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Abstract

Market-based techniques represent a general approach
to resource allocation in decentralized environments. In
dynamic situations, the ability to find effective
allocations of resources without central information and
control is a crucial element of adaptivity. The Michigan
Adaptive Resource eXchange (MARX) Project has
developed market models for a variety of resource
allocation problems--both canonical and application-
specific. An overview of results from these efforts
demonstrates the range of applicability of these methods,
and their role in achieving survivable responses to
resource shocks in distributed systems.

1. Market-Based Resource Allocation

A premise of inherent survivability is that a system
can be made robust to partially successful attack through
general architectural features. One way to achieve inherent
survivability is through adaptivity: flexible response to
unanticipated changes in environment. The key to
successful adaptive behavior is flexibility—the ability to
adapt to a range of adverse events without having to
anticipate the particular responses in advance.

One important way to promote adaptivity is through
dynamic resource allocation. Typically, the
“unanticipated changes” that the system must respond to
come in the form of lost or degraded resources, or new
tasks that require resources. The response therefore takes
the form of a new allocation of (remaining) resources to
new and existing tasks. A flexible response through
dynamic allocation is in principle possible in any context
where resources may be redirected to multiple functions.
That is, a resource originally intended for one use can be
applied to another more critical use when the situation
calls for it.

The problem then reduces to how to effectively
perform dynamic resource allocation. For inherent
survivability, the question is how to build this capability
into the fundamental architecture of infrastructure for
large-scale information systems.

For the past few years, the MARX Project (Michigan
Adaptive Resource eXchange) has investigated a market-
based approach: organize the system in terms of a
computational market, where the entities (agents)
controlling and capable of employing resources exchange
them through a market price system. Building a
computational market requires commerce infrastructure:
basic services implementing negotiation, exchange
(including payment in standard currencies), and other core
functions of an operational economy.

There are many technical arguments—both
computational and economic—in favor of adopting a
market-based approach to dynamic resource allocation
(Wellman and Wurman 1998a). We briefly mention a few
of the more salient ones.

Decentralization. Large-scale information systems
typically involve multiple, geographically and
administratively distributed participants. No central
source has the information or authority to make global
decisions about how resources should be deployed.
Markets are naturally decentralized according to agents
representing distinct interests and capabilities.

Distributed decision and communication. Even when
decisions could in principle be centralized, such an
approach is often infeasible due to tractability,
modularity, fault tolerance, or (most importantly in this
context) vulnerability concerns. Markets are distributed in
two fundamental ways. First, agents make local decisions
based on their private information and objectives. Second,
individual resources can be allocated according to separate
mechanisms (i.e., each resource has its own price), with
interdependencies among them accounted for by the
agent’s negotiation strategies.

Value-based allocation. Markets inherently account
for the relative values and costs of resources and activities
when determining allocations. This is in contrast to fixed
priority schemes, common in most non-market systems.
Agents indicate local values and costs in their
negotiations, which are subsequently reflected in prices.
Under certain conditions, markets are known to produce
efficient (optimal) allocations despite the diversity of
interests and locality of decision making.



Embedding in economy. Information systems are not
isolated, and indeed the activities mediated through the
system ultimately connect to the real world. Thus, it is
necessary (and desirable) to consider allocating resources
not only within the system, but between entities in the
system and the outside world. All real-world entities with
significant use or production of resources are already
equipped with a “market interface”, that is, they naturally
deal in economic terms, simply because markets are a
“world standard”.

This last reason suggests that market-based
architectures are not only appropriate, but also in a sense
inevitable. What may not be inevitable is an explicit
fundamental connection between the external market
economy and system infrastructure. We argue that such a
seamless integration is in fact desirable, as imposing an
additional, incompatible resource allocation mechanism
for distinguished “system” resources introduces an
arbitrary and artificial boundary. Indeed, the value of
system resources ultimately lies in how they promote
goals (or what their alternative uses are) outside the
system, and so explicitly connecting system resource
allocation to the external market economy seems more
likely to lead to proper valuations.

Finally, the rapid development of infrastructure
supporting all phases of electronic commerce will
naturally serve as building blocks for development of
market-based architectures for information systems. Thus,
the market-based approach represents the ultimate
“COTS” (commercial off-the-shelf) solution, both in
terms of middleware services supporting market
functions, and in terms of modules developed by
commercial entities for market-based interaction within
and outside the system boundaries.

2. The MARX Project

As indicated in the hierarchy of topics displayed in
Figure 1, research in MARX has been divided into work
on particular dynamic resource allocation problems, and
development of generic infrastructure for deploying
computational markets. Problems we have modeled in
turn fall into two types: allocation of computational
resources within information systems, and canonical
allocation problems defined by problem structure rather
than application. In order to assess the performance of
pragmatic allocation mechanisms for these problems we
have had to pursue methods for the assessment of
pragmatic mechanisms, since the traditional theoretical
analyses are limited to mechanisms that may provably not
exist for our problems.

