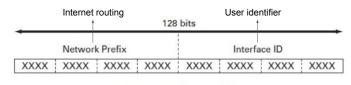
Temporal and Spatial Classification of Active IPv6 Addresses

David Plonka • Arthur Berger Proc. of ACM IMC '15, Oct 2015.

Presented by Yibo Pi and Ryan Marcotte

IPv4 Address Exhaustion


IPv4 Address Report

This report generated at 01-Dec-2016 08:14 UTC. IANA Unallocated Address Pool Exhaustion: 03-Feb-2011 Projected RIR Address Pool Exhaustion Dates: Regional Internet Projected Exhaustion Date Remaining Addresses in RIR Pool (/8s) -RIR registry APNIC: 19-Apr-2011 (actual) 0.4360 RIPE NCC: 14-Sep-2012 (actual) 0.7997 LACNIC: 10-Jun-2014 (actual) 0.0267 ARIN: 24 Sep-2015 (actual) AFRINIC: 27-Jun-2018 1.3309 African Network Information Center

Interesting Facts about IPv6

- You can use IPv6 to create 18,446,744,073,709,551,616 copies of the current Internet
- An IPv6 address has 128 bits
 - Forget about remembering a non-special IPv6 address

IPv6 Address Format

XXXX = 0000 through FFFF

IPv4:

 Static configuration
 Dynamic Host Configuration Protocol (DHCP)

IPv6:

- 1. Static configuration
- 2. Dynamic Host Configuration Protocol (DHCP)
- 3. Stateless Address Autoconfiguration (SLAAC)

Stateless Address Autoconfiguration (SLAAC)

 2001:db80:0000:0000:0000:0000:0001 Gateway

 0123:4567:89ab
 48 bits
 MAC

 0123:45ff:fe67:89ab
 48 + 16 bits = 64 bits
 MAC after padding

 2001:db80:0000:0000:0010:0123:45ff:fe67:89ab
 Final IP address

 First 64 bits of gateway
 Last 64 bits: padded MAC

SLAAC = network prefix + padded MAC address

Privacy extension to SLAAC

- MAC address is unique: users can be identified by their MAC addresses
 - Privacy extension: randomly select IIDs

•

- Question: two users select the same IID?
- \circ $\;$ IPv6 Duplicate Address Detection (DAD) monitors if addresses duplicate
- Random IIDs deprecate typically after a day

Active IPv6 addresses

Dataset: aggregated logs of servers (55000 of CDN's IPv6-capable servers)

/							
Characteristic	Mar 17,	Sep 17,	Mar 17,	Characteristic	Mar 17-23,	Sep 17-23,	Mar 17-23,
	2014	2014	2015		2014	2014	2015
Teredo addresses	1.98K (0.00%)	3.28K (0.00%)	20.1K (0.01%)	Teredo addresses	15.1K (0.00%)	24.5K (0.00%)	131K (0.01%)
ISATAP addresses	90.2K (0.06%)	101K (0.04%)	133K (0.04%)	ISATAP addresses	210K (0.02%)	238K (0.02%)	346K (0.02%)
6to4 addresses	12.8M (7.97%)	12.5M (5.90%)	13.9M (4.19%)	6to4 addresses	64.9M (7.22%)	78.3M (6.34%)	64.2M (3.43%)
Other addresses	149M (92.0%)	199M (94.1%)	318M (95.8%)	Other addresses	833M (92.8%)	1.17B (94.9%)	1.80B (96.5%)
Other /64 prefixes	61.4M	82.9M	121M	Other /64 prefixes	157M	207M	307M
Other /64 prefixes ave. addrs per /64	61.4M 2.41	82.9M 2.40	121M 2.63	Other /64 prefixes ave. addrs per /64	157M 5.32	207M 5.64	307M 5.88
ave. addrs per /64	2.41	2.40	2.63	ave. addrs per /64	5.32	5.64	5.88

Table 1: Active IPv6 WWW client address characteristics: March 2014 through March 2015.

