Problem: Building an OS for the Data Center

e Server I/O performance matters:
o Key-value stores
o Web &file servers
o Lock managers

Arrakis: The Operating System is the Control Plane

Simon Peter et al e Can we build an OS that would allow applications deliver performance close
Proc. of the 11th USENIX Symp. on OSDI, pp. 1-16, 2014. to that delivered by data center hardware technology?

The hardware can help!

Presented by Xintong Wang and Ming zhi Yu

Arrakis Design Goals Arrakis Architecture

e Minimize kernel involvement & deliver 1/O directly to applications
o Reduce OS overhead

e Transparency to the application programmer

Control
Plane

o No requirements for modifications to applications

e Appropriate OS/hardware abstraction 7‘
o Keep classical server OS features il vl il sl =
o 1/0O protocol flexibility
o Process protection
o Global naming

53
?
&
b
/u Userspace

¥

N 4
[vsA | [vSA | [VSA]
Storage Controller

I
NI
&l

Traditional OS Architecture

Applications

Hardware

User Space

Kernel Space

Kernel Space

Hardware Space

Arrakis Architecture

Application (e.g. Redis)

Resource Request

libos

Data path

User Space

Virtual Interface
Card

Kernel Space

Control plath

Hardware

Source:https://www.youtube.com/watch?v=4NYpDad0f04

Skip the Kernel

Kernel
o API
o Access Control
o Copying
o Global Naming
o 1/O Processing

o /O Scheduling
Multiplexing
o Protection
o Resource Limits
Redis (Application)
1/0 Devices (Hardware)

o]

Control Plane

Kernel mediation is too heavyweight!

Skip the Kernel

e Kernel
o API
o Access Control
o Copying
o Global Naming
o 1/O Processing

o /O Scheduling

Multiplexing

o Protection
Resource Limits

e Redis (Application)

o]

e |/O Devices (Hardware)

Skip the Kernel

Control Plane

e Kernel
o Access Control
o Global Naming
o Resource Limits

Data Plane

e Application (Redis)
API
1/0 Processing
e |/O Devices (Hardware)
1/0 Scheduling
Multiplexing
o Protection

o Copying: A native interface that supports true zero-copy 1/0

Skip the Kernel

Control Plane

e Kernel
o Access Control
o Global Naming
Resource Limits

Data Plane

e Redis (Application)
API
1/0 Processing

e |/O Devices (Hardware)
1/0 Scheduling
Multiplexing
Protection

Data Path

Arrakis I/O Architecture

Arrakis Control Plane

e Access Control

Arrakis /O Architecture

o Only do once when configuring the data plane

o Enforced via NIC filters, logical disks

e Global Naming

o Virtual file system still in kernel
o Storage implementation in applications

e Resource Limits

o Program hardware 1/O schedulers

Control Plane

e Kernel
o Access Control
o Global Naming
Resource Limits

Data Plane

e Redis (Application)
API
1/0 Processing

e |/O Devices (Hardware)
1/0 Scheduling
Multiplexing
Protection

Data Path

Arrakis 1/O Architecture

Global Naming

’ Fast
— PuEY
Redls HW ops @
/tmp/lockfile

Virtual Storage Area

Indirect IPC interface

Text editor

open(“/etc/config.rc”)

Kernel
VFS

/var/lib/key value.db
/etc/config.rc

L)
Logical
disk

Fig. 6. Arrakis default file access example.

Arrakis I/O Architecture

Control Plane

e Kernel
o Access Control
o Global Naming
o Resource Limits

Data Plane

e Redis (Application)
o API
o 1/O Processing

Data Path
e |/O Devices (Hardware)
o /O Scheduling
o Multiplexing
o Protection
Arrakis I/O Architecture
Control Plane Data Plane
e Kernel e Redis (Application)
o Access Control o API
o Global Naming o 1/O Processing
o Resource Limits
Data Path

e |/O Devices (Hardware)
o /O Scheduling
o Multiplexing
o Protection

Storage Data Plane

e Persistent Data Structures

o Examples: persistent log and queue data structures
e Benefits

o Operations are immediately persistent.

o The structure is robust versus crash failures.

o Operations have minimal latency
e Drawbacks

o Alack of backwards-compatibility to the POSIX API.

