ B, and

the function vi(·). The environment space Ei of user i is the space comprising

the following: the space of all convex sets Pij = [0, Pmaxij ], Pmaxij ∈ R+, (or

the space of all discrete sets Qij = {φ,Q1
ij , Q

2
ij , . . . , Q

max
ij }, Qzij ∈ R+, z ∈

{1, 2, . . . ,max}), the space of all subsets Rij , Cij , j ∈ B, of N , the space of

all non-negative real values P totali , the space of all non-negative real valued

channel gains hkij , k ∈ Rij , j ∈ B, and the space of all concave functions vi.

• Outcome space: The outcome space A is the set

D := {(p, t) | pij ∈ Pij (or Qij),
∑
j∈B

pij ≤ P totali , i ∈ N , j ∈ B;
∑
i∈N

ti = 0}.

We call all allocations (p, t) ∈ D feasible allocations.
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• Goal correspondence: For the class of problems discussed in Section 3.4 the

goal correspondence γ is the social welfare correspondence. It is defined as the

mapping from E = ⊗i∈NEi to D which maps each environment e ∈ E (i.e.

each instance of users’ utility functions ui ∈ ei, i ∈ N ) to the set of optimal

solutions of the following centralized allocation problem:

Problem (PCPSA)

max
(p,t)∈(RNB×RN )

∑
i∈N

ui((pkj)k∈Rij , j∈B, ti)

s.t.
∑
i∈N

ti = 0
(0.12)

For the problem discussed in Section 3.5 the goal correspondence γ : E → D
is the Pareto correspondence that is defined as follows. For every e ∈ E , each

(p, t) ∈ γ(e) has the following property. There is no (p′, t′) ∈ D such that

uj(p
′, t′) ≥ uj(p, t) for all j ∈ N , and ui(p

′, t′) > ui(p, t) for some i ∈ N
(ui ∈ ei for all i ∈ N ).

• Objective: We wish to develop game forms (M, h) that:

– implement in Nash equilibria the social welfare correspondence (Section 3.4)

or the Pareto correspondence (Section 3.5) defined above;

– are individually rational;

– are budget balanced.

In the next section we develop a conceptual framework that must guide the

construction of game forms which possess the above properties. In subsequent

sections we will investigate special cases of Model MPSA; for these cases we will

present specific game forms that are designed within the framework developed

below.

3.3 Constructing a game form for the decentralized power and spectrum
allocation problem

We present guidelines for the construction of a game form when the goal corre-

spondence is the social welfare maximizing correspondence. Similar ideas apply

to the design of game forms when the goal correspondence is the Pareto corre-

spondence.

We begin with a discussion on the construction of the message space. Since a

solution for Problem (PCPSA) consists of the power and tax profiles of the users,

the message exchange among the users should contain information that is helpful

in determining the optimal values of these profiles. Note that each user’s utility

is affected by the power allocation of a subset of network users. Therefore, each

user should have a contribution in determining the power allocations of those

neighbors that affect its utility. Furthermore, a user should make a payment

(positive or negative) for the power allocations of all such neighbors because

they all impact its utility. Since each neighbor’s allocation makes a different
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impact on the user’s utility, the user may make different payments for each

neighbor’s allocation. One way to take into account the above two factors is to

let each user communicate as its message/strategy a proposal that consists of

two components: one that indicates what power allocations the user wants for

its neighbors; and the other that indicates the price the user wants to pay for

the power allocations of each of its neighbors.

We next discuss the construction of the outcome function. The specification

of the outcome function is arguably the most important and challenging task in

the construction of a game form/decentralized resource allocation mechanism.

Because the designer of the mechanism cannot alter the users’ utility functions

ui, i ∈ N , the only way it can achieve the objectives of Nash implementation,

budget balance, and individual rationality is through the provision of appropriate

tax functions/incentives that induce strategic users to follow the mechanism’s op-

erational rules. Below we develop the guidelines for the construction of outcome

functions that achieve each of the above objectives.

To achieve implementation in NE, the outcome function must make sure that

all NE of the message exchange (that is done according to the discussion pre-

sented above) lead to optimal centralized allocations. This suggests that the

outcome function must induce price taking behavior4 for all users at all NE. If

price taking behavior is induced, then, through NE price control, the mechanism

can induce the users to take actions that are optimal for their own objective as

well as for the centralized problem (PCPSA). As discussed in the previous para-

graph, a user should make a payment for the power allocations of each of its

neighbors that affect its utility. In order for the mechanism to induce price tak-

ing behavior, the NE price that a user i ∈ N pays for its neighbors’ allocations

must depend only on the messages/proposals of users other than i. Thus, the

NE tax of user i, i ∈ N , must be of the form
∑
j∈B

∑
k∈Rij

l∗ikjp
∗
kj where p∗kj is

the NE power allocation of user k in frequency band j and l∗ikj is the NE price

of this allocation for user i that is independent of user i’s message. With the NE

tax form
∑
j∈B

∑
k∈Rij

l∗ikjp
∗
kj , each user i ∈ N can influence its NE utility only

through the allocations p∗kj , k ∈ Rij , j ∈ B. Since each user’s utility is its private

information, the utility maximizing allocations of a user are known only to that

user. Therefore, to allow each user to obtain its utility maximizing allocations

at given NE prices, the outcome function must provide each user i ∈ N an inde-

pendent control, through its power profile proposal, over each of the allocations

p∗kj , k ∈ Rij , j ∈ B. In other words, each allocation p∗kj , j ∈ B, must be inde-

pendently controlled by each of the users i ∈ Ckj , j ∈ B, and this fact should be

reflected in the form of the outcome function.

4 An individual/user which is not influential enough to affect the equilibrium prices reached

by a mechanism is called price taker which we consider it as a non-strategic user. In other

words, price taking behavior that leads to a solution of the centralized problem, means
that individuals/users act as if their behavior has no effect on the equilibrium prices where
as, inducing price taking behavior means that users who are non-price taking (strategic)

behave as if they are price taker.
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To achieve budget balance, the NE prices l∗ij , j ∈ Ri, i ∈ N , must satisfy∑
i∈N

∑
j∈B

∑
k∈Rij

l∗ikjp
∗
kj = 0,

or, equivalently, 5 ∑
j∈B

∑
k∈N

∑
i∈Ckj

l∗ikjp
∗
kj = 0. (0.13)

One way to satisfy the requirement in (0.13) is to set for each j ∈ B and k ∈ N ,∑
i∈Ckj

l∗ikj = 0.

The features of the outcome function discussed so far could lead to price taking

behavior and budget balance. However, the construction of an outcome function

which has only the above features may lead to the following difficulty. Because

each user knows that its price proposal does not affect its own tax and hence,

its utility, it may propose arbitrary prices for its neighbors in its price proposal.