Computational Market InfrastructureResource Allocation Problems

Info System Applications

Canonical Allocation Problems

Web Caching Packet Scheduling

Scheduling Supply Chains Single Good

MARX

Figure 1: MARX project research topics.

2.1. Problems Studied

Only by examining specific information-system
applications can we compare results from the
computational market with alternative approaches, and
only by generalizing to domain-independent problem
classes can we establish that our methodology will cover
a broad range of survivability contexts.

Under information system applications, we have
chosen two important and very well-studied
problems—web caching and packet scheduling. These two
examples stand for large classes of important problems.
The first is an important instance of distributed data
storage; the second an instance of data transport . As
described below, these problems admit multiple market-
based approaches, which in some instances can be related
to well-known non-market allocation schemes. This
facilitates evaluation of allocation quality as well as
adaptivity properties.

Our canonical allocation problems are designed to
represent important patterns of resource allocation that
occur across a multitude of application contexts. The
simplest are the “single good” problems, which concern
the negotiation of transfers of a single resource type. The
simple structure of these problems makes them amenable
to in-depth analysis, including a near exhaustive
consideration of negotiation mechanisms and strategies.
Understanding the single-good problem (which is also
very well characterized in the economic literature) is a
prerequisite to informed design of computational markets
for more complex problems involving multiple resource
types.

Problems involving complex interrelated activities
invariably involve multiple resource types. Although
these resources can be allocated through multiple single-
resource mechanisms, the interdependencies among the
resources significantly complicate the problem of effective
resource allocation. In our MARX research, we have been
exploring two particularly common and challenging
source of interdependencies. First, in scheduling
problems, resources have temporal dependencies, meaning
that the value of a resource for a particular use depends
fundamentally on when it is employed (e.g., whether it
enables the user to meet a deadline). We have some
particular protocols for market based scheduling. The
techniques work well for some problem classes, but



others can be fundamentally difficult to decentralize
(Walsh et al. 1998; Wellman et al. to appear). Second, in
supply chain problems (Walsh and Wellman 1999b),
dependencies are prerequisite relationships between
elements in the chain. We have captured an interesting
class of supply chain problems in our task dependency
network model described below. In addition, we have
considered combinations of scheduling and supply chain
problems, involving both sorts of dependencies. We
believe that these two patterns represent the important
dependencies arising in a large class of allocation
problems underlying large-scale systems. These resource
allocation problems serve as the source of dynamic
allocation scenarios that can demonstrate inherent
survivability through market-based adaptivity. Specific
applications represent potential domains for the
demonstrations, whereas the canonical problems dictate
our approach to mapping our techniques to new domains.
The computational infrastructure for market-based
allocation we have developed in the MARX project
provides a vehicle for deploying these demonstrations.

2.2. Methods

In our research we are developing methods for
pragmatic mechanism design. A mechanism is a set of
rules that specifies allocations as a function of messages
from the agents who hold private information (an auction
is a classic example). There is an extensive theoretical
literature on the design of resource allocation mechanisms
(Campbell 1987; Mas-Colell, Whinston, and Green
1995). The standard approach is to seek a mechanism that
always yields an allocation that is maximally efficient
subject to plausibility constraints on agent behavior. A
typical set of constraints is that agents are rational in the
sense of playing Bayesian-Nash strategies; their messages
are consistent with self-interest (and thus may not be
truthful revelations of their private information); and they
(including the mediator or auctioneer) will not participate
unless they expect to be no worse off as a consequence of
participating. Unfortunately in the negotiation problems
on which we focus, well-known results establish that no
mechanism (market or otherwise) exists that satisfies this
set of seemingly reasonable constraints while always
guaranteeing efficient allocations (Gibbard 1973; Myerson
and Satterthwaite 1983). Obviously, for the reasons above
and others, market-based mechanisms are still of
considerable real world importance. We thus have been
developing methods to design and assess feasible
mechanisms that cannot satisfy the full set of standard
desiderata.

