
Abstract:
The vision of pervasive computing is one of

invisible computers interacting with humans in all
aspects of their lives. These invisible computers
can be embedded in anything from specialized por-
table devices to articles of clothing. To make this
vision a reality, efficient, convenient, and effective
human communication with computers must be
provided. Keyboards and mice are effective in a
desktop environment, but these are clumsy, awk-
ward, and not well suited for mobile/hidden com-
puters. Personal digital assistants and cellular
telephones have added primitive utterance recogni-
tion to improve communication, but the interaction
efficiency is several orders of magnitude less than
that of normal human interaction. Software tech-
nologies do exist to support continuous, accurate
speech recognition. The problem lies on the hard-
ware side. The speech rate supported by even the
most high-end desktop microprocessors is
extremely limited due the processing requirements
of the software. The performance of processors that
are more suitable in a portable environment are
even worse. In this paper, we analyze a number of
parameters affecting the potential performance of
speech recognition software, with particular
emphasis on the demands made of the underlying
memory system. We observe that the majority of
‘poorly behaved’ memory accesses are directed to
the knowledge based traversed during the search
phases of speech recognition, suggesting potential
benefit from memory space partitioning.

Section 1: Introduction
Speech recognition software technology has

emerged in recent years to present a viable solution
to the problems of human-computer interaction [1].
Ideally, such technology would be embedded into
all invisible and portable computers to enable effi-
cient human-computer communication. Unfortu-
nately, computing platforms ideally situated to take
advantage of speech recognition and other natural
I/O capabilities, such as PDAs and other hand held

computing devices, simply do not have the mem-
ory systems and processing power to achieve a rea-
sonable trade-off between interaction rate and
recognition accuracy. Recent studies have shown
that the computational demands of current genera-
tion speech recognition technology are enough to
tax even high-end desktop processors [1,6]. Obvi-
ously, high-end desktop processors do not make
sense in the portable domain due to their high
power consumption and large size. Thus, we
observe a performance gap of about 20x between
the current generation of processors usable in por-
table environments and the computation demands
of speech recognition. Further, it is reasonable to
surmise that demands for performance will con-
tinue to grow with increased speech recognition
accuracy and robustness.

In this paper, we evaluate the memory behav-
ior of a standard speech recognition infrastructure.
The following section will provide some introduc-
tory details on the SPHINX-II speech recognition
engine from CMU, as well as a brief discussion on
speech recognition in general. Section 3 covers our
analysis of memory behavior of this recognition
engine. Section 4 will present some insight on
methods of dealing with the memory bottleneck
presented by this application space, and section 5
will provide some summarizing and concluding
remarks.

Section 2: Background and Related
Work

A number of previous works have investigated
the general impact of hardware architectures on
speech recognition systems [1,5,6]. We attempt to
expand on these works by focusing on the memory
demands of speech recognition algorithms and
exploring this behavior in further detail. Before
getting into the actual evaluation, we present some
details on the CMU-SPHINX speech recognition
software, and on speech recognition algorithms in
general.
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2.1: CMU-Sphinx
The analysis presented in this paper is per-

formed through use of the Sphinx-II speech recog-
nition system from CMU [2,3]. Sphinx provides an
infrastructure for performing large-vocabulary
speaker-independent continuous speech recogni-
tion from pre-recorded input samples, and is capa-
ble of achieving 71-86% recognition accuracies.
Internally, Sphinx operates on hidden-markov
model representations of language model and dic-
tionary data, utilizing algorithms that are common
in this domain[8]. As such, Sphinx represents a
state of the art research platform for speaker inde-
pendent speech recognition, and provides an excel-
lent test base by which to analyze behavior.

For the purposes of this work, we recognize
three distinct phases of Sphinx operation: initial-
ization, feature extraction, and search. The initial-
ization phase involves a one time load of
knowledge base (KB) data, as well as initialization
of various dynamic data structures used during the
later search process. While this code represents a
notable portion of execution time in the sample tri-
als run in this study, we contend that it would be
insignificant (or pre-loaded) in any embedded sys-
tem. Thus, we discount the effects of this phase in
our statistics. The feature extraction phase pro-
cesses the target sound, dividing the input into
frames and producing a set of feature vectors that
constitute the base data for the recognition phase of
the algorithm. Once again, the operations per-
formed in this phase could be passed off to existing
hardware solutions (such as DSPs), and are thus

discounted in our evaluation.1 This leaves the back
end search phase, which constitutes the majority of
the steady state running time of the program. The
first step of the search phase is a tree based beam
search. This is followed by an optional flat lexical
search, and finally an optional best path search that
traverses the nodes (and word solutions) activated
by the previous searches and selects the best solu-
tion path.