Hardware |/O Virtualization

Standard on data center NIC, emerging on RAID

1/O Scheduling
o NIC rate limiter, packet schedulers
e Multiplexing
o Single-Root I/O Virtualization (SR-IOV)

m Support high-speed 1/O for multiple virtual machines sharing a single physical machine.
m Each virtual PCI device has its own register, queue etc.

e Protection
o IOMMU

m Restrict device access to only application virtual memory.

o Packet filters, logical disks
m Only allow eligible 1/0.

Evaluation
e Arrakis was evaluated on four cloud application workloads
o Read-heavy
o Write-heavy
o Http load balancer
o IP-layer middlebox
e OS configurations used in the evaluation:

o]

o]

[e]

Ubuntu version 13.04 (kernel version 3.8)

Made some tunings and throughput performance improved by 10%
e |Installed latest ixgbe device driver
e Disabled receive side scaling (RSS) when applications executed on one processor

Arrakis using the POSIX interface
Arrakis using its native interface

Server-side Packet Processing Performance

Experiment repeated with delay added before echoing each UDP packet to
simulate application-level processing time

A minimal echo server was embedded directly into the NIC device driver to
see how close to the maximum possible throughput Arrakis is able to achieve

@
» 1200 F . I " Linux =
T 1000 - Arrakis/P ==== |
G Arrakis/N
a 800~ Driver -
= 800 [i
> ¥

g oo W]
2 200 [(i o 1
= 0 il i ll il i

|_

0 1 2 4 8 16 32 64
Processing time [us]

Server-side Packet Processing Performance

e UDP echo server
o Other machines generated 1KB UDP packets at a fixed rate for 20 seconds in each

experiment
o the rate at which echoes arrived was recorded and used to compute server-side overhead

o Arrakis eliminates scheduling and kernel crossing because packets are delivered directly to

user space.
Linux Arrakis
Receiver running CPU idle Arrakis/P Arrakis/N

s B, BOEE G [s s e
Scheduler 0.17 (5.0%) 240 (38.8%)
Copy in 0.24 (7.1%) 025 (4.0%) 0.27 (18.7%) -

out 0.44 (13.2%) 0.55 (8.9%) 0.58 (40.3%) 3
Kernel crossing return ~ 0.10 (29%) 020 (3.3%) - -

syscall 0.10 (2.9%) 0.13 (2.1%) - -
Total 336 (6=0.66) 6.19 (0c=0.82) 1.44 (0<0.01) 038 (0c<0.01)

Table 1: Sources of packet processing overhead in Linux and Arrakis. All times are averages over 1,000 samples, given in s (and
standard deviation for totals). Arrakis/P uses the POSIX interface. Arrakis/N uses the native Arrakis interface.

Read-heavy load

e Memcached: is a general-purpose distributed memory caching system. It is
often used to speed up dynamic database-driven websites by caching data
and objects in RAM to reduce the number of times an external data source
(such as a database or API) must be read!".

e Setup:

o Requests were sent at a constant rate via its binary UDP protocol
o Workload pattern: 90% fetch and 10% store requests
o Number of Memcached processes were varied to measure network stack scalability for

muiltinle cores

1200
1000
800
600
400
200
0

Throughput [k transactions / s]

Number of CPU cores Figure 1: Linux networking architecture and workflow.