Teredo: full connectivity for IPv6-capable hosts having no native connections ISATAP: transmit IPv6 packets between dual-stack nodes

6to4: allows IPv6 packets to be transmitted over an IPv4 network w/o tunnels

Not native IPv6 (not all infrastructure supports IPv6)

Active IPv6 addresses

• Dataset: aggregated logs of servers (55000 of CDN's IPv6-capable servers)

Characteristic	Mar 17,	Sep 17,	Mar 17,	Characteristic	Mar 17-23,	Sep 17-23,	Mar 17-23,
	2014	2014	2015		2014	2014	2015
Teredo addresses	1.98K (0.00%)	3.28K (0.00%)	20.1K (0.01%)	Teredo addresses	15.1K (0.00%)	24.5K (0.00%)	131K (0.01%)
ISATAP addresses	90.2K (0.06%)	101K (0.04%)	133K (0.04%)	ISATAP addresses	210K (0.02%)	238K (0.02%)	346K (0.02%)
6to4 addresses	12.8M (7.97%)	12.5M (5.90%)	13.9M (4.19%)	6to4 addresses	64.9M (7.22%)	78.3M (6.34%)	64.2M (3.43%)
Other addresses	149M (92.0%)	199M (94.1%)	318M (95.8%)	Other addresses	833M (92.8%)	1.17B (94.9%)	1.80B (96.5%)
Other /64 prefixes	61.4M	82.9M	121M	Other /64 prefixes	157M	207M	307M
Other /64 prefixes ave. addrs per /64	61.4M 2.41	82.9M 2.40	121M 2.63	Other /64 prefixes ave. addrs per /64	157M 5.32	207M 5.64	307M 5.88
ave. addrs per /64	2.41	2.40	2.63	ave. addrs per /64	5.32	5.64	5.88

Table 1: Active IPv6 WWW client address characteristics: March 2014 through March 2015.

Teredo: full connectivity for IPv6-capable hosts having no native connections ISATAP: transmit IPv6 packets between dual-stack nodes 6to4: allows IPv6 packets to be transmitted over an IPv4 network w/o tunnels

Not native IPv6 (not all infrastructure supports IPv6)

Active IPv6 addresses

Dataset: aggregated logs of servers (55000 of CDN's IPv6-capable servers)

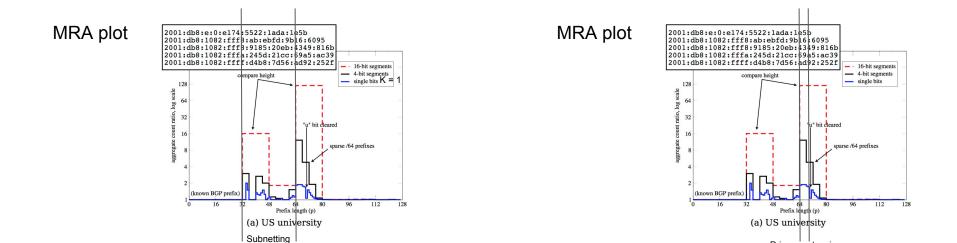
Characteristic	Mar 17,	Sep 17,	Mar 17,	Characteristic	Mar 17-23,	Sep 17-23,	Mar 17-23,
	2014	2014	2015		2014	2014	2015
Teredo addresses	1.98K (0.00%)	3.28K (0.00%)	20.1K (0.01%)	Teredo addresses	15.1K (0.00%)	24.5K (0.00%)	131K (0.01%)
ISATAP addresses	90.2K (0.06%)	101K (0.04%)	133K (0.04%)	ISATAP addresses	210K (0.02%)	238K (0.02%)	346K (0.02%)
6to4 addresses	12.8M (7.97%)	12.5M (5.90%)	13.9M (4.19%)	6to4 addresses	64.9M (7.22%)	78.3M (6.34%)	64.2M (3.43%)
Other addresses	149M (92.0%)	199M (94.1%)	318M (95.8%)	Other addresses	833M (92.8%)	1.17B (94.9%)	1.80B (96.5%)
Other /64 prefixes	61.4M	82.9M	121M	Other /64 prefixes	157M	207M	307M
Other /64 prefixes ave. addrs per /64	61.4M 2.41	82.9M 2.40	121M 2.63	Other /64 prefixes ave. addrs per /64	157M 5.32	207M 5.64	307M 5.88
ave. addrs per /64	2.41	2.40	2.63	ave. addrs per /64	5.32	5.64	5.88

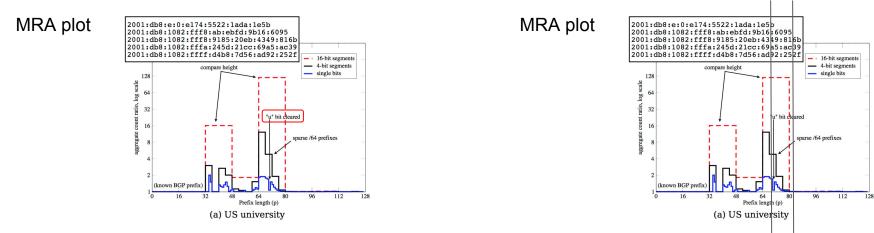
Table 1: Active IPv6 WWW client address characteristics: March 2014 through March 2015.