One of our methods is conventional theoretical
performance analysis, but subject to the feasibility
constraint: we relax one of the assumptions on plausible
behavior enough to avoid the impossibility results cited
above. For example, in our study of market mechanisms
for scheduling problems, we have sharp results on
performance when agents are restricted to natural but not
fully rational bidding strategies (Wellman et al. to

appear). Another method is to simulate allocation
outcomes under reasonable assumptions on agent
behavior. We have used this method to assess allocation
efficiency (Anderson, Birgean, and MacKie-Mason 1999;
Wurman 1999)(Kelly et al. 1999a, 1999b; Callaway or
other packet scheduling work). We have used both of
these methods to assess the performance of a non-price
economic allocation mechanism (the Generalized Vickrey
Auction (MacKie-Mason and Varian 1994)). For example,
in our application of the GVA to scheduling (Wellman et
al. to appear), we relax the requirement that the auctioneer
balance its budget. In a single-good context (Anderson,
Birgean, and MacKie-Mason 1999), we give up some
efficiency in order to balance the budget through
participation and transaction fees.

3. Information System Applications

Our argument that dynamic resource allocation via
computational markets yields inherent survivability
hinges on the premise that most important applications
can be cast in this framework. We have significant
experience in mapping a wide range of problems to the
market framework, including those described here and
others (Wellman 1996). Most practical resource allocation
problems fall in one of the four categories formed by
crossing discrete or continuous quantity scales with
discrete or continuous time scales. Therefore, many
interesting problems fit models we have already designed
and tested. In this section we describe two particular
applications, to resource allocation problems arising in
networked information systems.

3.1. Wide-Area Storage Allocation (Web
Caching)

The problem of Web caching is that of selectively
allocating storage on a wide-area network in such a way as
to maximize value to system users. Shared Web caches
provide different benefits for different classes of users:
latency reduction for clients, congestion reduction for all
network users, and load reduction for servers. Disk space
in shared Web caches is a strategically-placed scarce
resource that may be diverted to serve some users at the
expense of others, and therefore these caches are ideal loci
for differential quality-of-service (QoS) mechanisms. We
have explored two kinds of mechanisms that bias the
allocation of cache space toward system users (servers and
clients) who value caching most. One approach is to
generalize conventional cache replacement policies such as
the “least frequently used” (LFU) algorithm. Another is to
design explicit market allocation mechanisms in which
agents bid for disk space in shared caches. We have
pursued both of these methodologies and have evaluated
several designs in comparison with conventional cache
management algorithms (Williams et al. 1996).

It is sometimes possible to establish tight bounds on
the performance of cache replacement policies independent
of workload (client document request patterns (Irani 1997;



Sleator and Tarjan 1985). This approach, however, yields
performance guarantees far weaker and more pessimistic
than the observed performance of most reasonable removal
policies under real workloads. In order to evaluate the
relative performance of practical caching schemes we must
therefore employ trace-driven simulation , in which a
cache simulator processes workloads logged at actual
caches. The National Laboratory for Applied Network
Research (NLANR) currently operates ten large Web
caches nationwide, each of which serves many corporate-
and campus-sized client networks. We obtained client
request data collected at six of these caches over a four-
week period and wrote a general-purpose cache simulator
to support trace-driven experiments. A distinguishing
feature of our evaluation methodology is that our main
performance metric is value delivered to system users
rather than standard metrics such as byte hit rate (fraction
of requested data served from cache rather than servers).
By diverting disk space to serve the needs of those who
most value caching (variable QoS), we aim to increase the
aggregate value of the cache (utility maximization), as
compared with value-insensitive replacement policies.

In the LFU replacement policy, unpopular data are
flushed from the cache in favor of heavily requested data.
Formally, if nu is the number of requests for URL u and
sizeu is its size, an LFU cache stores URLs with the
highest observed values of nu. Let sizeuVu be the benefit
that the server associated with u receives when requests
for u are served from cache rather than by the server. Our
weighted LFU cache replacement policy stores URLs with
the highest value of nuVu, because these are precisely the
items that generate the most aggregate utility per unit
cache size. The potential value generated by URL u per
unit size is given by

∑requests for u  (sizeuVu / sizeu),

which is simply nuVu.
Weighted LFU is interesting because it corresponds

exactly to the policy resulting from a market-based
mechanism: it is natural to interpret sizeuVu as a server’s
payment to a profit-maximizing cache each time the cache
serves u. Experiments have shown that this simple
generalization of LFU delivers substantially higher
aggregate value to servers than ordinary LFU for some
distributions of Vu. For example, Figure 2 presents
simulation results for a two-week interval of NLANR data
for a large cache site (Kelly et al. 1999). Our performance
metric, value hit rate, measures the fraction of request
value delivered to users, where value is given by the
weights Vu. As the graph shows, weighted LFU
outperforms LFU or LRU (the least-recently-used
replacement policy) for any given cache size. Weighted
LFU performs even better when augmented with a tunable
aging mechanism that prevents the cache from becoming
cluttered with formerly-popular documents that are no
longer requested (Kelly, Jamin, and MacKie-Mason
1999). Extensive experiments have shown that weighted
LFU with aging usually delivers more aggregate value to
servers than “best-of-breed” algorithms from the Web

caching literature, e.g., “Greedy-Dual Size” (Cao and Irani
1997).