One way to overcome this difficulty without altering price taking behavior and

budget balance is to add a “penalty” term in the tax function of each user.

To preserve the price taking behavior of the users at NE, the penalty should be

imposed only at off NE messages. This penalty should depend on each user’s own

price proposal and it should increase with the user’s price proposal. However, to

avoid unnecessary penalties, the penalty of a user should be reduced if its power

profile proposal for its neighbors is in agreement with other users’ proposals.

Adding to the tax function a penalty term with the above characteristics may

result in an unbalanced budget. To preserve budget balance a “budget balancing”

term should be added to the tax function of each user. This term must balance

the net flow of the money due to the penalty term. Because the penalty is imposed

on the users only at off NE messages, the budget balancing term must influence

the users’ tax only at off NE messages. To prevent the budget balancing term

from altering a user’s strategic behavior that is governed by the price taking

term and the penalty term in the user’s tax, the budget balancing term should

be independent of the user’s own message.

To achieve individual rationality the outcome function must make sure that

at all NE, the utility of each user is at least as much as the utility this user gets

by not participating in the allocation process (cf. Section 2.1) . This property

is automatically achieved if the outcome function has the following features dis-

cussed earlier: (i) It induces price taking behavior; and (ii) It gives each user

an independent control over in determining the power/spectrum allocations that

affect its utility. If each user can control the allocations that affect its NE utility,

for any set of NE prices l∗ikj , k ∈ Rij , j ∈ B, a user i ∈ N can force all the

allocations p∗kj , k ∈ Rij , j ∈ B, to be 0, thereby also making its NE payment∑
j∈B

∑
k∈Rij

l∗ikjp
∗
kj = 0. Thus, with the above features of the outcome func-

5 From the construction of the graph matrix Gj and the sets Rij and Ckj , i, k ∈ N , the sum∑
i∈N

∑
k∈Rij

(·) is equivalent to the sum
∑

k∈N
∑

i∈Ckj
(·), ∀ j ∈ B.
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tion, each user can independently guarantee a minimum of zero utility for itself

which is precisely the utility it gets by not participating in the allocation process.

3.4 Social welfare maximizing power allocation in a single frequency band

In this section we consider a special case of Model (MPSA) where B = 1, i.e.

users communicate in a single frequency band, and pij ∈ Pij , ∀ i ∈ N , j = 1,

i.e. the users can select their transmission power levels from a convex set. The

goal correspondence γ is the social welfare maximizing correspondence, defined

in Section 3.2, which is implementable in NE (cf. Section 2.4.2, (Mas-Colell

et al. 2005), (Maskin n.d., Jackson 2001, Hurwicz et al. 1995)). Because there

is only one frequency band, we don’t consider the additional constraint pi1 ≤
P totali . To simplify the discussion in this section we drop the index j from our

notation and write pij , hkij ,Pij ,Rij and Cij as pi, hki,Pi,Ri and Ci respectively.

We call this special case of Model (MPSA) as Model (M1
PSA). The model (M1

PSA)

includes in it as a special case (corresponding to Ri = Ci = N ) the public goods

model studied in (Hurwicz 1979); thus the design of power allocation mechanism

for Model (M1
PSA) draws inspiration from the public goods allocation mechanism

presented in (Hurwicz 1979).

Below we present a game form (M, h) for Model (M1
PSA) that is inspired by

the game form of (Hurwicz 1979) and is developed according to the guidelines

discussed in Section 3.3.

The message space:

For each user i ∈ N , its message spaceMi = R|Ri|×R|Ri|
+ , where |Ri| denotes

the cardinality of set Ri. A message mi in this message space can be written as:

mi = (i%Ri
, iπRi),

i%Ri
∈ R|Ri|, iπRi ∈ R|Ri|

+ ,

where, i%Ri
:= (i%k)k∈Ri

, iπRi := (iπk)k∈Ri
.

(0.14)

In the above message, i%k can be thought of as the transmission power proposal

for user k, k ∈ Ri, by user i, i ∈ N . Similarly, iπk can be thought of as the price

that user i, i ∈ N , proposes to pay for the transmission power of user k, k ∈ Ri.
Note that the above message space follows the structure suggested in Section 3.3.

Using the above message space, each user i ∈ N sends its message mi to the

network operator, and the component (i%k,
iπk) of its message to its neighbor

k ∈ Ri. After the users communicate their messages to the network operator, it

computes their transmission powers and taxes according to the following outcome

function.

The outcome function:

The outcome function h has the form h(m) =
(
pi(mCi), ti((mCk)k∈Ri)

)
i∈N ,

i.e. it consists of 2N functions – one for determining the transmission power, and

one for determining the tax for each user i ∈ N . The transmission power of each
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user is determined as follows.

pi(mCi) =
1

|Ci|
∑
k∈Ci

k%i, i ∈ N . (0.15)

To determine the users’ taxes the network operator considers each set Ck, k ∈ N ,

and assigns indices 1, 2, . . . , |Ck| in a cyclic order to the users in Ck. Each index

1, 2, . . . , |Ck| is assigned to an arbitrary but unique user i ∈ Ck. Once the indices

are assigned to the users in each set Ck, they remain fixed throughout the time

period of interest. We denote the index of user i associated with set Ck by Iik.

The index Iik ∈ {1, 2, . . . , |Ck|} if i ∈ Ck, and Iik = 0 if i /∈ Ck. Since for each set

Ck, each index 1, 2, . . . , |Ck| is assigned to a unique user i ∈ Ck, for all i, r ∈ Ck
such that i 6= r, Iik 6= Irk. Note also that for any user i ∈ N , and any k, r ∈ Ri,
the indices Iik and Iir are not necessarily the same and are independent of each

other. We denote the user with index x ∈ {1, 2, . . . , |Ck|} in set Ck by Ck(x). Thus,

Ck(Iik) = i for i ∈ Ck. The cyclic order indexing means that, if Iik = |Ck|, then

Ck(Iik+1) = Ck(1), Ck(Iik+2) = Ck(2), and so on. In Fig. 0.2 we illustrate the above

indexing rule for the set Ck shown in Fig. 0.1.

Set Ri

Set Cj

i
j

Figure 0.1 A local public good network depicting the Neighbor sets Ri and Cj of users
i and j respectively.

