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Summary 

The authors propose and develop Administrator Control over Datacenter TCP (AC/DC) to 

allow network administrators to control tenant TCP stacks without making modifications 

to virtual machines (VMs) or datacenter hardware. AC/DC places per-flow congestion 

control at the virtual switch (vSwitch) on top of which multiple tenants run. Individual 

tenants can use their own congestion control algorithms, but control is ultimately 

determined by the algorithm running on the vSwitch. Flows are altered at the vSwitch to 

support different parameters required to use AC/DC’s chosen congestion control algorithm 

for that flow. For example, if a flow is to be controlled using DCTCP, an ECN field will be 

added to packets in the flow and used by the receiving vSwitch. By adding and removing 

fields from flows, AC/DC uses its own congestion control algorithms to determine network 

congestion. In order to enforce congestion-based rate limiting, AC/DC vSwitch’s modify the 

RWND advertised to sending tenants.  The authors implemented AC/DC on a physical 

testbed of 17 IBM servers configured in various topologies to determine its ability to 

reduce packet delays, achieve high throughput, fairly allocate bandwidth, and quickly 

respond to flow churn. Through their evaluations, the authors find AC/DC to achieve packet 

delays and network throughput comparable to a cluster with each server individually 

running DCTCP. Further, the authors show that AC/DC adds less than one percent 

computational overhead to vSwitches. 

 

1He, K. et al., "AC/DC TCP: Virtual Congestion Control Enforcement for the Datacenter Networks," Proc. of ACM 
SIGCOMM '16, 45(4): 244-257, Aug. 2016. 
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Contributions, Highlights and Novelties 

Below are the contributions and highlights we appreciated while reading the paper.  

1. The Enforcement of Per-flow Congestion Control in vSwitch and its Benefits 

Though mentioned in the paper, we want to stress the novelty, convenience and 

applicability of enforcing per-flow congestion control in vSwitch, especially given the 

constraints of leaving the VM and network hardware unchanged. We appreciate several 

benefits brought by this design. First, by supporting uniform congestion control across the 

datacenter, AC/DC TCP alleviates the problem of varying TCP stacks on the same fabric and 

thus enhances fairness . Second, different congestion control algorithms can be applied on 

the per-flow basis, which enhances flexibility  to prioritize flows to meet certain 

requirements. Third, by taking advantages of the mature vSwitch technology and various 

existing congestion control algorithms, the proposed AC/DC TCP is more like a highly 

modular add-on that is easy to understand and practical to implement  with relatively low 

labor and cost. Moreover, AC/DC TCP can co-exist with a bandwidth allocation scheme. 

2.  Clear Narrative of Motivation and Research Background 

Before delving into the implementations of AC/DC TCP, the authors managed to give a clear 

and brief summary of the research motivation and background, and how their work 

naturally fits into the big picture. The authors first use examples (Section 2.1) to 

demonstrate that congestion in datacenter networks has been shown to arise at relatively 

low levels of network utilization and to cause significant packet drops. Then, the authors 

describe the current proposed solutions: transport protocols like TCP have evolved to 

include advanced congestion control algorithms to reduce the number of packet drops that 

a connection experiences due to congestion and to alleviate the network of its congested 

state. Among these congestion control algorithms, the authors adopted Data Center TCP 

(DCTCP) in AC/DC, as it has proved particularly effective in avoiding congestion in 

datacenter networks [2]. Based on the research background, the authors motivate their 

work and formulate their research problem well. They emphasize the necessity of running 
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such congestion control algorithms atop operating systems with correct and up-to-date 

TCP implementations. However, it is unlikely that all among the myriad of VMs available to 

tenants in a public-cloud setting will have up-to-date TCP stacks. Thus, datacenter network 

administrators wishing to fine-tune the congestion control among tenants must either 

make modifications to VMs to support desired congestion control algorithms, or forbid the 

use of out-of-date VMs. We think the authors did a good job on building the background of 

their research problem and describing how their work can fill the gaps in current solutions. 