2.2: Speech Recognition Technology

Previous research has shown that the computa-
tional behavior of speech recognition algorithms

runs in many ways contrary to that demonstrated
by most software applications [1,5,6]. For exam-
ple, recognition is generally achieved through
extensive search of a large, in-memory knowledge
base consisting of language models, dictionaries,
phonetic information, and the like. This search is
strongly dependent on the input, and often exhibits
very poor locality and frequent conditional evalua-
tions, resulting in poor cache performance and low
instruction level parallelism. While data placement
techniques and future advances in search algo-
rithms and knowledge representation techniques
will help mitigate this problem, the features lead-
ing to poor memory system performance are inher-
ent to this application space and will continue to
hurt performance for the forseeable future.

Thus, we conclude that the current generation
of general purpose processors, particularly those
for embedded systems, are not designed to meet
the needs of applications in this domain. Current
memory systems depend on a very high degree of
locality to addresses in a relatively confined mem-
ory space in order to be effective. Current high end
processors go to great lengths to attempt to exploit
instruction level parallelism, but have no real facil-
ities by which to exploit the higher-level parallel-
ism often present in recognition algorithms. While
this work primarily focuses on memory system
performance, we conclude with a more general dis-
cussion of possible techniques to improve overall
algorithm performance.

Section 3: Performance Analysis
The analysis presented in this paper is gener-

ated by use of the SimpleScalar toolset, focusing
on memory system performance, and utilizing the
SimpleScalar front-end to the cheetah cache simu-
lation library to explore a wide variety of configu-
rations [9]. All studies presented are based on the
forward tree beam search algorithm, which is a
standard technique for hidden markov model
searches. Analysis of the other search options
available in SPHINX-II show very similar memory
system behavior (in terms of cache miss rates),
with the flat lexical search performing nearly iden-
tically, and the bestpath search showing similar
patterns with a lower ratio of cache misses. As the
bestpath search traverses only a subset of the1. characterization of front end processing can

be found in cited works [1]



knowledge base (as identified by prior search
phases), this result is entirely expected. The speech
recognition engine was compiled for the ARM
ISA, allowing for raw performance computations
that are tailored to represent a standard embedded
system configuration. We employ a baseline con-
figuration consisting of 32-byte cache blocks for
all cache configurations, a 11447 word dictionary
file, (representing about 35 MB of runtime mem-
ory) and default search parameters to SPHINX-II
in this study. Evaluations are performed by manip-
ulating individual parameters from this base
model. Figure 3.0 shows instruction per miss and
cache miss ratios for a number of L1 cache config-
urations on the baseline system. We observe in this
result the relatively high miss rate characteristic of
speech recognition software, and described in pre-
vious works. As point of comparison, the gcc
benchmark of spec2000 demonstrates a miss rate
of approximately 780 instructions per miss for a
cache configuration similar to the 32KB data point.
[11].

We also recognize, however, that this particu-
lar selection of metrics does not really consider the
fact that the speech recognition workloads natu-
rally specify a more intuitive unit of ‘work’ than
that of most software applications. For example, in
order to be useful, the system must ideally achieve
a rate of recognition that matches the rate of input
sounds such as syllables or words, typically 150

words per minute for non-excited speech. We dis-
covered that without considering this inherent unit
of work, the results of experimental trials were
often misleading. Consider the effect of increasing
the accuracy of the search process. This has a
direct result of increasing the number of instruc-
tions executed as well as the number of memory
references and corresponding cache misses. As it
turns out, the rate of increase of instructions and
memory references is often comparable to or
slightly higher than the rate of cache misses, lead-
ing to a result of unchanging or slightly decreased
cache miss ratio for increased search accuracy.
This would lead one to believe that higher accuracy
searches do not have a substantial impact on over-
all performance, clearly an inappropriate conclu-
sion. Thus, in order to present a more accurate
picture of program performance, we present all of
our results as metrics relative to the average dura-
tion of time of a spoken syllable (e.g. ‘misses per
syllable’). This formulation is chosen to provide
both intuitive human understanding (syllables
being much more intuitive than the ‘frame’
timeslices used internally by the software) and rel-
atively similar unit sizes (variation in length of syl-
lables is clearly much smaller than variations
across entire words). We begin our evaluation by
investigating the effects of a more comprehensive
knowledge base.