Based on the above indexing, the users’ taxes ti, i ∈ N , are determined as

follows.

ti((mCk)k∈Ri) =
∑
k∈Ri

lik(mCk) pk(mCk) +
∑
k∈Ri

iπk
(
i%k − Ck(Iik+1)%k

)2
−
∑
k∈Ri

Ck(Iik+1)πk
(Ck(Iik+1)%k − Ck(Iik+2)%k

)2
, i ∈ N ,

(0.16)

where, lik(mCk) = Ck(Iik+1)πk − Ck(Iik+2)πk, k ∈ Ri, i ∈ N . (0.17)

Note that the construction of the tax function in (0.16) follows the guidelines

presented in Section 3.3. Specifically, the tax of each user consists of three terms.

The first term is the one that induces price taking behavior as it does not depend

on the price proposal of user i. Note that the construction of lik in (0.17) also

satisfies the condition in (0.13). The second term in (0.16) is the penalty term
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Set Cj

i
j

h

k

l

p

1

2

3

4

5

0

Ilj = 3
Cj(3) = l

Ijj = 4
Cj(4) = j

Iij = 5
Cj(5) = i

Ikj = 2
Cj(2) = k

Ihj = 1 = Iij + 1
Cj(1) = h

Ipj = 0

Figure 0.2 Illustration of indexing rule for set Cj shown in Fig. 0.1. Index Irj of user
r ∈ Cj is indicated on the arrow directed from j to r. The notation to denote these
indices and to denote the user with a particular index is shown outside the dashed
boundary demarcating the set Cj .

which increases with each of the price proposals iπk, k ∈ Ri, of user i. Finally,

the third term in (0.16) which is similar to the second term (except the change

in the index from Iik to Iik + 1) is the budget balancing term which balances

the monetary exchange due to the penalty term; this term does not depend on

the message of user i, thus its inclusion in the tax ti(·) does not alter user i’s

straetgic behavior.

Properties of the game form

The characteristics of the game form described above help achieve the objec-

tives stated in Section 3.2 as established by the following theorem.

theorem 4 ((Sharma & Teneketzis 2012, Sharma 2009)) The game form

(M, h) presented in Section 3.4 possesses the following properties:

(i) It implements 6 in Nash equilibria the social welfare correspondence γ (defined

in Section 3.2) for the Model (M1
PSA).

(ii) It is budget balanced at all NE and off equilibria, i.e. the sum of the users’

taxes is zero at all message profiles.

(iii) It is individually rational, i.e. each user voluntarily participates in the al-

location process and obtains a non-negative utility at all NE.

3.5 Pareto optimal power and spectrum allocation

In this section we consider power allocation in multiple frequency bands. The

goal correspondence γ : E → A is the Pareto correspondence, defined in Sec-

6 The implementation is only with respect to the transmission power profile p, i.e. every
Nash equilibrium message profile leads to a power allocation p∗ that forms an optimal
solution of Problem (PC

PSA), and every power allocation p∗ that forms an optimal solution

of Problem (PC
PSA) can be obtained through some Nash equilibrium of the game induced

by the game form (M, h).
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tion 3.2, that is implementable in NE (cf. Section 2.4.2, (Mas-Colell et al. 2005),

(Maskin n.d., Jackson 2001, Hurwicz et al. 1995)). We consider a special case

of Model (MPSA) where Rij = Cij = N ∀ i ∈ N , j ∈ B, i.e. if a user trans-

mits with positive power in some frequency band, then it creates interference

to all the users in that band. Furthermore, we consider the case where the

transmission power level pij , j ∈ B, i ∈ N , lies in a discrete (quantized) set

Qij := {φ,Q1
ij , Q

2
ij , . . . , Q

max
ij }. We call this special case of Model (MPSA) as

(M2
PSA).

Let Π denote the set of all feasible profiles p = (pij)i∈N ,j∈B). Since the sets

N ,B andQ are finite, Π is finite. Let |Π| = GN ; we represent every feasible power

profile by a number between 1 and GN . Thus, Π = {1, 2, · · · , GN}. Following

the guidelines discussed in Section 3.3, we propose a game form the components

of which are described as follows.

The message space:

The message space for user i, i ∈ N , is given by Mi ⊆ Z × R+, where Z and

R+ are the sets of integers and non-negative real numbers, respectively. Specif-

ically, a message of user i is of the form, mi = (ni, πi) where ni ∈ Z and πi ∈ R+.

The meaning of the message space is the following. The component ni repre-

sents the power profile proposed by user i; the component πi denotes the price

user i is willing to pay per unit of the power profile ni. The message ni belongs to

an extended set Z of power profiles. Every element/integer in Z−Π corresponds

to a power profile that is non-feasible.

The outcome function:

The outcome function h is given by h :M→ N×RN , and is defined as follows.

For any m := (m1,m2, · · · ,mN ) ∈M,

h(m) = h(m1,m2, · · · ,mN ) =
(
Îavg(n), t1(m), · · · , tN (m)

)
.

where Iavg(n) = Iavg(n1, n2, · · · , nN ) := d 1
N

∑N
i=1 nie (integer closest from

above to the average 1
N

∑N
i=1 ni), and Îavg(n) = Iavg(n)1{Iavg(n) ∈ Π}, where

1{A} denotes the indicator function of event A, that is, 1{A} = 1 if A is true

and 1{A} = 0, otherwise.

The component ti, i ∈ N , describes the tax (subsidy) that user i pays (receives).

The tax(subsidy) for every user is defined as follows,

ti(m) =
{
Iavg(n)

[
πi+1 − πi+2

N

]
+ (ni − ni+1)2πi − (ni+1 − ni+2)2πi+1

}
×

1 {Iavg(n) ∈ Π} (0.18)

where N + 1 and N + 2 are to be interpreted as 1 and 2, respectively.

Interpretation of the Mechanism
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As pointed out in section 3.2, the design of an efficient resource allocation

mechanism has to achieve the following goals. (i) It must induce strategic users

to voluntarily participate in the allocation process. (ii) It must induce strategic

users to follow its operational rules. (iii) It must result in weakly Pareto optimal

allocations at all equilibria of the induced game. (iv) It must result in a balanced

budget at all NE and off equilibrium.

To achieve these goals we propose the tax incentive function described by (0.18).

This function consists of three components, Ξ1,Ξ2 and Ξ3, that is,

ti(m) = Iavg(n)

[
πi+1 − πi+2

N

]
︸ ︷︷ ︸

Ξ1

+ (ni − ni+1)2πi︸ ︷︷ ︸
Ξ2

−(ni+1 − ni+2)2πi+1︸ ︷︷ ︸
Ξ3

(0.19)

The term Ξ1 specifies the amount that each user must pay for the power profile

which is determined by the mechanism. The price per unit of power, πi+1−πi+2

N ,

paid by user i, i = 1, 2, · · · , N, is not controlled by that user. The terms Ξ2 con-

sidered collectively provide an incentive to all users to propose the same power

profile. The term Ξ3 is not controlled by user i, its goal is to lead to a balanced

budget.

