Problem: Building an OS for the Data Center

e Server I/O performance matters:
o Key-value stores
o Web &file servers
o Lock managers

Arrakis: The Operating System is the Control Plane

Simon Peter et al e Can we build an OS that would allow applications deliver performance close
Proc. of the 11th USENIX Symp. on OSDI, pp. 1-16, 2014. to that delivered by data center hardware technology?

The hardware can help!

Presented by Xintong Wang and Ming zhi Yu

Arrakis Design Goals Arrakis Architecture

e Minimize kernel involvement & deliver 1/O directly to applications
o Reduce OS overhead

e Transparency to the application programmer

Control
Plane

o No requirements for modifications to applications

e Appropriate OS/hardware abstraction 7‘
o Keep classical server OS features il vl il sl =
o 1/0O protocol flexibility
o Process protection
o Global naming
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Traditional OS Architecture
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Source:https://www.youtube.com/watch?v=4NYpDad0f04

Skip the Kernel

Kernel
o API
o Access Control
o  Copying
o  Global Naming
o 1/O Processing

o /O Scheduling
Multiplexing
o Protection
o Resource Limits
Redis (Application)
1/0 Devices (Hardware)

o]

Control Plane

Kernel mediation is too heavyweight!

Skip the Kernel

e Kernel
o API
o Access Control
o  Copying
o Global Naming
o 1/O Processing

o /O Scheduling

Multiplexing

o Protection
Resource Limits

e Redis (Application)
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e |/O Devices (Hardware)

Skip the Kernel

Control Plane

e Kernel
o Access Control
o Global Naming
o Resource Limits

Data Plane

e Application (Redis)
API
1/0 Processing
e |/O Devices (Hardware)
1/0 Scheduling
Multiplexing
o Protection

o Copying: A native interface that supports true zero-copy 1/0




Skip the Kernel

Control Plane

e Kernel
o Access Control
o Global Naming
Resource Limits
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Arrakis I/O Architecture

Arrakis Control Plane

e Access Control

Arrakis /O Architecture

o Only do once when configuring the data plane

o Enforced via NIC filters, logical disks

e Global Naming

o Virtual file system still in kernel
o  Storage implementation in applications

e Resource Limits

o Program hardware 1/O schedulers

Control Plane

e Kernel
o Access Control
o Global Naming
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Arrakis 1/O Architecture
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Fig. 6. Arrakis default file access example.




Arrakis I/O Architecture

Control Plane

e Kernel
o Access Control
o Global Naming
o Resource Limits

Data Plane

e Redis (Application)
o API
o 1/O Processing

Data Path
e |/O Devices (Hardware)
o /O Scheduling
o Multiplexing
o Protection
Arrakis I/O Architecture
Control Plane Data Plane
e Kernel e Redis (Application)
o Access Control o API
o Global Naming o 1/O Processing
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Data Path

e |/O Devices (Hardware)
o /O Scheduling
o Multiplexing
o Protection

Storage Data Plane

e Persistent Data Structures

o Examples: persistent log and queue data structures
e Benefits

o Operations are immediately persistent.

o The structure is robust versus crash failures.

o  Operations have minimal latency
e Drawbacks

o Alack of backwards-compatibility to the POSIX API.

Hardware |/O Virtualization

Standard on data center NIC, emerging on RAID

1/O Scheduling
o NIC rate limiter, packet schedulers
e Multiplexing
o Single-Root I/O Virtualization (SR-IOV)

m  Support high-speed 1/O for multiple virtual machines sharing a single physical machine.
m  Each virtual PCI device has its own register, queue etc.

e Protection
o IOMMU

m  Restrict device access to only application virtual memory.

o Packet filters, logical disks
m  Only allow eligible 1/0.



Evaluation
e Arrakis was evaluated on four cloud application workloads
o Read-heavy
o Write-heavy
o Http load balancer
o IP-layer middlebox
e OS configurations used in the evaluation:

o]

o]

[e]

Ubuntu version 13.04 (kernel version 3.8)

Made some tunings and throughput performance improved by 10%
e |Installed latest ixgbe device driver
e Disabled receive side scaling (RSS) when applications executed on one processor

Arrakis using the POSIX interface
Arrakis using its native interface

Server-side Packet Processing Performance

Experiment repeated with delay added before echoing each UDP packet to
simulate application-level processing time

A minimal echo server was embedded directly into the NIC device driver to
see how close to the maximum possible throughput Arrakis is able to achieve
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Server-side Packet Processing Performance

e UDP echo server
o Other machines generated 1KB UDP packets at a fixed rate for 20 seconds in each

experiment
o the rate at which echoes arrived was recorded and used to compute server-side overhead

o Arrakis eliminates scheduling and kernel crossing because packets are delivered directly to

user space.
Linux Arrakis
Receiver running CPU idle Arrakis/P Arrakis/N

s B, BOEE G [ s s e
Scheduler 0.17 (5.0%) 240 (38.8%)
Copy in 0.24 (7.1%) 025 (4.0%) 0.27 (18.7%) -

out 0.44 (13.2%) 0.55 (8.9%) 0.58 (40.3%) 3
Kernel crossing return ~ 0.10 (29%) 020 (3.3%) - -

syscall  0.10 (2.9%) 0.13 (2.1%) - -
Total 336 (6=0.66) 6.19 (0c=0.82) 1.44 (0<0.01) 038 (0c<0.01)

Table 1: Sources of packet processing overhead in Linux and Arrakis. All times are averages over 1,000 samples, given in s (and
standard deviation for totals). Arrakis/P uses the POSIX interface. Arrakis/N uses the native Arrakis interface.

