
AC↯DC TCP
Virtual Congestion Control Enforcement for 

Datacenter Networks
Keqiang He, Eric Rozner, Kanak Agarwal, Yu (Jason) Gu, Wes Felter, 

John Carter, and Aditya Akella

Presented by: Allison McDonald and Andrew Quinn

TCP Congestion Control in Public Datacenters
● Datacenter has no control over TCP/IP stack on VMs
● Dozens of different TCP Congestion Control algorithms exist and can interact 

with each other
● Ensuring that all VMs use up-to-date or uniform TCP/IP stacks is impossible

TCP Congestion Control in Public Datacenters Administrator Control over Datacenter (AC/DC) TCP
● Implement congestion control in 

vSwitch!
○ No changes to the VMs
○ Uniform congestion control 

across datacenter
○ Per-flow congestion control 

algorithm selection possible
○ Easy to move to vSwitch → 

congestion control is 
lightweight & portable



Bandwidth Allocation
● Transport layer schemes cannot enforce per-tenant bandwidth allocation
● But bandwidth allocation schemes cannot prevent congestion

○ Aggressive TCP/IP stacks can still flood switches “fairly”

● AC/DC aims to cooperate with or complement bandwidth allocation schemes

DCTCP
● Datacenter TCP (DCTCP) adjusts the sender’s rate based on the fraction of 

packets experiencing congestion
● Explicit Congestion Notification (ECN) bit set when switch queue length 

exceeds a congestion threshold

DCTCP Algorithm
Switch:
● Set ECN bit when Queue Length > K

Sender:
● Maintain fraction of marked packets (α)

For each RTT:

● Adaptive decrease

K
ECN = 1 ECN = 0

AC/DC Design and Implementation
● Obtain congestion control state information for each flow
● Implement DCTCP at the vSwitch
● Enforce Congestion Control

● Implemented in Open vSwitch (OVS)
● Flows hashed on 5-tuple (dport, daddr, sport, saddr, VLAN)
● Each flow is tracked at receiver and sender



Congestion Control State
At vSwitch:
● cwnd is maintained; starts at 10
● Can see all traffic, so:

○ Loss: if ack_seq <= snd_una, then dupack is incremented
○ Timeouts: when snd_una < snd_nxt and inactivity timer fires

Implementing DCTCP
● Add and remove ECN bits when packets go through the vSwitch
● Receiver module monitors congestion and reports it to sender using ACK 

packets
○ Piggy-back ACK (PACK): add data to ACK’s skb headroom
○ Fake ACK (FACK) when PACK creates larger MTU than allowed

○ IP header checksum, IP packet length, and TCP data offset are recalculated; TCP checksum 
calculated by NIC

Implementing DCTCP
● At sender, cwnd calculated
● If no congestion was encountered, 

tcp_cong_avoid() expands cwnd 
based on TCP’s New Reno 
algorithm

Enforcing Congestion Control
● vSwitch commandeers sender’s advertised rwnd to push its cwnd to receiver

○ Only overwritten when AC/DC cwnd < sender’s rwnd

● Well-behaved TCP stacks will follow the standard and adhere to rwnd
● vSwitch can identify misbehaving TCP stacks (sending more than rwnd) and 

drop excess packets
● Because VM-level ECN feedback is removed, AC/DC’s cwnd is the limiting 

factor, allowing more data to be sent (allegedly)



Potential Extensions: Per-Flow Congestion Control
● Per-flow bandwidth allocation easy by capping cwnd
● Congestion control algorithm can be chosen based on flow

○ For example, CUBIC for flows to the WAN, DCTCP for internal flows

● Priority possible for service classes
β ϵ [0,1]

Performance Evaluation
● Is AC/DC underneath regular Linux TCP comparable to DCTCP 

performance? 
○ TCP throughput
○ Loss rate
○ Jain’s fairness index 
○ Flow completion time

● Across microbenchmarks and macrobenchmarks?

Microbenchmarks
Each sender starts long lived flow:

● DCTCP and AC/DC have .03 (1%) 
lower throughput than standard 
TCP, and .05 (5%) better fairness

● RTT for 50th and 99th:
○ AC/DC: 124us & 279us 
○ DCTCP: 136us & 301us
○ CUBIC: 3.3ms & 3.9ms 

Why is AC/DC better? 
- More on this later

Microbenchmarks

flows from each s_i to r_i



RTT of different schemes CWND

Who limits TCP throughput? AC/DC CPU overhead

Sender Receiver



AC/DC flexibility AC/DC flexibility

AC/DC Fairness Fairness across ECN support



Macrobenchmarks (Incast)

Why is AC/DC better? 
- DCTCP has a lower bound on CWND, which 

is too high when under extreme congestion

Macrobenchmarks (Incast)

Macrobenchmarks (Stride)

Note: Shuffle Not Shown (check out the paper)

Trace-Driven workload



Summary
● Operators need control of their networks to improve data center performance, 

despite diverse tenants running arbitrary networking stacks
● AC/DC allows operators to control the TCP congestion control algorithm of 

arbitrary tenants by implementing congestion control at the vSwitch
● AC/DC has the performance of specialized transport layer protocols like 

DCTCP without requiring tenant adoption, new networking hardware or 
software

Discussion
● What about distributed vSwitches?
● “cannot force an application to send more data than the VM’s CWND allows”

○ AC/DC increases traffic b/c TCP only reduces CWND on loss or ECN feedback
○ In other words, CWND of sender is always less than AC/DC’s RWND
○ Will this type of approach work on other protocols? (UDP) Does it need to?

● Operating on Datapath… didn’t we just learn that kernel is bottleneck on 
datapath!? 

○ what is AC/DC overhead beneath an optimized networking stacks (Arrakis, IX)? 


