
Demystifying and Mitigating 
TCP Stalls at the Server Side

Jianer Zhou • Qinghua Wu • Zhenyu Li • Steve Uhlig 
Peter Steenkiste • Jian Chen • Gaogang Xie

Proc. of ACM IMC '11, pp. 155-170, 2011.

Presented by Buting Ma and Ryan Marcotte

Motivation

● Importance of perceived performance
○ Throughput
○ Latency
○ …

● TCP optimization has received study
○ Congestion control (FastTCP, Compound TCP, TCP Cubic, Remy CC, …)
○ Optimizing retransmissions (tail loss probe, limited transmit, adaptive reordering threshold, …)
○ … 
○ Timeout retransmissions?

● Server-side mitigation more easily implemented and deployed

Why should we care about diagnosing problems with TCP in the wild?

What are TCP Stalls?
● An event where the duration between consecutive packets received/sent by 

the sender is large

● Intuition: a TCP sender should be able to receive or send at least one packet 
during two RTTs

Smoothed Round Trip Time Retransmission Timeout

Free parameter (=2)

Contributions
● A tool (TAPO) that classifies causes of TCP stalls

○ Testing and analysis on packet-level traces from a popular Chinese service provider
○ Focus on timeout retransmission stalls

● A technique (S-RTO) to mitigate timeout retransmission stalls
○ Deployment of S-RTO in production network
○ Analysis of performance in this deployment



Dataset Description
● Packet-level traces from front-end servers of Qihoo 360

○ Provider of web search, mobile assistant, cloud storage, etc.
○ More than 600 million users

● The datasets
○ Web search
○ Cloud storage download
○ Security software download

● The traces
○ Daily, 12/22/14 to 12/28/14
○ One hour each during peak evening traffic
○ 3.35 billion packets, 6.4 million flows

TCP Stalls in the Dataset

Spends more than half of the time stalled!

TCP Stalls in the Dataset (cont.) Challenges in TCP Stall Diagnosis
● Statistics of TCP performance parameters must be obtained through 

measurement
○ Some parameters may not be available from kernel
○ Dumping kernel logs of front-end servers could be problematic

● Client-side events are not visible to server-side tools

Based on this, there is a need for server-side diagnosis tools.



Review: TCP Congestion Avoidance
Default state. No recent 

duplicate ACKs or 
congestion events.

Sender receives less 
than threshold amount of 

duplicate ACKs
No adjustment to 

congestion window. 
Transmits each segment 

on receiving ACK.

After threshold number 
of duplicate ACKs, 
reduce congestion 

window until halved.

Retransmission timer expires

TCP Stall Root-Cause Analysis

Where is the 
current packet in 
the file transfer?

Data might not be 
available locally 

on the server

If not recovery or 
disorder, stall is most 
likely not caused by 

packet loss

Delay in the network

Client receive window
Server must wait 

for timeout

Is current packet 
a retransmission?

Packet delay mistaken 
for packet loss, 

sender’s window 
mistakenly narrowed

If many packets are 
dropped during sending 
window while server is 

using fast retransmission

Overall Statistics of TCP Stalls Timeout Retransmission Stalls
Timeout retransmission stalls degrade TCP performance significantly because the 
TCP sender cannot transmit packets for a period equal to the RTO, which can 
be tens of RTTs (see Figure 1). It also forces the TCP sender to ramp up its 
congestion window from 1 MSS (max segment size) after the stall.

● Double retransmission stalls
○ f-double stalls & t-double stalls

● Tail retransmission stalls
● Small in-fight retransmission stall
● Continuous loss stall
● ACK delay or loss stall



Double Retransmission Stalls
A double retransmission refers to a case where the retransmitted packet itself, 
either recovered by fast retransmit or a timeout retransmission, is dropped or 
delayed, causing a new timeout retransmission.

expensive: cloud storage 45%, software download 61%, web search services 42% 

position = index of the retransmitted packet / 
the number of data packets in the flow

almost uniform distribution: stalls are caused 
by random packet drops.

Web search 10% at 0 position: Some web 
search flows contain only one packet.

The in flight size is the number of 
packet that have been sent out but 
have not yet been acknowledged by 
either an ACK or SACKs

Web search tends to have a smaller in 
flight size because web search flows 
are shorter and the cwnd often never 
ramps up to a high value.

After a double retransmission stall, the sender have to 1. retransmit 
these in-flight packets, 2. set the cwnd to one. This is a significant drop 
in cwnd for both the cloud storage and software download services, further 
degrading performance.

F-double stall and T-double stall

F: fast, T:timeout

The most significant difference between the two types is that a 
t-double stall delays the data segment (and the entire flow) by two or 
more timeouts.

· Top scenario: two different segments 
are dropped (2 & 6). Both (2 & 6) can be 
recovered via fast retransmit.
· Bottom scenario: same segment (2) is 
dropped twice.The first loss is recovered 
by fast retransmit, but the second loss 
of can only be recovered through a 
timeout retransmission (a double 
retransmission stall) , as the TCP sender 
has already marked segment 2 as 
retransmitted.

Both scenarios transmit the same amount of data. 
f-double stalls could be eliminated through a slightly more aggressive and efficient 
retransmission strategies that avoid timeouts without adding further congestion to 
the network.