Figure 2: In this trial, weighted LFU (wLFU)
provided higher value than unweighted
frequency- or recency-based policies (uLFU and
pLRU).

Whereas weighted LFU successfully exploits server
valuation information to deliver high value to system
users, it is not likely to obtain this private information:
servers would generally find it advantageous to report
false Vu values. An incentive-compatible allocation
mechanism has the property that truthful revelation of
valuation information is a dominant strategy for
participating agents. In our implementation, weighted
LFU is not incentive compatible. By contrast, a periodic
auction market in which servers and clients directly bid
for cache disk space can be incentive compatible, given
the right choice of auction. We have investigated a
scenario in which servers with simple and reasonable
bidding strategies contend for disk space via periodic
incentive-compatible auctions. We characterize some
conditions under which this particular system can obtain
higher overall value than even weighted LFU with aging
(Chan et al. 1999).

3.2. Packet Scheduling

The fundamental feature of a market-based packet
scheduling system is that it provides differential QoS to
packets based on willingness to pay, as expressed in bids.
We achieve this through a bid-sensitive queuing system,
consisting of two parts: the scheduling discipline which
determines the next packet to be served, and a dropping
policy which determines the packet to drop when the
queue is full.

3.2.1. Scheduling Disciplines
We study two scheduling disciplines that can provide

market-based QoS: Lottery Scheduling (Waldspurger and
Weihl 1994) and Deterministic (Static Priority)
Scheduling. For comparison purposes, we also include
traditional FIFO (first-in-first-out) scheduling in our
study.



Lottery Scheduling is a probabilistic method,
originally proposed for CPU scheduling. The next packet
to be served is chosen by holding a lottery, with the
probability of an individual packet being served being
proportional to its bid value:

Pr(packet k is served) = Bk / ∑j Bj,
where Bi is the bid value of packet i and j ranges over

the packets in queue.
With lottery scheduling, packets with higher bids

have a greater chance of being served next. Therefore,
during times of congestion higher bid packets should
typically experience lower queuing delay than packets
with lower bids. However, since low bid packets
nevertheless will have a chance of being served, they will
not be starved. Even if high bid packets keep arriving,
low bid packets will still receive a share of the bandwidth
proportional to their bid value.

One side effect of Lottery Scheduling is that packets
in a flow have a higher probability of arriving out of order
at the receiver. When a flow has more than one packet in a
router’s queue, each packet has equal probability of being
forwarded next (assuming the flow has not changed the
bid value carried by its packets). In order to ensure proper
ordering, we would have to maintain an additional queue
for each flow.

Deterministic Scheduling always forwards the packet
with the highest bid. If the queue contains multiple
packets with the same highest bid value, they are served
in FIFO order. As long as a flow does not change its bid
value, Deterministic Scheduling will not reorder queued
packets belonging to a flow.2 The disadvantage of
Deterministic Scheduling is the possibility of starvation;
if higher bid packets keep arriving, lower bid packets will
never be served.

3.2.2. Dropping Policies
We consider three dropping policies: Lottery Drop,

Deterministic Drop, and the standard Drop Tail policies.
The mechanism behind Lottery Drop is analogous to

that of Lottery Scheduling. When a new packet arrives at
a full queue it is placed in the queue and a lottery is held
to determine which packet to drop. For Lottery Drop the
probability of an individual packet being dropped is
proportional to the inverse of its bid value.

Pr(packet k is dropped) = (1/Bk) / ∑j (1/Bj).
Hence higher bid packets are less likely to be dropped

than lower bid packets.
Deterministic Drop selects the lowest bid packet in

the queue to drop. If there is more than one packet with
the same lowest bid, the latest to arrive is dropped.

3.2.3. Interactions of Scheduling and Dropping
Policies

As stated above, a queuing mechanism is defined by
its scheduling discipline and dropping policy. When

                                                

2 However, packets can still arrive out of order at the receiver
due to network topological or routing changes.

combined into a single queuing mechanism, the
scheduling discipline and dropping policy are no longer
independent. For example, focusing on the time spent by
a single packet in the queue, the number of packets served
prior to this packet influences the chances of this packet
being dropped. Likewise, the number of other packets
dropped influences the amount of time the packet must
wait before it sees service. Hence, it is important to
compare complete queuing mechanisms rather than just
the forwarding or dropping policies. The following are the
combinations of scheduling disciplines and dropping
policies we have studied:
1. FIFO scheduling with Drop Tail (FSDT). This is the

traditional router queuing mechanism.
2. Lottery Scheduling with Drop Tail (LSDT). Lottery

Scheduling provides lower latencies for higher bid
packets. Drop Tail guarantees that once a packet
enters the queue it will eventually be served.