3. Examples of Implementations of Per-flow Differentiation 

We like the fact that instead of mentioning per-flow differentiation as a concept, the 

authors propose a priority-based congestion control algorithm to illustrate the usefulness 

of implementing different congestion control algorithms on a per-flow basis. The algorithm, 

together with its priority parameter, is straightforward and can demonstrate AC/DC TCP’s 

power and flexibility to adjust to different requirements. Similarly, the authors also show 

that administrators can enable per-flow bandwidth allocation schemes by bounding 

RWND. 

Possible Improvements and Extensions 

There are a number of ways in which the authors’ work could be improved upon or 

extended to strengthen the contributions listed above. This section outlines areas that 

could have improved the authors’ work and offers avenues for extension of the work. 

 

1. Evaluation with Flows that Cannot be Monitored by AC/DC 

In Section 3.3 of their paper, the authors note that AC/DC’s applicability is limited to 

unencrypted flows using TCP as their transport protocol. While TCP is a widely used 

protocol by datacenter applications, there exist scenarios where TCP is not the best 

transport protocol for a particular application. For example, applications seeking lower 

connection startup costs may prefer using a lighter transport protocol such as UDP, or may 

even implement their own transport protocols [3]. AC/DC is unable to control or monitor 

such applications. 
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Though it may be outside the scope of the authors’ work to attempt to control congestion 

for arbitrary transport protocols, the authors’ evaluation of AC/DC would have benefitted 

from an experiment in which some flows used a transport protocol that could not be 

monitored and controlled by AC/DC. This would help make clear how much of AC/DC’s 

benefits stem from the opportunity to influence the congestion control algorithms of all 

flows running in a cluster. If the average flow completion time in such an experiment is 

significantly higher than the average flow completion time in experiments in which all 

flows use TCP, there would be substantial motivation for extension of AC/DC to control 

arbitrary applications or for integration of AC/DC with existing network-level congestion 

control systems. 

 
2. Evaluation of Systems with Diverse Flow Types 

In Section 3.4, the authors discuss AC/DC’s ability to differentiate between flow types and 

enforce different congestion control algorithms depending on the flow type, but offer no 

evaluation of AC/DC when flows with different types are monitored concurrently. An 

interesting experiment to run might involve both intra-datacenter flows and WAN-destined 

flows simultaneously competing for bandwidth. In such a case, AC/DC should use a 

different congestion control algorithm for the different flows (e.g., DCTCP for 

intra-datacenter flows and CUBIC for WAN flows). It would be interesting to see how well 

AC/DC is capable of enforcing congestion control for these different algorithms at the same 

time. If AC/DC is unable to simultaneously support two distinct congestion control 

algorithms, its utility for general purpose datacenters is weakened. 

 
3. Scaling the Number of Supported Tenants 

On a virtualized datacenter node, multiple VM instances from different tenants will run 

atop the same vSwitch. Though AC/DC’s design has been greatly influenced by the need to 

support multi-tenant systems, the authors do not present evaluation of AC/DC’s ability to 

scale to support a large number of tenants on the same vSwitch. Such analysis would 

provide a better sense of AC/DC’s applicability as a production datacenter service. If AC/DC 
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cannot support a large number of concurrent VMs on a single vSwitch, its utility as a 

production service decreases significantly. 

 
4. Integration of AC/DC with Load-Balancing Systems 

A possible extension of AC/DC would be to integrate AC/DC with systems designed to 

provide load balancing for datacenter networks. Systems have been proposed to provide 

datacenter network load balancing based on congestion awareness. One such system, 

CONGA [1], provides congestion-aware load balancing without enforcing specific transport 

protocol usage among tenants. While CONGA uses congestion awareness to inform load 

balancing decisions, it does not explicitly attempt to mitigate congestion. Using AC/DC with 

CONGA could be an interesting way to provide both load balancing and congestion 

avoidance. Combining the two systems may provide additional benefits, as AC/DC’s 

congestion measurements could potentially be used by CONGA to determine the global 

levels of congestion among links. Integrating AC/DC with CONGA could require significant 

changes to each system, as CONGA is designed to be agnostic to transport protocols being 

used, while AC/DC currently supports only TCP. 
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