
90272-1732/99/$10.00  1999 IEEE

Today’s methodology for designing
state-of-the-art microprocessors involves mod-
eling at various levels of abstraction. In the
presynthesis phase, this can range from early-
stage, performance-only models to final-stage,
detailed register-transfer-level (RTL) models.
Hierarchical modeling requires the use of an
elaborate validation methodology to ensure
inter- and intralevel model integrity. The RTL
model, often coded in a hardware description
language (for example, Verilog or VHDL),
captures the logical behavior of the entire chip,
both in terms of function and cycle-by-cycle
pipeline flow timing. It is this model that is
subjected to simulation-based architectural
validation prior to actual tape-out of the
processor. The validated RTL specification
serves as the source reference model for syn-
thesizing the gate- and circuit-level processor
descriptions.

So what ends up as the final chip (hardware)
is really a systematic refinement game played
in the domain of software. How do we make
all of these presilicon models and abstractions
work together? How do we ensure that criti-
cal information relevant to a lower level is not
lost during the refinement process? How do
we ensure consistency across levels of abstrac-
tion? How do we manage the escalating cost
of simulation and verification at various lev-
els? Are future designs forever destined to be
“verification-gated”? (Al-Ashari provides
recent verification cost data.1) What are the
future trends in microarchitecture design that
may further complicate (or ease) the modeling
and validation bottleneck? These were some of
the questions that inspired the three of us to
put together this special issue.

Current trends
In introducing the theme articles in Com-

puter’s May 1998 performance analysis issue,
two of us had focused only on performance
modeling.2 At this high level of abstraction,
lead performance and design microarchitects
want to define the best microarchitecture
implementing the given instruction-set archi-
tecture, or ISA. “Best” often implies the high-
est architectural performance measured in
terms of instructions per cycle or its inverse
metric, CPI (cycles per instruction). An exam-
ple of a simulation toolkit that is widely used
in academic research today is the SimpleScalar
model developed by Burger and Austin.3

Increasingly, however, we are witnessing the
need to factor in more and more lower-level
design constraints into early-stage, high-level
modeling and analysis. This trend is ulti-
mately due to the increasing levels of integra-
tion afforded by the relentless progress of the
underlying semiconductor technology.4 This
progress has resulted in current chip designs
that use many millions of transistors and oper-
ate at near-gigahertz clock frequencies. At
these clock speeds, wiring and interconnect
delays become a significant determinant of
cycle time. As such, developers must treat
careful partitioning and layout of logical
blocks as an issue at the highest level of design
to avoid later-stage surprises. An example of
such impact on high-level design is the emer-
gence of clustered register files in high-fre-
quency microprocessors such as the Compaq
Alpha 21264.5 Due to the relatively large
access times of centralized register files, small-
er (partitioned) register sets are cross-coupled
to feed independent clusters of functional

Pradip Bose
IBM T.J. Watson

Research Center

Thomas M. Conte
North Carolina

State University

Todd M. Austin
Intel Corporation

Guest Editors’ Introduction:

CHALLENGES IN PROCESSOR
MODELING AND VALIDATION

units. Such decisions may result in a CPI-level
performance hit, while protecting the clock
frequency target. Architecture-level power
estimation and power-driven design method-
ologies reflect another trend in which perfor-
mance may need to be curbed (adaptively?)
to meet power budgets.

In view of these trends, we need better inte-
gration between the modeling and validation
methodologies at various levels. Figure 1
shows a hierarchy of levels in the range of
interest to us in this theme issue. The high-
est—the function-only level of abstraction—
defines an ISA-level functional simulation
model. The performance-only simulation
model abstraction is the one available in a
trace-driven, cycle-by-cycle simulator of the
microarchitecture. This models the microar-
chitectural implementation of the ISA, but
only at the level of pipeline instruction flow
timing; functional semantics and data state
information are not maintained. Such a sim-
ulation model is sometimes referred to as a
timer.

At the lowest (and most detailed) level of
the hierarchy is the full-blown RTL model.
This incorporates full function as well as latch-
accurate pipeline flow timing. Depending on
the particular project, we may envisage an
intermediate, pre-RTL level in which func-
tion and performance are combined, but cer-

tain refinements of the inter-
latch gate-level logic specifi-
cations may be abstracted
out. Typically, such an inter-
mediate (full-function,
behavioral) model would be
written in a language like C
or C++ (as in the higher-level
models). During early esti-
mation, architects may typi-
cally use analytical models for
setting achievable perfor-
mance targets or bounds;2

this may serve as a reference
for validating the simulation
model.