Figure 3.0: Average instructions per miss and cache miss rates of beam search on baseline configuration.
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3.1: Knowledge Base Size
We consider cache miss rates for an array of

knowledge base sizes. We expect larger knowledge
bases (larger dictionaries coupled with more com-
prehensive language models, generated from larger
sample data) would result in larger memory struc-
tures, leading directly to a higher cache miss ratio.
The results are presented in figure 3.1 and demon-
strate an interesting pattern. While we do see an
increase in the number of cache misses per syllabic
time unit, the increase is not at all comparable to
the relative increase in dictionary word count. This
feature is most directly attributable to compression
techniques applied to the knowledge base by the
software. While the 2907 word dictionary (and cor-
responding language model) represented approxi-
mately 30MB of runtime memory space, the 23543
word dictionary (and corresponding language
model) represented an increase of only 12 MB (the
6366 word dictionary and 11447 word dictionary
resulted in increases of one and five megabytes
respectively). Thus, while there is a high initial
cost for establishing knowledge base data in mem-
ory, data compression clearly serves to mitigate the
effects of adding further data. A second possible
explanation recognizes the fact that our knowledge
base creation software bases dictionary and lan-
guage model constructs on a large input text file
[10]. Thus, a larger dictionary also corresponds to a

language model which is built off of a much more
comprehensive sample of the language, potentially
allowing the search algorithm to more quickly
identify high probability paths and prune out lower
probability candidates. This corresponds to obser-
vations made in previous works [5]. It should be
noted that the actual cache miss ratios did not vary
substantially across dictionary sizes.

3.2: Cache Block Size
In order to provide some intuition into spatial

versus temporal relationships in memory accesses,
we investigate the effects of adjusting cache block
size. The results are presented in figure 3.2, and
clearly demonstrate the presence of spatial locality,
as seen from the decrease in cache misses for larger
block sizes with the overall cache size held fixed.
The benefit of spatial locality is also seen to dimin-
ish with increasing size. This trend corresponds
with the notion of traversal of a linked data struc-
ture, evaluating various data points at each node
before moving to the next. Thus, the pattern seen in
the figure can be related (at least in part) to the size
of a node data structure, which ranges from
approximately 76 to 100 bytes (depending on spe-
cific node type). Clearly, the ideal approach by
which to exploit this observation would involve
coordination of cache block size with knowledge
base node size, and alignment of node data with
block boundaries.

Figure 3.1: Average number of cache misses per syllable for varied dictionary sizes.
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3.3: Search Beam Width
The width of the search beam (effectively the

pruning threshold for search channels), serves as a
primary means for establishing a trade-off between
accuracy and speed. Wide beams allow the search
algorithm to explore a greater number of low prob-
ability paths in the search graph, increasing the
probability of an accurate match, but simulta-
neously increasing the computational effort
required to complete the search. Small beams
prune out a number of high probability paths, sacri-
ficing potential correct matches for a smaller
search space. To evaluate the effects of beam width
on the forward search, we perform simulations
with three width configurations. The ‘live’ config-
uration corresponds to pruning thresholds sug-
gested for live mode operation; the ‘default’
configuration represents default sphinx parameters
used in the other evaluations in this paper (approxi-
mately one half the pruning threshold of ‘live’
mode), and the ‘extended’ configuration represents
an even wider beam configuration (slightly less
that half the pruning threshold of ‘default’).
Results of these evaluations are shown in figure 3.3
and show that the increase in number of misses per
syllabic unit actually correlate fairly well to
decreased pruning threshold. This corresponds to
the expected exploration of a greater number of
possible paths, with relatively little locality seen in

the added work. As such, this also corresponds to
an increase in the working set size of the program.

3.4: Data Partitioning
An interesting feature of this application

domain is the presence of a large, easily identifi-
able memory structure to which a substantial por-
tion of memory accesses are directed, the
recognition knowledge base. As previous work has
suggested that the poor memory performance
observed in this domain is due largely to accesses
to this knowledge base, we wish to specifically
investigate the behavior of memory accesses to this
region as opposed to other regions of memory. The
results presented in figure 3.4 show a clear parti-
tion in cache miss ratios to various regions of the
memory space, and demonstrate that, while consti-
tuting approximately one quarter of the total num-
ber of memory references, traversals of the
recognition knowledge base contribute signifi-
cantly to the overall number of cache misses. Parti-
tioning the memory space to isolate accesses to the
knowledge base from other data accesses may pro-
vide the opportunity for significant improvement in
memory system performance.