F-double stall more than 50% in all 3 types of traffic.

mitigating f-double stalls can significantly reduce the impact of 
double retransmissions and improve performance.

Recently proposed retransmission mechanisms like Early Retransmit , 
Tail Loss Probe do not help here because they either only reduce the 
threshold of fast retransmit or require the TCP sender to be in the Open 
state.

Tail retransmission stalls
A tail retransmission stall happens as a result of a retransmission at the tail of a 
flow. At the end of a flow,the receiver cannot generate the three dupacks 
needed for fast retransmit so a timeout is needed for recovery.

In web search, account for 36% of all 
stalls.

Most of the web search flows are 
small, so packet loss is more likely to 
happen in the tail of the flow.

a uniform distribution for both the cloud 
storage and web search services.
Cloud storage: many files; web search: 
many flows in one session. But for 
software dl, only one file.

The flow of web search is short, most of 
the flows contain only one in-flight packet 
when the tail retransmission happens. For 
the other two services, the in-flight size is 
often no more than 3.

The web search service has the smallest fraction of tail stalls in Open state, 
indicating a higher likelihood that at least one retransmitted packet has not 
been ACKed when a tail stalls happen.

The Open state corresponds to a better network condition than the Recovery 
state, and thus a tail retransmissions happening in the Open state can possibly 
be mitigated via carefully retransmitting unacknowledged packets, which is the 
basis for Tail Loss Probe (TLP).



Small in-flight retransmission stall
in-flight size is small if in-flight < 4MSS.
 When a packet loss occurs while the in-flight size is small, fast retransmit 
cannot be triggered due to too few duplicate ACKs. The sender therefore has 
to wait until the retransmission timer expires.

20% of in-flight values observed in 
the cloud storage and software 
download services are below 4. In 
other words, once an in-flight packet 
is dropped, the server has to wait for 
the retransmission timeout in 20% of 
the cases.

Small rwnd or small cwnd

The in-flight size reflects the number of packets limited by either cwnd or 
rwnd. 

Further distinguishing which variable limits the in-flight size, rwnd or cwnd,

Small rwnd retransmission stalls contribute very little to the total stalls for the 
cloud storage and web search services, thanks to large initial rwnd.

Small cwnd retransmission stalls are significant in all three services, but can 
be solved using Early Retransmit. However, early retransmit will not be 
triggered if there are two or more lost packets.

Continuous loss stall
Continuous loss means that all outstanding packets (# >=4) in the current 
window are lost.

When all outstanding packets are lost, the 
server has to wait for a timeout, mark all the 
outstanding packets as lost, and retransmit 
all unacknowledged segments. May lead 
to congestion.

Continuous loss stalls happen at any 
position in flows with similar likelihood.

ACK delay or loss stall
An ACK delay or loss stall happens when a sender does (not?) receive ACKs 
before the retransmission timer expires, while the segments are identified as not 
lost through DSACK.

ACK delay can be caused by the delayed-ACK mechanisms. 
Trigger a timeout retransmission when delay > RTO.

This also explains the observation that software download suffers from more ACK 
delay stalls, because software download flows are more likely to have a small 
in-flight size(due to small rwnd), less frequent ACK and more likely delay > RTO.



S-RTO: TOWARDS MITIGATING TCP STALLS
Some TCP stalls, like f-double and tail retransmission stalls in Open state, need to 
be mitigated by retransmitting unacknowledged packets slightly more 
aggressively, rather than waiting for an expensive timeout retransmission.

However, simply shortening RTO may trigger spurious retransmissions and 
subsequently take the sender several RTTs to increase the congestion window 
from 1 MSS to the original value, during which the sender fails to fully utilize the 
available bandwidth.

Algorithm
S-RTO keeps a probe timer for each flow, but 
is only active when a timeout retransmission 
(as opposed to fast retransmit) is likely to 
happen.

packets_out < T1 means in-flight size is 
relatively small, indicating no enough dupacks 
for fast retransmission.

Carefully manage the congestion window to 
avoid that too small cwnd and following stalls.

S-RTO falls back to the native RTO 
mechanism for recovery if the packet 
retransmitted by S-RTO is dropped.

Threshold for TCP stalls

Performance evaluation of S-RTO
The latency: the time between the client 
initiates a request and all response packets 
have been acknowledged.
● S-RTO achieves a mean improvement of 

11% on web seatch, because a few (last 
1%)flows suffers very long latency due to 
double retransmission stalls.

● Performance on large flows of cloud 
storage is not good, because 1. Large 
flows last longer so some stalls(tail) have 
less impact; 2.slightly more aggressive 
retransmissions can increase the 
congestion of network

<200KB Both TLP and S-RTO can trigger unnecessary retransmissions. 

Caused by the retransmission of delayed (but not lost) packets.

May slightly increase congestion.

 This increase in retransmissions is however reasonable, and it does not 
hurt TCP fairness as the congestion window still follows the AIMD 
(Additive-Increase/Multiplicative-Decrease) principle of TCP.



Discussion
How much congestion is introduced? How it could influence the congestion 
extension at burst?

We appreciate focus on classification “in the wild”, but what about ground-truth? 
How do we know that this classification is valid?