[1] Memcached. [online] Available: https://en.wikipedia.org/wiki/Memcached

Write-heavy load

e Redis: provides in-memory data structure stores, optionally persists each
write via an operational log
o AOF persistence logs every write operation received by the server
o RDB persistence performs point-in-time snapshots of dataset at specified intervals ["!
Log records were exchanged between Redis and Caladan
Setup:
o Benchmark tool distributed with Redis
o Execute GET and SET requests in two separate benchmarks
o Also ported Caladan to run on Linux
o Simulated storage hardware with low write latency through a write-delaying RAM disk
e Results: 7 ‘ linux ——
o Write latency improves by 63% g 20 T —
I -
o Write throughput improves by 9X on Arrakis £ f:g | Linux/Caladan memm
o Write throughput improves by 5X on Linux (w/ Caladan) -E; o |
:; 50 }
: o !
[1] Redis Persistence. [online] Available: http:/redis.io/topics/persistence - GEY SET
IP-layer Middlebox -
E 250 P , —
e |P-layer middleboxes: perform tasks £ 200 Amakis/P semmm
@
such as firewalling, intrusion £ 1m0
detection, network address = 100}
. . 3
translation, and load balancing. £ 50}
e Setup: g o
o= 1 2 4
o Implemented a simple user-level load Number of CPU cores

balancing middlebox using raw IP sockets. .
Results and analysis:

It simply rewrites source and destination IP e Load balancing middle box running either
addresses and TCP port numbers. Linux or Arrakis experienced a higher
throughput compared to Haproxy because of

© Ahash table was used to remember the simpler nature of the middlebox

existing connection assignment e Linux implementation does not scale well

o Responses from back-end servers were because raw sockets carry no connection
) information — each middlebox instance has to
intercepted and forwarded back to look at each incoming packet to determine if it

corresponding clients should handle it

Http Load Balancer

Haproxy: high availability proxy, a popular
open source software TCP/HTTP load
balancer and proxying solutionl"
Setup:

o Deployed a static web page of 1024 bytes at five

web server, which also served as workload
generators
o Distributed load in a round-robin fashion

o Experiment was done with and without “speculative
epoll” (SEPOLL) within the Linux kernel.
m SEPOLL: uses knowledge about typical
socket operation flows within Linux kernel to

avoid calls to the epoll interface and optimize
performance

[1] An Introduction to HAPrgxy aw@pqmm@gqmq@ﬂwﬁﬂable:

Ariale/an i _tn-hanraviand_lnad_halancina_rancante

Performance Isolation

Wanted to know if it is possible to provide
the same kind of QoS enforcement (rate
limiting) in Arrakis as in Linux.
Setup:

o Simulated a simple multi-tenant scenario with 5

Memcached instances
o Limit one tenant’s sending rate to 100Mb/s

o Used rate specifiers in Arrakis and queuing

Haproxy inserts cookies into
HTTP stream to remember
connection assignments to web
servers under client
reconnections

160
140
120
100
80
60
40
20

T —
Linux (SEPOLL) mmmm g
Arrakis/P s

Throughput [k transactions / s]

1 2 4 6
Number of CPU cores

Figure 7: Average HTTP transaction throughput and scalability
of haproxy.

1400
1200
1000
800
600
400
200

Throughput [k transactions / s]

Arrakis/P Linux Arrakis/P Linux
No limit 100Mbit/s limit

Figure 9: Memcached transaction throughput over 5 instances

disciplines on Linux to limit the rate (colors). with and without rate limiting.

o Memcached experiment was repeated
Conclusion

o Arrakis is able to provide the same kind of rate
limiting QoS enforcement as in Linux

Discussions Improvements and Extension

e Throughput of Arrakis does not scale well beyond 4 cores based on the

Some applications of Arrakis:
Memcached experiment

e Make Arrakis as a virtualized guest o Reduce overhead caused by contention with Barrelfish system management processes
o Moving the control plane into the virtual machine monitor (VMM) e Limited filtering support of the 82599 NIC (implementation)
o Applications allocate virtual interfaces cards directly from VMM o Introduce software overhead: different MAC address for each VNIC

e Virtualized Interprocessor Interrupts
o Interprocessor signaling is inefficient because of kernel’s involvement even though the
sending and receiving threads are two threads of the same application
o Kernel could be configure to allow an interrupt to be delivered to another processor given that
the same application is running on that processor
o Achieve similar cost as a cache miss