Properties of the game form

The characteristics of the game form described above help achieve the objectives

stated in Section 3.2 as established by the following theorem.

theorem 5 ((Kakhbod & Teneketzis 2012c)) The game form presented in

Section 3.5 possesses the following properties:

(i) It implements in NE the Pareto correspondence γ (defined in Section 3.2)

for the Model (M2
PSA).

(ii) It is budget balanced at all NE and off equilibria, i.e. the sum of the users’

taxes is zero at all message profiles.

(iii) It is individually rational, i.e. each user voluntarily participates in the al-

location process and obtains a non-negative utility at all NE.

3.6 Interpreting Nash Equilibrium

In the game theory literature, Nash equilibrium is a solution concept for games

of complete information, that is, for games where the users’ utilities are common

knowledge among them. Nash equilibrium has been used as a solution concept

in the power allocation and spectrum sharing problems we discussed in Sections

3.4 and 3.5, even though each user’s utility is its own private information. We

now discuss why NE is an appropriate solution concept for our problems.

In his original work (J. Nash 1950), Nash presented two interpretations of Nash

equilibrium. The first is “mass-action” interpretation of NE points. According

to this interpretation, it is unnecessary to assume that agents participating in

the game have full knowledge of the structure of the game, or the ability to go
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through any complex reasoning process. But it is assumed that the participants

have the ability to accumulate empirical information, obtained through repeated

plays of the game and to evaluate, using this empirical information, the relative

advantage of the various pure strategies they have at their disposal. The evalua-

tion of empirical information determines, as the number of repeated plays of the

game increases, the agents’ NE strategies. Implicit in this interpretation of NE

is the assumption that the game’s environment e is stable, that is, it does not

change before the agents reach their equilibrium strategies. Within the context

of mechanism design, Nash’s “mass-action” interpretation of NE has also been

adopted by several economists including Reichelstein and Reiter (Reichelstein &

Reiter 1988), and Groves and Ledyard (Groves & Ledyard 1987). The authors

of (Reichelstein & Reiter 1988), (Groves & Ledyard 1987) consider resource al-

location problems with strategic agents who have private information, adopt NE

as the solution concept and state: “We interpret our analysis as applying to an

unspecified (message exchange) process in which users grope to a stationary mes-

sage and in which the Nash property is a necessary condition for stationarity”

(Reichelstein and Reiter page 664 (Reichelstein & Reiter 1988)). “We do not sug-

gest that each agent knows the environment when he computes his equilibrium

strategy/message....We do suggest, however, that “complete information” Nash

equilibrium messages may be the possible equilibrium of the iterative process-

that is, stationary messages - just as the demand equal supply price is thought

of as the equilibrium of some unspecified market dynamic process” (Groves and

Ledyard, (Groves & Ledyard 1987), pp. 69-70).

Nash’s mass-action interpretation of NE has also been adopted in engineer-

ing publications where mechanism design ideas are used to solve decentral-

ized resource allocation problems (see (Stoenescu & Ledyard 2006, Sharma &

Teneketzis 2011, Kakhbod & Teneketzis 2012b, Kakhbod & Teneketzis 2012c,

Kakhbod & Teneketzis 2012a, Sharma & Teneketzis 2012, Kash & Parkes 2010)).

Our interpretation of NE is similar to that of (Reichelstein & Reiter 1988),(Groves

& Ledyard 1987). The mechanisms proposed in Sections 3.4 and 3.5 are in equilib-

rium form like the mechanism in (Reichelstein & Reiter 1988). Assumptions A2

and A3, appearing in Section 3.1, ensure that the environment of the problems

discussed in Sections 3.4 and 3.5 is stable (as pointed out earlier, the stabil-

ity of the problem’s environment is an implicit requirement in the mass-action

interpretation of NE).

In the second interpretation of NE, it is assumed that the agents know the full

structure of the game in order to be able to predict the equilibrium strategies.

This interpretation of NE is rationalistic and idealizing.

3.7 Other approaches to power allocation and spectrum sharing

In addition to the implementation theory approach presented in this section,

there are other approaches to power allocation and spectrum sharing problems
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based either on other concepts of mechanism design or on game theory. We briefly

describe these approaches below.

Alternative approaches based on mechanism design (e.g. auctions, VCG mech-

anisms) have been used to investigate spectrum and power allocation problems.

It is well known that Federal Communications Commission (FCC) has used

auctions to award spectrum since 1994 (Bajari & Yeo 2009). Even at scales

much smaller than that of FCC auctions, auctions have been studied for re-

source allocation in wireless networks. Examples of first-price and second-price

sealed-bid auctions for spectrum allocation can be found in (Chen, Yu, Zhang,

Chen & Qiu 2008). These mechanisms are based on non monetary payments;

in particular the price to pay for the spectrum opportunities is the spectrum

sensing effort. In (Huang, Berry & Honig 2004, Huang, Berry & Honig 2006)

VCG based auctions/mechanisms are presented for power and SINR (signal to

interference and noise ratio) allocation subject to “an interference temperature

constraint”. These mechanisms maximize social welfare at truth-telling equilib-

ria. In the mechanisms proposed in (Zhou, Gandhi, Suri & Zheng 2008) and

(Jia, Zhang, Zhang & Liu 2009a), social welfare is traded for low complexity

using greedy algorithms while maintaining that truth-telling is still a dominant

strategy. In (Zhou & Zheng 2009) double auctions have been proposed for selling

spectrum in the presence of multiple competitive sellers. These auctions result

in truth-telling equilibria while enabling spectrum reuse to improve spectrum

utilization. In (Fattahi, Fu, Van Der Schaar & Paganini 2007), a spectrum allo-

cation mechanism for multimedia transmission is presented. In this work users’

and system performance are quantified when wireless stations employ different

cross-layer strategies, and they are compared with optimal global performance.

In (Wang, Wu, Ji, Liu & Clancy 2008) a Bayesian mechanism design approach

is explored for spectrum sharing based on users’ channel state information.

A common feature of all of above approaches is that they are all based on

direct mechanisms where the message space of the users is the same as their

environment space. In contrast the approach presented in this section focussed

on indirect mechanisms where the dimension of the users’ message space is much

smaller than that of their environment space. Furthermore, most of the above

auction-based works investigate truthful implementation where social welfare is

maximized at the truthful equilibrium without any guarantees about non truthful

equilibria. The presentation in this section aimed at introducing a contrasting

Nash implementation approach which guarantees either maximization of social

welfare (Section 3.4) or attainment of Pareto optimal allocations (Section 3.5)

at all Nash equilibria.