On the issue of presilicon
validation, we limit discus-
sion to only two of the many
design dimensions alluded to
earlier:

• functional integrity at the architectural
level—verifying that the microarchitec-
tural implementation is faithful to the
functional semantics of the source ISA;
and

• performance integrity in a CPI-centric
view—making sure that the initial CPI
projections and trade-off decisions are
accurate in light of the postsilicon mea-
surements.

Figure 1 indicates the interlayer validation
requirements in a typical setting.

In this issue
To address the problems we’ve mentioned,

we provide articles that describe some of the
innovative leading-edge technologies in acad-
emia and industry. Moudgill et al. describes
Turandot, a novel, high-speed, execution-dri-
ven (performance-only) simulator that
achieves an order of magnitude speedup over
prior PowerPC processor timers within IBM.
The model is amenable to validation against
a pre-RTL reference model by using system-
atically generated performance test cases. The
authors show that their validation methodol-
ogy allows users to calibrate a model quickly,
without losing its innate speed efficiency.

Bechem and colleagues describe an inte-
grated modeling approach that combines per-

10

GUEST EDITORS’ INTRODUCTION

IEEE MICRO

ISA-level
function-only

model (F) Trace-driven,
performance-

only model (T′)

Analytical model

Functional abstraction
(verification reference)

Timing abstraction
(performance reference)

Functional
validation

Performance
calibration

Functional
validation

Performance
bounds
checks

Performance
validation

Pre-RTL, cycle-accurate
functional model (F′ + T)

Detailed, full-function, cycle-accurate RTL model
(F + T)

F
F′

Function
Some functional abstractions

Cycle-accurate timing
Some timing abstractions

T
T′

Figure 1. Levels of abstraction in pre-RTL processor modeling: an example.

formance and function. Here, modeling
occurs essentially at the pre-RTL behavioral
level (see Figure 1 again). Again, the authors
treat the problem of validation in conjunction
with developing the modeling strategy. They
describe a finite-state machine (FSM)-based
method of modeling the control logic; this is
used as the reference for generating directed
test cases to cover all possible state transitions.
The authors demonstrate the power of this
approach in terms of generating a small test
suite, which covers the FSM transitions fully.
Benchmarks and other synthetic test case
suites used in standard methodology are much
larger but exhibit much poorer coverage.

Arvind and Shen address a key problem in
microarchitectural modeling: formal specifi-
cation. They describe a specification language
based on term-rewriting systems. They show
the use of such systems to specify the behav-
ior of complex functional execution seman-
tics of modern processors. This formalism is
shown to point the way toward the automat-
ed synthesis and verification of complex
microarchitectures. This example of leading-
edge academic research is still too new to be
part of an industrial processor development
methodology. However, it reflects an increas-
ing trend and need for higher-level formalisms
to weed out basic design bugs early.

On the other hand, Hunt and Sawada high-
light the promise of formal specification and
verification by describing their work in veri-
fying an actual pipelined, superscalar micro-
processor. The authors use a different
formalism than Arvind and Shen to specify
the processor execution semantics. Their work
is distinguished by the fact that they were suc-
cessful in applying the verification methods
to a nontrivial, modern processor design. Also,
the authors point to the temporal correctness
checks obtainable (at the CPI level) when
using their method as well as the functional
correctness.

In Kunkel et al. we see a case study of a real-
life processor/system performance-tuning pro-
ject portrayed across several generations of
IBM’s AS/400 product line. This article takes
the reader through a post-hardware tuning
process in which the layered software archi-
tecture supporting the AS/400 hardware had
to be tuned and validated to attain target
performance.

Hangal and O’Connor provide a tutorial
perspective. They detail a typical industrial
modeling and validation methodology relat-
ed to the picoJava processor designed at Sun
Microsystems. The authors describe some
newer trends in cosimulation and parallel sim-
ulation of the RTL model to tackle the simu-
lation speed and efficiency bottlenecks. They
address both functional and performance ver-
ification issues.