Read-heavy load

e Memcached: is a general-purpose distributed memory caching system. It is
often used to speed up dynamic database-driven websites by caching data
and objects in RAM to reduce the number of times an external data source
(such as a database or API) must be read!".

e Setup:

o Requests were sent at a constant rate via its binary UDP protocol
o Workload pattern: 90% fetch and 10% store requests
o Number of Memcached processes were varied to measure network stack scalability for

muiltinle cores
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[1] Memcached. [online] Available: https://en.wikipedia.org/wiki/Memcached



Write-heavy load

e Redis: provides in-memory data structure stores, optionally persists each
write via an operational log
o AOF persistence logs every write operation received by the server
o RDB persistence performs point-in-time snapshots of dataset at specified intervals ["!
Log records were exchanged between Redis and Caladan
Setup:
o Benchmark tool distributed with Redis
o Execute GET and SET requests in two separate benchmarks
o Also ported Caladan to run on Linux
o  Simulated storage hardware with low write latency through a write-delaying RAM disk
e Results: 7 ‘ linux ——
o Write latency improves by 63% g 20 T —
I -
o Write throughput improves by 9X on Arrakis £ f:g | Linux/Caladan memm
o Write throughput improves by 5X on Linux (w/ Caladan) -E; o |
:; 50 }
: o !
[1] Redis Persistence. [online] Available: http:/redis.io/topics/persistence - GEY SET
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e |P-layer middleboxes: perform tasks £ 200 Amakis/P semmm
@
such as firewalling, intrusion £ 1m0
detection, network address = 100}
. . 3
translation, and load balancing. £ 50}
e Setup: g o
o= 1 2 4
o Implemented a simple user-level load Number of CPU cores

balancing middlebox using raw IP sockets. .
Results and analysis:

It simply rewrites source and destination IP e Load balancing middle box running either
addresses and TCP port numbers. Linux or Arrakis experienced a higher
throughput compared to Haproxy because of

© Ahash table was used to remember the simpler nature of the middlebox

existing connection assignment e Linux implementation does not scale well

o Responses from back-end servers were because raw sockets carry no connection
) information — each middlebox instance has to
intercepted and forwarded back to look at each incoming packet to determine if it

corresponding clients should handle it

Http Load Balancer

Haproxy: high availability proxy, a popular
open source software TCP/HTTP load
balancer and proxying solutionl"
Setup:

o Deployed a static web page of 1024 bytes at five

web server, which also served as workload
generators
o Distributed load in a round-robin fashion

o Experiment was done with and without “speculative
epoll” (SEPOLL) within the Linux kernel.
m  SEPOLL: uses knowledge about typical
socket operation flows within Linux kernel to

avoid calls to the epoll interface and optimize
performance

[1] An Introduction to HAPrgxy aw@pqmm@gqmq@ﬂwﬁﬂable:

Ariale/an i _tn-hanraviand_lnad_halancina_rancante

Performance Isolation

Wanted to know if it is possible to provide
the same kind of QoS enforcement (rate
limiting) in Arrakis as in Linux.
Setup:

o  Simulated a simple multi-tenant scenario with 5

Memcached instances
o Limit one tenant’s sending rate to 100Mb/s

o Used rate specifiers in Arrakis and queuing

Haproxy inserts cookies into
HTTP stream to remember
connection assignments to web
servers under client
reconnections
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Figure 7: Average HTTP transaction throughput and scalability
of haproxy.
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Figure 9: Memcached transaction throughput over 5 instances

disciplines on Linux to limit the rate (colors). with and without rate limiting.

o Memcached experiment was repeated
Conclusion

o Arrakis is able to provide the same kind of rate
limiting QoS enforcement as in Linux



Discussions Improvements and Extension

e Throughput of Arrakis does not scale well beyond 4 cores based on the

Some applications of Arrakis:
Memcached experiment

e Make Arrakis as a virtualized guest o Reduce overhead caused by contention with Barrelfish system management processes
o Moving the control plane into the virtual machine monitor (VMM) e Limited filtering support of the 82599 NIC (implementation)
o Applications allocate virtual interfaces cards directly from VMM o Introduce software overhead: different MAC address for each VNIC

e Virtualized Interprocessor Interrupts
o Interprocessor signaling is inefficient because of kernel’s involvement even though the
sending and receiving threads are two threads of the same application
o Kernel could be configure to allow an interrupt to be delivered to another processor given that
the same application is running on that processor
o Achieve similar cost as a cache miss