A review of the other parameters evaluated in
this paper shows this memory space division is
consistently observed in all cases except the runs
evaluating the best-path search algorithm. While
the distinctive variations in miss ratios are still

Figure 3.2: Misses per syllable for various cache sizes for a range of cache block sizes.
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observable in this search phase, the difference
between knowledge base and other accesses is far
less dramatic and knowledge base accesses cannot
be considered the primary source of cache misses.

3.5: Other Parameters
While the results discussed previously cover

notable observations in our result data, a number of
other parameters were investigated. Variations in
these parameters, however, showed no affect on
cache performance. Among these, speaker selec-
tion and input selection.

Speaker selection was evaluated by presenting
the recognition engine with identical phrases spo-
ken by a number of different individuals (three
male, one female). Results of these evaluations
showed no major effect of speaker on cache miss
ratios.

A similar absence of effect is observed for var-
ious input phrases. Interestingly, an input sample
constructed of two words repeated (the file was
concatenated with itself multiple times to ensure
identical repeating units) showed cache miss ratios
similar to phrases constituting extended sentences
with detailed structure.

Figure 3.3: Average number of cache misses per syllable for a variety of search beam widths.
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Figure 3.4: Cache miss rates for back end search, partitioned by data access type.
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Me must note that neither of these evaluations
could be constructed in a particularly quantitative
manner. For example, it is unclear how one would
quantify the intonations generated by a particular
speaker in a metric that is relevant to speech recog-
nition. Similarly, it is equally difficult to quantita-
tively represent the differences between speech
inputs. Thus, it is possible that our variations in
speaker and input were insignificant given the pro-
cessing methods used by the speech recognition
software. In future work, we hope to use tech-
niques such as entropy analysis to better quantify
the ‘complexity’ of such input variations.

3.6 Bandwidth Considerations
While the locality and cache characteristics of

speech recognition search algorithms present some
significant insight into the problems faced by these
applications, they are uninteresting without some
notion of overall memory bandwidth requirements.
Thus, we consider memory bandwidth require-
ments between L1 cache, and main memory for the
cache configurations previously considered. We
assume a 206Mhz processor, which is a reasonable
rate for current generation embedded processor
systems (e.g.: the Intel SA-1110). Results of this
analysis are shown in figure 3.6, and demonstrate
that a fairly high bandwidth memory system is
required by speech recognition software. While
these demands are not at all unfeasible for current

generation memory systems (current generation
RDRAMs are capable of 1.66 GB/s), such form
factors are not likely to be seen in handheld and
low power devices. These results indicate, how-
ever, that the problem lies not in the available
memory bandwidth, but in how the bandwidth is
used and latency tolerated.

Section 4: Strategies for Improving
Speech Algorithmic Performance

The evaluations thus presented clearly demon-
strate some of the constraints faced by speech rec-
ognition algorithms due to the inherent nature of
current memory systems relative to the algorithm
reference stream. In particular, these algorithms
show poor cache performance out to rather large
caches. Clearly, a two or three megabyte L1 cache
is impractical and infeasible in most situations,
particularly for portable or embedded systems
which stand to gain the most from robust speech
recognition technology. Thus, we step back and
realize that there are really only two methods for
dealing with the memory associated latency: the
latency must either be reduced or tolerated. Thus,
we consider a first level examination of two
approaches, one addressing each of these tech-
niques. We investigate the potential for prefetching
by examining the memory reference stream, and
the potential for parallelization of the algorithms
themselves as a means of tolerating latency.

Figure 3.6: Memory bandwidth demands for beam search algorithm across a variety of L1 cache configurations.
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4.1: Reference Predictability
In order to consider the potential effectiveness