Modeling issues
To cope with complexity, design teams may

increasingly be forced to rely on higher-level
modeling to weed out early bugs and to avoid
late-stage physical design surprises. Another
way of looking at this is to infer that there may
be a need to introduce additional layers of
abstraction. As shown in Figure 1, the pre-
RTL, cycle-accurate functional model abstrac-
tion may become a necessary step in most
design methodologies. The question, then, is
what’s the right level of abstraction of this
high-level model? If it is too close in net
semantics to the final RTL, it may be hard to
justify the economics. This is because the net
development and validation expense will (like-
ly) not be reduced. Rather, it may increase due
to the duplication of the modeling and vali-
dation tasks at that low level. This would espe-
cially be true if the pre-RTL and RTL models
are written in different languages without
automated means for intermodel consistency
checks. Also, the simulation speed will be too
slow to allow viable performance studies. If
the pre-RTL abstraction is too high, howev-
er, it may not reduce the burden of the RTL-
level validation team very much. The detected

11MAY–JUNE 1999

To cope with complexity,

design teams may increasingly

be forced to rely on higher-

level modeling to weed out

early bugs and to avoid late-

stage physical design surprises.

functional and performance bugs may be
valuable, but too few to avoid the “billions of
simulation cycles” syndrome at the RTL level.

Design teams must toil through this
methodology transition phase, possibly at the
expense of a delayed project or two, before
working out the right high-level modeling
abstraction. Hangal and O’Connor, for exam-
ple, talk about an ISA-level functional refer-
ence model, which also incorporates a detailed
(logical) cache hierarchy model to factor in key
performance issues. For that particular project,
this intermediate level seems to have proved to
be a reasonable choice to support their cosim-
ulation and hierarchical model validation.

The modeling challenges posed by emerging
microarchitectures are not fully covered in this
theme issue. The Moudgill and Bechem arti-
cles touch on the performance model accura-
cy challenges posed by today’s dynamic
superscalar processors. However, future trends
and their impacts are not covered.

The philosophy behind EPIC (explicitly
parallel instruction computing) and VLIW
(very long instruction word) processors, for
example, is that complexity can be moved out
of the microarchitecture and into the com-
piler wherever possible. Thus, the modeling
of EPIC/VLIW processors must put the com-
piler in the loop although traditional (super-
scalar) modeling does not.

Speeding up the modeling of such proces-
sors poses new challenges. To see the challenges,
we need to look inside the compiler. An EPIC
compiler necessarily has greater complexity in
its code-generation phase. This phase must
assemble instructions into parallel groups of
independent operations and also manage the
hardware resources of the machine. Its com-
plexity is often O(N2), O(N3), or in some cases
nonpolynomial (that is, worse). Here, N is the
number of instructions or operations in the
scheduling window. Thus, putting the com-
piler into the modeling loop can slow down the
simulation significantly, despite simpler hard-
ware. A major challenge in such modeling is to
determine the equivalent of trace sampling
(used in the superscalar world) in the EPIC
domain. The use of profile-directed “hot
regions” to accelerate EPIC simulation holds
some promise. It will require some effort to tie
its use back to statistical sampling theory. This
remains an open research topic.

The trend toward data-dependent microar-
chitecture optimizations (for example, value
prediction6) creates further challenges in the
construction of accurate models. Traditional
high-level models (such as those based on
instruction traces) often lack the fidelity nec-
essary to accurately reproduce the complex
nature of these optimizations. For example,
in a model with value speculation and partial
reexecution recovery, the model must correctly
reproduce function on both the correct and
incorrect paths of execution. Modeling the
correct path gauges the benefits of correct
value predictions, while incorrect path mod-
eling measures resource contention due to
misspeculation recovery.