In contrast to the mechanism design approaches which construct a game form

to achieve certain desirable objectives, game theoretic approaches investigate

the effects of users’ strategic behavior in various spectrum sharing models. Most

of the game theoretic works on spectrum sharing have investigated scenarios

with non-cooperative selfish users, and with NE as a solution concept. In (Neel,

Buehrer, Reed & Gilles 2002, Bloem, Alpcan & Basar 2007, Tekin, Liu, South-
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well, Huang & Ahmad n.d.) the spectrum sharing game is modeled as a non-

cooperative potential game (potential games were first studied in (Monderer &

Shapley 1996)) where all network users improve their strategies sequentially and

converge to a Nash equilibrium in finite number of steps. Other references on

potential games for spectrum sharing can be found in (Wang, Wu & Liu 2010).

Spectrum sharing problems have also been investigated within the context of

evolutionary game theory (Wang, Liu & Clancy 2010, Perez-Guirao, Luebben,

Kaiser & Jobmann 2008). In (Wang, Liu & Clancy 2010) an evolutionary game

model for cooperative spectrum sensing is proposed, and the behavior dynamics

of the secondary users are studied using replicator dynamic equations. Another

evolutionary game theoretic approach to cognitive radio networking is consid-

ered in (Perez-Guirao et al. 2008) where sensor nodes act as players and in-

teract in randomly drawn pairs in an impulse radio Ultra Wide Band (UWB)

sensor network. It is shown that through the interaction-learning process, a cer-

tain Quality of Service (QoS) can be guaranteed. In (Saraydar, Mandayam &

Goodman 2002, Altman & Altman 2003, Huang et al. 2006) super-modular

games have been used to design various power control algorithms arising in

wireless networks. A key feature of super-modular games is strategic comple-

mentarity– if a player chooses a higher action, the others want to do the same.

Strategic complementarity ensures that best response algorithms converge to

NE.

A detailed discussion on the above approaches along with additional references

appear in (Liu & Wang 2011).

4 Revenue maximization

The previous sections considered power allocation and spectrum sharing prob-

lems where the goal correspondence is either the social welfare maximizing corre-

spondence or the Pareto correspondence. However, if the owner of the spectrum

resource is a selfish agent, it may wish to find power and spectrum allocations

for the spectrum users that maximize its revenue. In this section, we look at the

problem of revenue maximization. We will consider a system model less general

than those discussed earlier. In particular, we will restrict ourselves to Bayesian

models with utility functions that have a linear dependence on the users’ types.

4.1 The Model

The general setup for power and spectrum allocation problems in this section

consists of:

• A Primary Spectrum User: A primary owner of the spectrum who wants to

share the channel with secondary users and collect revenue from the secondary

users. Depending on the operational constraints, the primary user may need



4 Revenue maximization 29

to allocate distinct portions of spectrum to secondary users or it may need to

decide transmission power levels for the secondary users. We will refer to both

spectrum and power as the allocated resource.

• Secondary Users: There are N secondary users. The secondary users use

the allocated spectrum/power for their communication purposes. We assume

that each secondary user’s utility from an allocation x -where x may describe

the allocated portions of the spectrum to users or assigned power levels to

users - is characterized by its type θi. For each user i, θi ∈ Θi := [θmini , θmaxi ]

is a random variable which is user i’s private information, that is, only user i

knows the true value of its type. Further, each user’s type is independent of

other users’ types. If user i has type θi, its utility from the allocation x and

paying ti amount of money is given as:

ui(x, ti, θi) = θiψi(x)− ti (0.20)

The sets Θi and the function ψi(·) are common knowledge among the pri-

mary and secondary users. We define θ := (θ1, θ2, . . . , θN ) and Θ :=

×Ni=1[θmini , θmaxi ].

• The Probability Distributions: All users have a strictly positive prior prob-

ability density function fi(·) on θi, with Fi(·) as the corresponding cumulative

distribution function. These probability densities are common knowledge. We

define f(θ) :=
∏N
i=1 fi(θi) and f−i(θ−i) :=

∏
j 6=i fj(θj). Because of indepen-

dence of users’ types the joint probability density function of all types is given

by f(θ) and the joint probability density function of types of all users except

the ith user is given by f−i(θ−i).

The primary user wishes to allocate the spectrum/power in order to maximize

the sum of payments
∑N
i=1 ti from secondary users.

In order to view the primary spectrum owner’s problem from the perspective of

implementation theory, we will describe it in terms of implementation theoretic

concepts discussed in Section 2:

1 The primary spectrum owner is the mechanism designer who has to design a

mechanism/game form that the secondary users will participate in.

2 Since the secondary users’ utilities are completely characterized by their types,

the environment for this problem consists only of the secondary user’s types.

Thus, E = Θ.

3 The outcome space A is the product space of feasible resource allocations and

the payments for the secondary users. Thus, A = S × RN , where S ⊂ RN is

the space of feasible resource allocations.

4 The goal correspondence γ : Θ 7→ S × RN that the primary user would like

to implement can be described as follows: for each θ ∈ Θ, γ(θ) is the set of

solutions of the following optimization problem:
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max
x∈S,ti

N∑
i=1

ti

subject to θiψi(x) ≥ ti
(0.21)

5 Given that the secondary users only have probabilistic information about other

users, we will employ the solution concept of Bayesian Nash implementation.

Further, we will restrict to direct revelation mechanisms and use the less strin-

gent requirement of truthful implementation. That is, we will only require that

truthful revelation of the users’ types is a Bayesian Nash equilibrium of the

game and that the resulting allocations and payments at the truthful equilib-

rium coincide with the goal correspondence γ.

4.2 Impossibility Result from Implementation Theory

As discussed in Section 2, a necessary condition for a goal correspondence to

be truthfully implementable in Bayesian Nash equilibrium is Bayesian incentive

compatibility of the goal correspondence. However, it can be shown that the

above correspondence γ is not Bayesian incentive compatible. Under γ, each

user should be charged a tax equal to θiψi(x) and hence user i’s net utility,

θiψ(x)− ti = 0. If the user i reports its type to be θ′i < θi, then it will be charge

a tax of θ′iψi(x) and hence user i’s net utility, θiψ(x) − ti > 0. Therefore, γ is

not incentive compatible. Hence, no direct revelation mechanism can implement

the above goal correspondence. Further, this negative result is not restricted to

direct mechanisms. In absence of incentive compatibility of γ, no game form can

achieve Bayesian Nash implementation of γ.

In view of the above impossibility result, the primary spectrum owner cannot

hope to implement the correspondence γ by using a direct revelation mecha-

nism. The next pertinent question then is the following: What is the maximum

expected revenue that the primary spectrum owner can achieve using a direct

revelation mechanism and what is the exact structure of an expected revenue

maximizing mechanism? In the rest of this section, we will present an answer

to this question for two kinds of resource allocation scenarios that the primary

owner may face.