of hardware pre-fetching in the memory system,
we consider the predictability of memory refer-
ences against a number of standard predictor types.
We evaluate four types of predictors, each with
generous resources (for example, 64k-entry tables)
in order to observe best case value. The results of
this analysis on the raw memory reference stream
is presented in figure 4.1.1. The “LV” predictor
represents a standard last value predictor [12]. The
“MARKOV” configuration represents an LRU list
based history predictor [14]. The “TD” configura-
tion represents a 2-delta stride predictor [15].
Finally, the “CTX” configuration represents a con-
text based history predictor[13]. This analysis
shows that, while there is clearly some predictabil-
ity in the stream, the majority of this predictability
comes from global and stack structures, while dic-
tionary accesses show poor predictability in the
general case. Only the 2-delta stride predictor dem-
onstrates even marginally reasonable accuracy. A
further analysis of the predictability of the cache
miss reference stream shows that even the previous
result is a rather hollow victory. The prediction
accuracy for references out to main memory (cache
misses) for a set cache configuration (32k, 4way,
32 byte lines) is shown in figure 4.1.2. Once again,
the 2-delta predictor performs the best, but even in

this case prediction accuracy for the dictionary
accesses are extremely poor. It must be emphasized
that this truly is a best case scenario for prediction.
Not only do we assume a very large number of pre-
dictor table entries, but we take no account of tim-
ing effects (effectively assuming pre-fetching can
be performed instantaneously). In an actual system,
a accurate prediction may be needed tens to hun-
dreds of cycles before the data itself is required.

4.2: Algorithm Threading
Another key feature of this application space is

the inherent parallelism in the search process. The
standard search techniques maintain a number of
candidate paths through the internal speech model,
representing the most likely recognition solution
based on the input processed thus far. Each of these
candidate paths (or channels) is conceptually inde-
pendent of the others. Herein lies the potential for
extensive parallelization. A brief study of serial
executions of Sphinx-II showed that, for a number
of the ‘hot spots’ in the program flow, the average
potential for parallelization ranged from 15-20
potential concurrent processes to over 2000. The
available parallelism during beam search for a
sample run (similar to a graph is cited works [1]) is
shown in figure 4.2.1 and clearly demonstrates the
opportunities for parallel execution in this domain.
In fact, algorithms to better exploit parallelism in
certain search phases have already been studied
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Figure 4.1.2: Prediction accuracy of memory reference

stream past L1 cache.
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[4,7]. We observe, however, that exploiting such
parallelism will naturally place higher demands on
the underlying memory system, and concurrent
execution is useless if memory bandwidth is
unavailable.

In order to investigate the impact of parallel-
ization, we perform cursory modifications to
SPHINX-II to operate with multiple concurrent
threads during the forward search phase. These
modifications involved no major algorithmic modi-
fications, and demonstrated a 2-3x improvement is
overall performance. This correlates directly to a
comparable increase in memory bandwidth
demand (a comparable number of memory
accesses in half the cycles). Interestingly, however,
the ‘per-cycle’ increase in memory requests is not
substantial. Rather, the concurrent processes end
up offset sufficiently that the vast majority of exe-
cution cycles only see one explicit memory request
(that is, memory requests due to loads and stores,
as opposed to instruction loads and such). As such,
simultaneous concurrent parallelization appears to
stress the number of outstanding requests allowed
in the memory system, rather than the actual per-
cycle bandwidth. This is shown in figure 4.2.2,
which depicts the number of memory requests
made in a given cycle for 10 and 20 thread runs
against the percentage of execution cycles in which
that number of simultaneous memory requests was
observed. This evaluation was performed on a ver-

sion of the SimpleScalar toolset modified to simu-
late a basic SMP architecture with very low
threading overhead.

Section 5: Summary and Conclusions
We present an evaluation of the memory

behavior of speech recognition algorithms through
analysis of the SPHINX-II speech recognition soft-
ware from CMU. Through this analysis, we con-
firm previous work suggesting that this application
domain shows poor memory performance on exist-
ing memory infrastructures, and expand upon it
through analysis of a wider range of parameters.
An interesting finding from this analysis is the
marked difference in memory performance
between references to the knowledge base and ref-
erences to other global memory. It is clear that ref-
erences to this knowledge base are a prime
contributor to the poor memory performance of the
application as a whole. As expected, memory
demand per syllable increases with larger dictio-
naries and wider searches. The impact of this, how-
ever, is mitigated with increasing dictionary size
due to knowledge base compression applied by the
software. We find that large block sizes matched to
dictionary node size also work best. Finally, we
also explore potential solutions to the bottleneck
presented by memory performance, determining
that prediction and pre-fetching of memory
accesses at the hardware level is ineffective, but

Figure 4.2.1: Map of active channels over the course
of a sample run of forward tree search

Figure 4.2.2: Percentage of simultaneous memory requests
for multi-threaded executions.
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also revealing much potential in the area of paral-
lelization and concurrent execution.
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