EUI-64 IID: 64-bit interface ID (padded MAC address)

Classifying IPv6 Addresses

- Spatial classification
 - Multi-Resolution Aggregate (MRA) Count Ratio
 - Prefix Density
- MRA count ratio
 - Suppose we have N addresses
 - We need n prefixes of /p size to contain all N address
 - Count ratio $y_p = n_{p+k}/n_p$ (k = 1, 4, 16)


Example: k = 1 2001:db8:e:0:e174:5522:1ada:1


2001:db8:e:0:e174:5522:1ada:0

We need two /128 or one /127 or one /126 prefix to contain these two addresses $y_{127} = n_{128}/n_{127} = 2$

Privacy extension

 $y_{126} = n_{127}/n_{126} = 1$

Sparsity

MRA plot

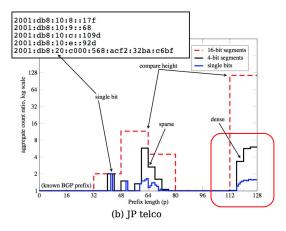
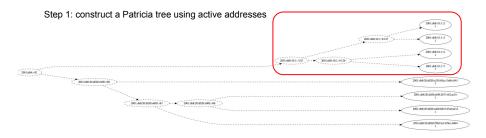
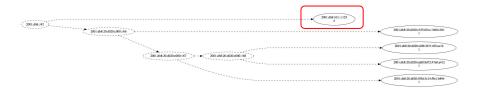



Figure 2: Sample MRA plots for active IPv6 client addresses (a) a university prefix with 7.22K addresses and (b) a telco prefix with 12.8K addresses.

Classifying IPv6 Addresses

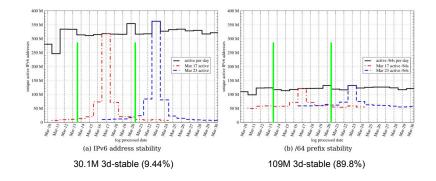

- Spatial classification
 - Multi-Resolution Aggregate (MRA) Count Ratio
 - Prefix Density
- Prefix density
 - Two parameters
 - n: the number of addresses to be dense
 - p: prefix length
 - 'n@p-dense': the class of prefixes of length p that contain at least n addresses

Computing dense prefixes


Computing dense prefixes

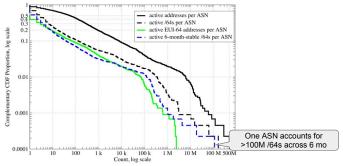
Step 2: aggregate nodes that satisfy the density requirement

Computing dense prefixes


Step 3: output

Temporal Classification

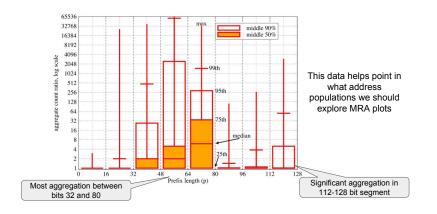
- Goal
 - Determine address lifetime
 - \circ \quad Separate addresses that are persistent or stable from these not
- "6m-stable": if x is observed at some time and also 6 months earlier
- "nd-stable": there exists observations of activity on two days that are (n-1) days apart
- In daily stability analysis, a sliding 15-day window entered at the day is used