4.3 Purely Spectrum Allocation Problem

In this Section, we consider the case where a primary spectrum user (seller) who

owns ξ frequency bands wants to allocate them to N potential secondary users

(buyers). We assume that all frequency bands are identical for the purposes of

communication, that is, they provide the same bandwidth of WHz and, for each

user i, the channel gain in all frequency bands is hii. If user i is allocated xi
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number of frequency bands, where xi ∈ {0, 1, 2, . . . , ξ}, then it can achieve a rate

ψi(xi) = Wxi log
(

1 +
hiiP

N0Wxi

)
, (0.22)

where P is the transmission power and N0 is noise spectral density. We assume

that ψi(·) is common knowledge among the primary and secondary users.

Note that ψi(0) := 0 and ψi(·) has non-increasing increments, that is, ψi(j +

1)−ψi(j) ≤ ψi(j)−ψi(j−1), for j = 1, 2, . . . , ξ−1. The non-increasing increment

property of ψi(·) will be useful in later analysis.

If user i has type θi, its utility from the spectrum allocation and paying ti
amount of money is given as:

ui(xi, ti, θi) = θiψi(xi)− ti (0.23)

We can interpret θi as user i’s “willingness to pay” - it is the maximum price per

unit of rate that the user is willing to pay.

We now describe the class of mechanisms (M, h) we will consider. Since we

will consider only direct revelation mechanisms, the message space for the ith

user will simply be the set of its possible types, that is, Mi = Θi. The outcome

space is the product space of feasible resource allocations and the payments for

the secondary users. Thus, the outcome space is S × RN , where S is the set

of all non-negative integer valued N dimensional vectors x = (x1, . . . , xN ) with∑N
i=1 xi ≤ ξ. Consequently, the outcome function consists of an allocation rule

q = (q1, q2, · · · , qN )

qi : Θ→ {0, 1, 2, . . . , ξ} for i = 1, 2, · · · , N, (0.24)

such that

N∑
i=1

qi(·) ≤ ξ, (0.25)

and a payment rule t = (t1, t2, · · · , tN ),

ti : Θ→ R for i = 1, 2, · · · , N. (0.26)

The primary user asks the secondary users to report their types. If the type

vector reported is θ, qi(θ) is the amount of spectrum given to user i and ti(θ) is

the payment charged to user i.

Once the mechanism (Θ, q, t) has been announced, it induces a Bayesian game

among the users. Each user observes its own type but has only a probability

distribution on other players’ types. A user can report any type (not necessarily

its true type) if it expects a higher utility by mis-reporting.

4.3.1 Bayesian Incentive Compatibility and Voluntary Participation
1) Bayesian Incentive Compatibility: A mechanism is Bayesian incentive com-

patible if truth-telling is an equilibrium of the Bayesian game induced by the

mechanism. That is, each user prefers truthful reporting to any other strategy
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given that all other users are truthful. Thus, the mechanism (q, t) is incentive

compatible if for each i ∈ N and θi ∈ Θi, we have

Eθ−i
[θiψi(qi(θ))− ti(θ)] ≥ Eθ−i

[θiψi(qi(ri, θ−i))− ti(ri, θ−i)] ∀ ri ∈ Θi. (0.27)

2) Voluntary Participation: We will impose a participation constraint that states

that each user, after learning its type, expects to get a non-negative utility by

participating in the mechanism. That is, for each i ∈ N and θi ∈ Θi, we have

Eθ−i
[θiψi(qi(θ))− ti(θ)] ≥ 0. (0.28)

4.3.2 The Revenue Maximization Problem
We have the following problem for the seller.

problem 1 The sellers’s optimization problem is to choose a feasible mecha-

nism (q, t) that satisfies equations (0.27) and (0.28) and maximizes its expected

revenue given as:

Eθ

{ N∑
i=1

ti(θ)
}

4.3.3 Characterizing Incentive Compatibility and Voluntary
Participation
In order to solve the revenue maximization problem, we need a characterization

of incentive compatibility and voluntary participation. Let (q, t) be any feasible

mechanism selected by the seller. In order to characterize incentive compatibility

and voluntary participation for user i, we will adopt user i’s perspective. We

define the following functions for user i:

definition 5 Given a mechanism (q, t), we define for each θi, ri ∈ Θi,

Qi(ri) := Eθ−i
[ψi(qi(ri, θ−i))], (0.29)

Ti(ri) := Eθ−i [ti(ri, θ−i)], (0.30)

Ui(θi, ri) := θiQi(ri)− Ti(ri). (0.31)

Qi(ri) is the expected rate under the given mechanism that user i will get if

it reports ri while all other users report truthfully. Note that the expectation

is over the type of all other users θ−i. Similarly, Ti(ri) is the expected payment

that user i will pay when it reports ri and all other users report truthfully. Also,

Ui(θi, ri) is the expected utility for user i if its type is θi and it reports ri. We

can re-write the incentive compatibility and voluntary participation constraints

for user i in terms of the functions defined above.

Bayesian Incentive Compatibility for user i:

Ui(θi, θi) ≥ Ui(θi, ri), θi, ri ∈ Θi

⇐⇒ θiQi(θi)− Ti(θi) ≥ θiQi(ri)− Ti(ri), θi, ri ∈ Θi
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Voluntary Participation for user i:

Ui(θi, θi) ≥ 0, θi ∈ Θi ⇐⇒ θiQi(θi)− Ti(θi) ≥ 0, θi ∈ Θi

With the above definitions of Qi(·) and Ti(·), a user’s utility (θiQi(·)− Ti(·)) is

of the same form as in the optimal auction problem studied in (Myerson 1981).

This allows us to find the following characterization of incentive compatible and

voluntary participation using arguments similar to those in (Myerson 1981).

theorem 6 A mechanism (q, t) satisfies Bayesian incentive compatibility and

voluntary participation conditions if and only if Qi(ri) is non-decreasing in ri
and

Ti(ri) = Ki + riQi(ri)−
∫ ri

θmin
i

Qi(s)ds, (0.32)

where Ki = (Ti(θ
min
i )− θmini Qi(θ

min
i )) ≤ 0.