3. Lottery Scheduling with Lottery Drop (LSLD). This
combination tends to favor higher bid packets in both
forwarding and dropping. A packet that has entered
the queue is not guaranteed to be forwarded.

4. FIFO Scheduling with Lottery Drop (FSLD). This
combination favors higher bid packets only when
there is enough congestion to cause the queue to
overflow.

5. Deterministic Scheduling with Deterministic Drop
(DSDD). This combination always forwards the
highest bid packet and drops the lowest bid packet.

3.2.4. Experiments
We have investigated the relative ability of the various

queuing mechanisms to differentiate QoS using an
experimental testbed implemented in the FreeBSD 3.2
operating system kernel. Results on constant flow
priorities (to be reported elsewhere) confirm the value-
sensitivity of lottery-based schemes compared to FIFO
and drop tail, and their flexibility relative to deterministic
schemes. Initial results on adaptive behavior with
dynamic flow priorities are reported in Section 4.2 below.

4. Dynamic Allocation Scenarios

We consider two kinds of dynamic allocation
scenarios to demonstrate the inherent survivability of
market-based architectures. In both, a “normally
operating” system is subjected to a resource shock—a
sudden variation in resource availability or need—and
must dynamically reallocate to address the qualitative
change in environment. In the first, which we call a
discrete scenario, the system has achieved a steady-state
allocation before the shock event, which may consist of a
lost asset, loss of a key participant, or insertion of a new
high priority task. In the second, continuous scenario
category, the system never reaches a steady state, as some
amount of continual variation of resources and tasks is
always present. The resource shock in this case is a
qualitative jump in the degree of this variation.



Dynamic properties necessary for survivability can be
exhibited in the context of both kinds of scenarios. We
have developed in-depth models of instances of both
discrete and continuous allocation models. In this section
we describe abstract versions of discrete and continuous
resource-shock scenarios, in turn.

4.1. Discrete Shocks in Task Dependency
Networks

In complex activities, achievement of an overall
objective may require accomplishment of various tasks,
which themselves may require subtasks, and so on. A
plan will therefore specify an entire network of task
accomplishment, with each path in the network
representing a supply chain, that is, a sequence of
relationships where one task is provided as input to the
next in the chain, until the final objective is achieved.

For example, consider a hypersimplified military
scenario, where a commander wishes to execute an air
attack. Air attacks require a bomber squad and a fighter
squad, and these in turn require airfields.3 Given a
specification of the available resources and task-
achievement options, we can formulate a task dependency
network (Walsh and Wellman 1998) describing the
possible configurations. A solution  to the planning
problem is a subnetwork specifying the assignment of
tasks and subtasks so that the end objective is satisfied.
When there is no resource contention, as in the network
shown in Figure 3, deriving an allocation supporting the
air attack is simple.

Airfield 2b
Fighter Squad 2

Paratroopers 2

Bomber Squad 2

Airfield 2a

Airfield 1b

Airfield 1a

Fighter Squad 1

Paratroopers 1

Bomber Squad 1

Commander 1
Air Attack

Figure 3: A task dependency network, no
resource contention.

                                                

3 Squads and airfields might be viewed as resources rather than
tasks, unless we interpret the squad, for example, as just a shorthand
for the mission the squad performs. Which view is more natural is
situation-dependent, and so we use the terms task and resource
interchangeably in this discussion. Note that in this example, we assume
that the different forces are interchangeable, within each type (e.g.,
bomber squads 1 and 2 are equivalent with respect to what they can
accomplish).

If a new task arrives, however, as represented by
“Commander 2” in Figure 4, resource requirement may
conflict with the previous allocation. In the example, the
ground attack cannot be accomplished, because there are
not enough airfields to support the units required for both
attacks.

Commander 1
Air Attack

Commander 2
Ground Attack

Airfield 2b
Fighter Squad 2

Paratroopers 2

Bomber Squad 2

Airfield 2a

Airfield 1b

Airfield 1a

Fighter Squad 1

Paratroopers 1

Bomber Squad 1

Figure 4: A second task objective introduces
resource contention.

If the new task is higher priority than the old, then we
would like the system to adapt by dynamically
reallocating the airfields to squads participating in the
new activity. A market-based system can perform this
reallocation as follows. The diagram of Figure 5 depicts a
computational market in tasks and resources, with agents
rendered as rectangles and exchangeable goods as circles.
The shaded elements represent the steady-state solution to
the initial situation, without resource contention (prices
not shown).

Commander 1

Airfield 1a

Airfield 2 a

Bomber squad 1

Ground Attack

Bomber squad 2

Airfield 1b

Airfield 2 b

Fighter squad 1

Fighter squad 2

Paratroopers 1

Paratroopers 2

Air Attack

Figure 5: A computational market representing
the task dependency network.