Validation issues
Current microprocessor design teams use a

combination of simulation-based and formal
verification techniques to validate (function-
ally) the RTL and pre-RTL models. They
apply formal verification methods to well-
defined combinational parts of the gate- or
circuit-level implementation. Also, higher-
level formal analysis (for example, Clarke and
Kurshan,7 Arvind and Shen, and Hunt and
Sawada in this issue) is of increasing use to
reduce the burden of late-stage simulation-
based validation. We expect this trend to con-
tinue. Nonetheless, pseudorandom test case
generation to cover the architectural space is
still relied upon as the principal means to
identify the design bugs at the RTL or pre-
RTL levels. See examples in Kantrowitz and
Noack,8 Aharon et al.,9 and Hangal and
O’Connor in this issue. We also expect the
typical verification team to maintain this sta-
tus quo, at the very least in the coming cou-
ple of processor design cycles. To alleviate the
simulation speed bottleneck created by
increased workload and microarchitecture
complexity, more and more workstations will
be thrown into the typical simulation farm.

Other innovations in parallel simulation at
all levels (Hangal and O’Connor, this issue)
will be required. It is apparent, however,
(Bechem et al., this issue) that relying on
pseudorandom generation techniques alone
is going to be increasingly inadequate. Also,
relying on manually generated, specialized test
cases to cover hard-to-detect corner cases is
going to be risky for tomorrow’s complex

12

GUEST EDITORS’ INTRODUCTION

IEEE MICRO

hardware. We foresee the use of more sophis-
ticated, formal, model-driven test case gener-
ation and coverage techniques10 to replace or
significantly augment current methods. This
blend of formal, and simulation-based meth-
ods is a clear future trend.

If checking for functional correctness is
hard, ensuring the lack of performance bugs
is seemingly even more difficult to automate.
These bugs are of two types:

1. a design or model defect that causes
observable inaccuracies in specific laten-
cy or bandwidth parameters or other tim-
ing characteristics; and

2. a design deficiency, as reflected in the pre-
silicon model, that causes a significant gap
between actual and expected performance
of a key benchmark or kernel.

An example of type 1 is a model defect that
may cause the back-to-back, dependent float-
ing-point operation issue (pipeline bubble)
latency to be greater or less than the design
specification. As a class 2 bug example, the
model may correctly implement an initial
design specification; however, this may result
in a large, inadvertent negative impact on a key
benchmark, such as Linpack, or a dominant
loop kernel, such as Daxpy. In later-stage
design, type 2 bugs that are correctable via
minor redesigns are of significance; major
redesign recommendations are taken serious-
ly only in early-stage analysis. Type 2 bugs may
also expose tuning opportunities for the com-
piler. As we discussed earlier,2 we foresee a
trend of automation in which the presilicon
validation exercise will use automatic test-case
generation, which combines “golden” signa-
tures to qualify error-free function and per-
formance. Researchers are experimenting with
such integrated testing methodologies in some
development projects. Again, formal models
to aid in correctness checks may be of use in
early (high-level) performance models. Tim-
ing properties or FSM-level formalisms may
be used to weed out fundamental problems
such as deadlock scenarios and race conditions.

Hardware-specific tuning of software (at the
application and system support level) contin-
ues to offer a major opportunity for increas-
ing delivered system performance. Tools for
application tuning and heuristics generation

for compiler optimization promise to offer sig-
nificant advantages in the future. Kunkel et al.
(this issue) depicts the magnitude of software-
tuning opportunities in a commercial system
built using PowerPC superscalar RISC nodes.

We hope this theme issue will help you
appreciate the significance of each topic

we’ve presented. Our introduction may also
help you understand some of the future trends
and requirements that are not addressed in the
articles in this issue. MICRO

Acknowledgments
We thank all the anonymous referees for their

help in reviewing the articles submitted for this
special issue and Ken Sakamura, IEEE Micro
Editor-in-Chief, for his help and support.

References
1. S. Al-Ashari, “System Verification from the

Ground Up,” in the online magazine, Inte-
grated System Design Magazine, Jan. 1999;
http://www.isdmag.com/Editorial/1999/
coverstory9901.html.

2. P. Bose and T.M. Conte, “Performance
Analysis and Its Impact on Design,” Com-
puter, Vol. 31, No. 5, May 1998, pp. 41-49.

3. D.C. Burger and T.M. Austin, “The Sim-
pleScalar Tool Set, Version 2.0,” Computer
Architecture News, Vol. 25, No. 3, June
1997, pp. 13-25; also extended version Univ.
of Wisconsin-Madison, Computer Sciences
Tech. Report 1342, June 1997.

4. K. Diefendorff, “The Race to Point One Eight
(0.18 Micron),” Microprocessor Report, Vol.
12, No. 12, Sept. 1998, pp. 1-8.