4.3.4 An Equivalent Optimization Problem
The primary user’s objective can now be written as:

N∑
i=1

Eθ{ti(θ)} =

N∑
i=1

Eθi [Eθ−i
t(θi, θ−i)] =

N∑
i=1

Eθi [Ti(θi)] (0.33)

Further, because of Theorem 6, we can write each term in the summation in

(0.33) as

Eθi [Ti(θi)] = Eθi [Ki + θiQi(θi)−
∫ θi

θmin
i

Qi(s)ds]

= Ki +

∫ θmax
i

θmin
i

[
θiQi(θi)−

∫ θi

θmin
i

Qi(s)ds

]
fi(θi)dθi (0.34)

The expression in (0.34) can be further simplified to

Ki +

∫
Θ

[
ψi(qi(θ))

(
θi −

1− Fi(θi)
fi(θi)

)]
f(θ)dθ (0.35)

In the economics literature the term
(
θi − 1−Fi(θi)

fi(θi)

)
appearing in the integral in

(0.35) is called virtual type.

Thus, the total expected revenue is

N∑
i=1

Ki +

N∑
i=1

∫
Θ

[
ψi(qi(θ))

(
θi −

1− Fi(θi)
fi(θi)

)]
f(θ)dθ (0.36)

A feasible mechanism (q, t) for which Ki = 0, i ∈ N (recall that Ki ≤ 0) and

which maximizes

N∑
i=1

∫
Θ

[
ψi(qi(θ))

(
θi −

1− Fi(θi)
fi(θi)

)]
f(θ)dθ (0.37)
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while satisfying the conditions of Theorem 6 will be the desired revenue-maximizing

mechanism.

4.3.5 A Regularity Condition and A Candidate Solution
We impose the following assumption on the virtual type of each user which is

often called regularity condition.

assumption 10 For each user i,
(
θi − 1−Fi(θi)

fi(θi)

)
is increasing in θi.

This assumption is satisfied if fi(θ)
1−Fi(θ)

is increasing in θ (that is, fi has an

increasing hazard rate). For instance, the uniform distribution satisfies the as-

sumption.

We can now propose a candidate solution for the seller.

theorem 7 For each θ ∈ Θ, let qi(θ), i = 1, 2, . . . , N be the solution of the

following optimization problem:

arg max
x

N∑
i=1

{
ψi(xi)

(
θi −

1− Fi(θi)
fi(θi)

)}
subject to xi ∈ {0, 1, . . . , ξ} (0.38)

N∑
i=1

xi ≤ ξ. (0.39)

and let ti(θ), i = 1, 2, . . . , N be given as:

ti(θ) = θiψi(qi(θ))−
∫ θi

θmin
i

ψi(qi(s, θ−i))ds. (0.40)

Then, (q, t) maximizes the seller’s expected revenue while satisfying the Bayesian

incentive compatibility and voluntary participation conditions.

4.3.6 Solving the Optimization Problem of Theorem 7
The primary spectrum user’s optimization problem in Theorem 7 has a simple

intuitive solution that can be described as follows:

• Firstly, no frequency bands should be allocated to user i if its virtual type is

less than 0. Since we assumed that the virtual type is an increasing function

of θi, there is a threshold value of θi below which the virtual type is negative.

We denote this threshold value by θthri . For example, in case of θi uniformly

distributed over [0, 1], the virtual type is negative if and only if θi < 1/2. Thus,

for each user, there is a minimum threshold that the type must exceed to get

any frequency band. If all users report a type less than their threshold values,

no frequency band is allocated to any user.

• If only 1 user reports a type above its threshold, it is clear that all frequency

bands should be allocated to that user.
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• Now assume that at least two users report types above their thresholds. We

now have to solve an optimization problem. We can write the objective function

as
N∑
i=1

ψi(xi)wi,

where

wi =

(
θi −

1− Fi(θi)
fi(θi)

)
Further, the objective function can be written as

N∑
i=1

wi

xi∑
j=1

{ψi(j)− ψi(j − 1)}

=

N∑
i=1

xi∑
j=1

wi{ψi(j)− ψi(j − 1)} (0.41)

wi(ψi(j)−ψi(j− 1)) can be thought of as “virtual marginal utility” of user

i if it already has j − 1 frequency bands. If we consider the set of all possible

virtual marginal utilities corresponding to the reported types:

M = {wi(ψi(j)− ψi(j − 1)), i = 1, 2, . . . , N ; j = 1, 2, . . . , ξ},

then each term in equation (0.41) is a distinct term from the set M. Moreover,

there are no more than ξ terms in (0.41) since
∑N
i=1 xi ≤ ξ. This means

the objective function can be no larger than the sum of ξ largest terms of

the set M. There is a clear way of choosing allocations so that the objective

function is equal to the sum of ξ largest terms of M: Give the first channel to

user corresponding to the largest term in M, the second channel to the user

corresponding to the second largest term in M and so on. Thus, we have a

simple description of the optimal solution of the primary user’s optimization

problem: the frequency bands are allocated sequentially such that at each stage

the user with the highest virtual marginal utility gets the next channel.

The tax function is given by the equation:

ti(θ) = θiψi(qi(θ))−
∫ θi

θmin
i

ψi(qi(s, θ−i))ds. (0.42)

The tax can also be described in an intuitive way:

• Suppose that for a given profile of types, user i does not get any frequency

bands, that is, qi(θ) = 0. Then, it can be shown that qi(s, θ−i) = 0, for all

s < θi which implies
∫ θi
θmin
i

ψi(qi(s, θ−i))ds =
∫ θi
θmin
i

ψi(0)ds = 0. Thus, if a user

i does not get any frequency band, its tax is 0.
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• Suppose user i is the only user whose type exceeds its threshold. Then, user i

get all the bands. Then,

ti(θ) = θiψi(ξ)−
∫ θi

θmin
i

ψi(qi(s, θ−i))ds

= θiψi(ξ)−
{∫ θthr

i

θmin
i

ψi(qi(s, θ−i))ds+

∫ θi

θthr
i

ψi(qi(s, θ−i))ds

}

= θiψi(ξ)−
{∫ θthr

i

θmin
i

ψi(0)ds+

∫ θi

θthr
i

ψi(ξ)ds

}
= θiψi(ξ)−

{
0 + θiψi(ξ)− θthri ψi(ξ)

}
= θthri ψi(ξ) (0.43)

Thus, when all the other users have 0 allocations, the price per unit rate

that the user i pays is the minimum type that would have given it all the

bands.

• Finally, consider the case when more than 1 user has a non-zero allocation.

Let M−i be the set of virtual marginal utilities of all users except i.

M−i = {wk(ψk(j)− ψk(j − 1)), k = 1, 2, . . . , N, k 6= i; j = 1, 2, . . . , ξ},

and Mi be the set of virtual marginal utilities of user i.

Mi = {wi(ψi(j)− ψi(j − 1)), j = 1, 2, . . . , ξ},

Given the set M−i, we can define

ρji := min{θi : exactly j largest terms of Mi exceed the (ξ − j + 1)th

largest term of M−i}

Then, using arguments similar to those in earlier cases, we can show that if

user i gets xi bands, the total tax paid by user i is
∑xi

j=1 ρ
j
i (ψi(j)−ψi(j−1)).