To represent the resource shock, we introduce a new
agent, Commander 2, who places a significantly higher
value on its mission than did the first commander. The
market, starting from the previous allocation and prices,
adjusts prices until no agents change their bids. In the
new steady-state solution, the higher priority task is
achieved, and the lower priority task is unaffordable. (If
both were possible, then both could be supported by the



market.) The extended network, with task valuations and
final prices, is shown in Figure 6.

Commander 1

Airfield 1a

Airfield 2 a

Bomber squad 1

Ground Attack

Bomber squad 2

Airfield 1b

Airfield 2 b

Fighter squad 1

Fighter squad 2

Paratroopers 1

Paratroopers 2

Air Attack

Commander 2

$7

$7

$7

$7

$7 $22

$10 $10

$30

$2

$3

$2

$3

Figure 6: Allocation and prices on
introduction of Commander 2’s task.

In this case, contention for the scarce airfields drives
their price to $7, even though airfield “suppliers” have
costs of only $2 or $3. The force producers sell their
services for $7, and thus make no profits. The ground
attack producer makes a slight profit, selling its service
for $1 more than the combined cost of its force inputs.
Note that the inactive (unshaded) producers cannot make a
profit at the given prices, and so drop out. Although the
specific prices resulting depend on the agent strategies and
order of communication, the general pattern where
profitable producers are active and unprofitable ones not
so is a general characteristic of these protocols.

We have developed a formal characterization of these
task dependency networks, and have studied a precise
market protocol, specifying the allocation mechanisms
and agent bidding strategies (Walsh and Wellman 1998).
We have found that a broad class of networks reliably
converge to a solution—even in a completely
asynchronous setting—as long as the value of the end
task sufficiently exceeds its ultimate cost (Walsh and
Wellman 1999a). This implies that the protocol
successfully adapts to discrete resource shocks of the sort
described above, if the new task has sufficiently higher
value than the others in the network. Similarly, the
protocol can also handle necessary reallocations in case of
loss of resources, loss of agents, or exogenous increases
in cost of resources, so long as some tasks have
sufficiently high value relative to the costs of surviving
resources.

In the present discussion, we assumed that we could
continue the market at the previous prices in response to a
shock. While this is a realistic assumption if the shock
occurs during negotiation, agents may not wish to
continue as such if the exchange contracts have been
finalized. We consider it an interesting avenue for future
work to analyze protocols for agents to reallocate tasks for
which they have acquired rights.

The task dependency network model is quite general,
covering a broad range of planning and scheduling
problems involving limited resources. Formally, the
problem is NP-hard, which means that any propositional

satisfiability (SAT) problem can be encoded in a task
dependency network. As a result, the market protocol
implements a decentralized procedure for a broad range of
combinatorial optimization problems.4

4.2. Shocks in a Continuous Network
Allocation Problem

Unlike the episodic task allocation considered above,
in continuous dynamic scenarios, the commodities
themselves are typically controllable at fine grain. In
addition, the allocation is continuously updated over time
as computational and communicational activities originate
and terminate on the system. Resource shocks take the
form of sudden changes in the profile of resources
available or activities demanded.5

In preliminary studies of the packet scheduling
problem (Section 3.2), we have verified some expected
qualitative behaviors of adaptation to continuous resource
shocks. Upon shocks (such as a sudden increase in
priorities for a fraction of service requests), a system
under the control of lottery scheduling rapidly transitions
to an appropriate revised profile of service levels. The
speed and sharpness of the transition depends
significantly on the volume and nature of the fraction of
traffic that is unchanged by the shock.

For example, Figure 7 shows the response of network
traffic to two shocks, measured in terms of the percentage
of sent packets received (i.e. not dropped due to buffer
overflow). We initially experiment with 40 connections
all submitting the same bid value with each packet to be
delivered. Around 100 seconds into the experiment, half
of the connections increase their priority (and hence bid
values) five-fold. As the graph shows, when network
switches implement the lottery drop (LD) policy,
connections that increase their bid values immediately see
improvements on the percentage of packets received at the
destinations. This comes at the cost of worse service
experienced by lower bidding connections. At around 200
seconds into the experiment, half of the connections that
earlier raised their bid value double them again. These
connections again immediately see improvements in
service over those that do not raise their bids. Finally, at
around 300 seconds into the experiment, the highest
bidding connections lower their bids back down by half.
This results in half of the connections again receiving the
same service that is better than the service seen by the
other half that never raised its bid value. Figure 7 also
shows that if in addition to lottery drop network switches

                                                

4 We are not claiming that the particular decentralization arising
from the SAT reduction is a natural one or useful per se. However, it is
perhaps surprising that such problems can be solved reliably without
systematic or explicitly stochastic search.