Address and Prefix Stability

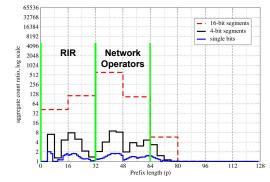
Summary of Address/Prefix Stability

<u> </u>		0 47 0044	10 10 0015	C (0.4 - 1		10 10 0011	0 45 0044	1.1	17 0015	
addr class	Mar 17, 2014	Sep 17, 2014	Mar 17, 2015	/64 class		Mar 17, 2014	Sep 17, 2014	M	ar 17, 2015	
3d-stable	13.7M (9.22%)	13.6M (6.84%)	30.1M (9.44%)	3d-stable		55.8M (91.0%)	74.6M (89.9%)	109	M (89.8%)	
not 3d-stable	134M (90.8%)	185M (93.2%)	288M (90.6%)	not 3d-stable		5.53M (9.01%)	8.33M (10.1%)	12.	3M (10.2%)	
6m-stable (-6m)	588K (.296%)	1.08M (.340%)	6m-stable (-6)	m)		23.4M (28.2%)	32.	4M (26.7%)	
1y-stable (-1y)			328K (.103%)	1y-stable (-1y)			21.	8M (18.0%)	
(a)	Stability of IPv6	addresses per	day		(b) St	tability of /64	prefixes per	day		
addr class	Mar 17-23, 2014	Sep 17-23, 2014	Mar 17-23, 2015	/64 class		Mar 17-23, 20	14 Sep 17-23,	2014	Mar 17-23, 2015	1
3d-stable	37.0M (4.44%)	34.0M (2.91%)	69.0M (3.82%)	3d-stable		131M (83.7	%) 169M (81	.8%)	246M (80.3%)	i –
not 3d-stable	796M (95.6%)	1.13B (97.1%)	1.74B (96.2%)	not 3d-stab	le	25.5M (16.3	%) 37.7M (18	.2%)	60.6M (19.7%)	1
6m-stable (-6m)		3.25M (.280%)	3.66M (.202%)	6m-stable (-6m)		120M (58	.1%)	153M (49.9%)	1
1y-stable (-1y)			1.81M (.100%)	1y-stable (-	1y)				116M (37.8%)	1
(c) Stability of IPv6 addameters of per week (d) Stability of /64 prefixes per week										
Relatively few very long-lived client addresses and prefix counts, not 6to4 or Tereda Many long-lived /64 prefixed										

Address/Prefix Counts by ASN

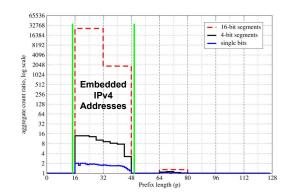


Most long-lived /64s are in only a few networks!

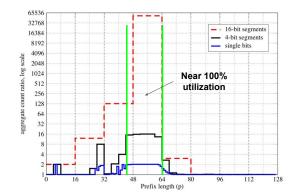

Address/Prefix Stability Discussion

- Stable addresses make reliable targets for active probing
 - Randomly selected 3.18M 3d-stable addresses
 - Performed 52.6M traces to them from 20 source locations
 - Received response from 10.9% of "stable" targets compared to 0.3% of randomly selected "active" targets
- "Not 3d-stable" addresses
 - Vast majority are expected to be hosts using privacy-extension IID
 - Some EUI-64 addresses have same IID but different subnet prefix (e.g. device moved between networks)
- Future work: what temporal classes are most useful?
- Active/stable /64s as approximate lower-bound on subscribers or instances of IPv6-capable Internet connections?
 - 116M 1y-stable /64s observed March 2015

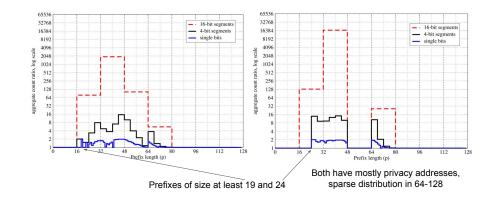
Distribution of Aggregation Ratios

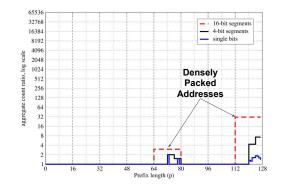


MRA plot - "30,000-foot view"



ALL active WWW client addresses observed in IPv6 unicast address space


MRA plot - 6to4 Clients


MRA plot - U.S.-based Mobile Carrier

MRA plot - European ISP vs. Japanese ISP

MRA plot - European University

Discussion

- Limitation
 - Experiments under fixed parameters
 - For example, single sliding window size or 3d-stable
 - Temporal classification does not provide enough insights
 - Temporal stability is not well-defined (may be restricted by the dataset they have)
- Extension
 - Study more attributes (geolocation, regions) of IPv6 addresses
 - Analyze the path performance (e.g., circuitous routing) of using IPv6 addresses
 - Study the performance of redirection on clients with IPv6 addresses in CDNs