5. D. Leibholz and R. Razdan, “The Alpha

13MAY–JUNE 1999

We foresee the use of more

sophisticated, formal model-

driven test case generation and

coverage techniques to replace

or significantly augment

current methods.

21264: A 500 MHz Out-of-Order Execution
Microprocessor,” Proc. IEEE Compcon,
IEEE Computer Society Press, Los Alamitos,
Calif., 1997, pp. 28-36.

6. M.H. Lipasti and J.P. Shen, “Exceeding the
Dataflow Limit via Value Prediction,” Proc.
29th Ann. ACM/IEEE Int’l. Symp. Microar-
chitecture, IEEE CS Press, Dec. 1996, pp.
226-237.

7. E. Clarke and R. Kurshan, “Computer-Aided
Verification,” IEEE Spectrum, Vol. 33, No. 6,
1996, pp. 61-67.

8. M. Kantrowitz and L.M. Noack, “Functional
Verification of a Multiple-Issue, Pipelined
Superscalar Alpha Processor—the Alpha
21164 CPU Chip,” Digital Tech. J., Vol. 7,
No. 1, 1995, pp. 136-144.

9. A. Aharon et al., “Test Program Generation
for Functional Verification of PowerPC
Processors in IBM,” Proc. 32nd ACM/IEEE
Design Automation Conf., ACM, New York,
1995, pp. 279-285.

10. R. Grinwald et al., “User Defined Coverage—
A Tool Supported Methodology for Design
Verification,” Proc. 35th IEEE/ACM Design
Automation Conf., ACM, June 1998, pp. 1-6.

Pradip Bose is a research staff member at the
IBM T.J. Watson Research Center. During
1992-94, he was assigned to IBM Austin as the
lead performance engineer for the definition
and evaluation of a processor core that evolved
into the Power3 microprocessor. His research
interests include high-performance computer
architectures and performance modeling, ver-
ification, and application tuning. Bose received
a BTech degree in electronics and electrical
communication engineering from the Indian
Institute of Technology, Kharagpur, and an MS

and a PhD in electrical and computer engi-
neering from the University of Illinois, Urbana-
Champaign. He is a senior member of the
IEEE and the Computer Society.

Thomas M. Conte is currently an associate
professor of North Carolina State University.
He has also consulted on microarchitecture-
related issues for several companies, includ-
ing AT&T, IBM, and S3. He currently directs
11 PhD students on the TINKER project in
topics spanning advanced microarchitecture,
compiler scheduling, and performance analy-
sis. Conte received his BEE degree from the
University of Delaware, and his MS and PhD
in electrical engineering from the University
of Illinois at Urbana-Champaign. He is wide-
ly published in the areas of microarchitecture
and performance evaluation, has served on
several program committees, and chairs the
IEEE CS Technical Committee on Micro-
programming and Microarchitecture (TC-
MARCH).

Todd M. Austin is a computer architect with
Intel’s Microcomputer Research Labs in Hills-
boro, Oregon. His work includes product-
oriented research for future-generation
microprocessors, development of university
relations, and design and implementation of
performance analysis tools. He also teaches
systems courses at the Oregon Graduate Insti-
tute, where he is an adjunct assistant profes-
sor of computer science and engineering. His
research interests include microarchitecture
design, memory system optimization, com-
piler design, computer system validation, and
performance analysis of instruction-level par-
allel processors. Austin received his PhD from
the University of Wisconsin-Madison.

Direct comments about this theme issue to
Pradip Bose, IBM T.J. Watson Research Cen-
ter, PO Box 218, Yorktown Heights, NY
10598; pbose@us.ibm.com; Tom Conte at
conte@eos.ncsu.edu, or Todd Austin at
tma@acm.org.

14

GUEST EDITORS’ INTRODUCTION

IEEE MICRO

COMING NEXT ISSUE IN MICRO…
July/August—Cool Chips II

This 1999 Asian-based conference featured chips, designs, and imple-
mentations, emphasizing the constraints of cost, power, and performance.
The guest editors of this special issue selected the best of these presenta-
tions. You’ll find articles from Mitsubishi, Intel, NTT, Motorola, Sand-
Craft, and Stanford.