5 In general the quantity and time scales need not match: there are
common problems involving continuously varying quantities allocated
at discrete intervals; likewise there are interesting problems in the
allocation of discrete goods continuously over time (e.g., airport
landing slots, (Rassenti, Smith, and Bulfin 1982)).



also implement lottery scheduling (LS), as opposed to
first-in-first-out scheduling (FS), packets with higher bids
see additional preferential treatment.

Figure 7: Response to shock with constant bit
rate transmissions.

All the connections in the experiment described above
transmitted at constant bit rate. Researchers in network
traffic characterization have observed long-range
dependency in aggregate network traffic (Leland et al.
1994). To study the effectiveness of our market-based
packet scheduling mechanism on long-range dependent
traffic, we conduct a similar experiment on sources
generating on-off traffic with Pareto distributed on and off
times. Aggregate traffic from such sources has been
shown to exhibit long-range dependency (Willinger
1995). Figure 8 shows that in the face of long-range
dependent traffic, while higher bidders continue to receive
preferential treatment under lottery drop, and an
exaggerated preferential treatment under lottery
scheduling, lower bidders do not suffer as much as in the
previous case. The high variance of long-range dependent
traffic allows lower bidding traffic to continue to be
served at network switches, albeit with a longer delay.
Hence, when network traffic is very bursty, lower bidding
traffic experiences longer queuing delay but not higher
loss rate.

Figure 8: Shock response with Pareto-
distributed background traffic.

5. Computational Market Testbed

Our computational market infrastructure is based on
the Michigan Internet AuctionBot,6 a configurable auction
server that supports a wide range of negotiation
mechanisms. The AuctionBot has a web interface for
human traders, as well as an API for software agents. In
addition, we have built extended modules (“agentware”)
to facilitate development of software traders, and tools for
specification of entire market configurations. Thus, the
AuctionBot serves as a general tool for rapid construction
of market-based demos.

CGI / API

Scheduler

Auctioneer
KernelDatabase

data

Bid or 
withdraw
event All events

Clear, quote,
or expire 
event

New data
or update Select and 

update data

Update
data

Figure 9: AuctionBot architecture and data
flow diagram.

The basic organization and operation of the
AuctionBot is depicted in Figure 9. Human or software
agents create auctions or submit bids via web or
programming interfaces (O'Malley and Kelly 1998). A
scheduler maintains a queue of pending
events—processing bids, clearing auctions, or releasing
information. An event is activated when it rises to the top
of the queue (i.e., all necessarily prior events have been
initiated) and its earliest activation time (if any) is past.
The schedule passes activated events to the respective
auctioneer kernels, which ensure that the events are
executed in a manner respecting temporal consistency
                                                

6 http://auction.eecs.umich.edu/



(Wellman and Wurman 1998b). A relational database
maintains persistent data about bids, agents, and auction
specifications, providing availability of relevant
negotiation information to agents even when auction
processes are inactive or excessively busy.

The AuctionBot is designed to cover a large class of
conceivable auction mechanisms, as defined by our
systematic parametrization of the design space (Wurman,
Wellman, and Walsh to appear). This configurability is
implemented by a flexible multi-level scheme supporting
multiple representations for bids and order books (sets of
bids), and multiple clearing algorithms implementing
allocation rules. As depicted in Figure 10, some
characteristics of bid and order-book representations are
generic to all auctions, some depend on the form of bids
allowed, and yet others are optimized for particular
clearing algorithms. For example, the “4-heap” data
structure supports a broad class of allocation mechanisms
for discrete goods (Wurman, Walsh, and Wellman 1998),
but can be overridden in a modular manner to support
alternative or new mechanisms.

4-heap algorithm

bid table (hashed)
user ID ptr

BidData

Internal
Representation

Auctioneer base class

Language Level Class

Algorithm Level Class

Expiration
Queue

PQ Notification
 (Doubly 
 Linked
 List)

CP Notification
 (Doubly 
 Linked
 List)

Figure 10: Flexible multi-level data structures
for bids and order books.

Current work is developing AuctionBot functionality
further, in particular (1) augmenting the range of
negotiation mechanisms, (2) improving tools for
specification of scenarios, (3) and extending the API and
agentware, especially to facilitate participation by third-
party agent developers.7

Other technical enhancements to the market protocols
underway are designed to improve their acceptability in
real distributed computation environments. These include

                                                

7 The AuctionBot has been operational and available over the
Internet since 1997, and versions of our agentware are already
available.

• Protocol layers addressing security and privacy
requirements (Harkavy, Tygar, and Kikuchi 1998;
Kelly 1998; Naor, Pinkas, and Sumner 1999).