For example, if xi = 1,

ti(θ) = θiψi(1)−
∫ θi

θmin
i

ψi(qi(s, θ−i))ds

= θiψi(1)−
{∫ ρ1i

θmin
i

ψi(qi(s, θ−i))ds+

∫ θi

ρ1i

ψi(qi(s, θ−i))ds

}

= θiψi(1)−
{∫ ρ1i

θmin
i

ψi(0)ds+

∫ θi

ρ1i

ψi(1)ds

}
= θiψi(1)−

{
0 + θiψi(1)− ρ1

iψi(1)
}

= ρ1
iψi(1) (0.44)
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If xi = 2,

ti(θ) = θiψi(2)−
∫ θi

θmin
i

ψi(qi(s, θ−i))ds

= θiψi(2)−
{∫ ρ1i

θmin
i

ψi(qi(s, θ−i))ds+

∫ ρ2i

ρ1i

ψi(qi(s, θ−i))ds+

∫ θi

ρ2i

ψi(qi(s, θ−i))ds

}
= θiψi(2)−

{
0 + ρ2

iψi(1)− ρ1
iψi(1) + θiψi(2)− r2

iψi(2)
}

= ρ2
i (ψi(2)− ψi(1)) + ρ1

i (ψi(1)− ψi(0))

=

2∑
j=1

ρji (ψi(j)− ψi(j − 1)) (0.45)

4.4 Purely Power Allocation Problem

The above approach for finding revenue maximizing allocations can also be ap-

plied to the situation where the primary user wishes to allocate transmission

power levels to the secondary users. In this setup, all users can transmit over the

entire spectrum at their assigned power levels. This creates interference among

secondary users as well as among the secondary and primary users. Assuming

that the primary user can tolerate interference from the secondary users as long

as the total transmission power of all secondary users is below P , the primary

user’s problem is to design an allocation and payment mechanism to maximize

its expected revenue. It is possible to extend the analysis of the previous section

to characterize the optimal mechanism for this case as well. However, the pres-

ence of interference among users implies that optimal allocations are solution of

a non-convex problem and thus more difficult to compute. We refer the reader

to (Kakhbod, Nayyar & Teneketzis 2011) for details.

4.5 Other Models and Approaches on Revenue Maximization

For the problem of expected revenue maximization for the primary user, we have

taken the approach used in (Myerson 1981) for a single object auction. According

to this approach, once the primary user announces its allocation and payment

rule, the secondary users decide whether to participate in the mechanism and if

they do participate, they play a Bayesian game. Such an approach implies that

we must find revenue-maximizing mechanism within the class of mechanisms that

satisfy Bayesian incentive compatibility and voluntary participation constraints.

A similar viewpoint has been adopted in (Jia, Zhang, Zhang & Liu 2009b) for

a related problem of finding revenue maximizing spectrum allocations with in-

terference constraints where each user either gets all the channels it asked for or

gets nothing. The work in (Ledyard 2007) provides a revenue-maximizing auc-

tion where each user’s utility depends only on whether it is allocated a particular

subset of the goods (channels) being auctioned. Once again, the auction is re-



38

quired to satisfy Bayesian incentive compatibility and voluntary participation

constraints.

Several other works have adopted a conceptually different approach by looking

at the problem of maximizing revenue without dealing with incentive compatibil-

ity and voluntary participation issues. For example, in (Kasbekar & Sarkar 2010),

it is assumed that each user submits the amount it is willing to pay for each pos-

sible spectrum allocation. The primary user is then faced with a combinatorial

optimization problem to find allocations that maximize the sum of payments.

Similarly, in (Gandhi, Buragohain, Cao, Zheng & Suri 2008), the authors con-

sider the situation where a price - demand curve is given for each user. The goal

there is to solve a combinatorial optimization problem to maximize the revenue

under some interference constraints.

5 Conclusion and reflections

We have presented an implementation theory approach to power allocation and

spectrum sharing problems that arise in wireless networks. This approach has

the following desirable features: (1) It allows us to know when a decentralized

resource allocation problem with strategic users admits an optimal solution,

(2) In the cases where the decentralized allocation problem admits an optimal

solution, it provides guidelines for the design of game forms that achieve optimal

allocations (such as those in Section 3), (3) In the cases where the decentralized

allocation problem does not admit an optimal solution, it suggests alternative

criteria (such as those in Section 4) for the design of game forms that result in

satisfactory allocations.

The game forms presented in Section 3 ensure that the desired allocations are

achieved at equilibria without specifying how an equilibrium is reached. That is,

the game forms in Section 3 do not include an iterative/tâtonnement process that

determines how the NE of the game induced by the game form are computed by

the users. The lack of such iterative processes for decentralized resource alloca-

tion problems where strategic users possess private information is a major open

problem in implementation theory. The major difficulty in constructing itera-

tive algorithms that guarantee convergence to NE is the following: Consider an

iterative algorithm for a decentralized allocation problem where strategic users

possess private information. At each stage of the algorithm each user updates

its message. A user, say user i, can report any message it deems beneficial to

itself and other users may not be able to check whether or not user i is following

the rules of the iterative algorithm. Consequently, the algorithm must provide

incentives to the users to follow the rules at each stage of the algorithm. Such

a provision of incentives must be based on all the information available at the

current stage and must, in general, take the whole future into account. Algo-

rithms with the above features are currently unavailable. The only exception is
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the work on virtual subgame perfect equilibrium implementation ((Osborne &

Rubinstein 1994, Chapter 10)).

Game theoretic approaches for decentralized resource allocation problems where

the strategic users do not possess private information have provided algorithms

for the computation of equilibrium (as evidenced by the discussion in section

3.7). However, most of the games presented in the literature so far possess mul-

tiple equilibria and only a subset of these equilibria result in allocations that are

optimal with respect to a pre-specified performance metric.

In this chapter, we have investigated static decentralized resource allocations

problems. Dynamic decentralized resource allocation problems where the num-

ber of users, or the users’ utilities or the set of users with whom a particular user

interacts changes over time are a class of important problems. Currently, very

little is known about the nature of solution of these problems. Implementation

theory has not been successful in addressing dynamic decentralized resource allo-

cation problems. So far, work on dynamic mechanism design has addressed only

truthful implementation in NE (Bergemann & Valimaki 2010). Thus, the system-

atic design of dynamic power allocation and spectrum sharing mechanisms that

implement social choice correspondences such as the welfare maximizing corre-

spondence while satisfying individual rationality and budget balance conditions

is currently an important open problem.
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