• A protocol layer for distributed detection of
quiescence in the negotiation process (e.g., when
a steady state is reached after a shock). Our
approach (Wellman and Walsh 1999) is based on
an extension of the Dijkstra-Scholten algorithm
for detecting termination in a diffusing
computation (Dijkstra and Scholten 1980; Lynch
1996).

6. Discussion: Evaluating Adaptive
Behavior

To make statements about inherent survivability based
on our work, we require evaluation criteria for the
adaptivity properties of our demonstrated architecture.8

Adaptation is required only in the event of
unanticipated change, so we define adaptation scenarios in
terms of the cause and nature of changes. Adverse changes
in fundamental operating conditions (“failures”) may be
caused by intentional attacks as well as accidental causes
(e.g., hardware or software bugs). Other changes in the
environment may not be considered failures, but may
nevertheless entail significant adaptation due to new
directives, loss of resources, additional resources
introduced, or other revisions in capabilities. For our
purposes the cause of the resource shock is typically not
relevant, as the allocation problem is the same regardless
of whether the change in resource environment is due to
an intentional attack or accidental event.9

The second question is how to evaluate an adaptation
episode. The standard of performance is with respect to
the behaviors possible given the resource shock; it is not
useful to compare performance to what could have been
achieved in the absence of a shock. We presume that the
system is comprised of multiple participants (i.e., we
have a distributed or multiagent system), each with its
own objectives or preferences over possible outcomes.
These outcomes in general characterizes complete
temporal courses of activity, not just instantaneous states.
The overall welfare of a system is some function of the
outcomes of all of the respective participants, accumulated
over time. For example, one simple welfare function
would be a time-discounted sum of utility functions

                                                

8 Some of this discussion is based on the report of the “Measuring
Adaptivity” working group at the DARPA/ITO Workshop on Adaptive
Architectures for Information Survivability, May 1998. Group
members were V. Lesser, F. Webber, M. Wellman, D. Wells, and
Y. Yemini. Views expressed here, of course, are our sole
responsibility.

9 However, the cause is highly relevant to anticipation and
prevention of future resource shocks. We view this as outside the
scope of what market-based architectures provide. Prediction and
prevention techniques (e.g., intrusion detection) are thus
complementary rather than competitive methods.



representing the respective preferences of all of the
participants.

For example, consider the response of the task
network protocol to discrete shocks, as discussed in 4.1.
We have been able to establish that under certain
conditions, the protocol responds successfully to adverse
shocks, such as the loss of a basic resource or of some
production capability, or increase in cost or degradation of
same. “Successfully” here means that if a good enough
solution exists in the degraded state, then the protocol
will find it when resumed from a previous steady state.

This characterization of adaptivity is quite helpful, but
it does not provide a quantitative measure of the quality
of solutions reached. We have begun to evaluate the
quality of solutions found for the baseline market-based
task network protocol (without shocks), by measuring the
total surplus achieved by all agents in the system (Walsh
and Wellman 1999a). The surplus for a given agent is the
difference between the value of what it obtains, and what
it pays. In a series of randomly generated task allocation
networks, we found that solutions achieved about 83% of
the optimal surplus on average. Most of the efficiency
loss was due to agents that purchased one or more inputs
without selling their outputs. By extending these
protocols to permit decommitment (Sandholm and Lesser
1996) in such cases, we can recover much of the
inefficiency, and achieve 97% of total surplus on average
(Walsh and Wellman 1999a).

These results are merely suggestive, as exact values
will depend on the method for generating problem
instances, among other factors. Moreover, for evaluating
adaptivity we must examine specific shock scenarios. In
this case, we would expect the system to achieve
comparable fractions of available surplus for the case of
shocks attributed to lost resources, rising resource costs,
or the introduction of higher valued tasks. Whether the
protocol would prove to be as effective at adapting to the
availability of new resources or production capabilities is
an open question.

In related work, we have emphasized the importance
of evaluating the time path of performance, and
comparing different solutions based on their time-
discounted sum of agent utilities over time (Brooks et al.
1999). For example, one solution might be guaranteed to
yield the highest value once the adjustment to the new
situation is complete, whereas another has a lower
ultimate value, but rises towards its steady-state value
much more quickly. Enough advantage over the earlier
periods following the shock may outweigh, after
discounting, permanent long run gains from the former
approach.

Finally, in evaluating adaptivity we must consider
some overarching criteria that go beyond quality of
allocations achieved. These include online costs, such as
overhead of the adaptive infrastructure, as well as offline
costs, such as the effort in building the infrastructure,
creating interfaces for system components, and modeling

domains so they can effectively exploit the adaptive
features of the system.
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