
Gao, P.X. et al.,
"pHost: Distributed near-optimal datacenter
transport over commodity network fabric"

Proc. of ACM CoNEXT '15, 2015.

Ming zhi Yu
Zaina Hamid

This paper talks about:

pHost : a transport design aimed at minimizing FCT, by achieving

● Near-optimal performance of pFabric & commodity network design of Fastpass
● While overcoming Fastpass’ overheads

Evaluates pHost and its requirements, design attributes, and gives an insight
into its test setup, performance & metric evaluation, and overall
applicability.

Introduction
● Optimize network performance in data centers, hence focus on FCT
● Currently pFabric achieves close to theoretically minimal slowdown over

workloads, However for more optimization
○ pFabric needs specialised network hardware to implement a specific packet scheduling and

queue management algorithm

● Fastpass uses commodity switches coupled with a central scheduler, BUT
performance is significantly worse

SOLUTION: pHost

● No specialized n/w h/w, no per flow state or complex rate calculations
● No centralized scheduler, no explicit n/w feedback

pHost overview

Modern DataCenter Networks:

● Small RTTs - due to lower latencies
● Full bisection bandwidth - Due to advanced datacenter network topologies
● Simple switches - Basic features such as priority levels, ECMP and/or packet

spraying, cut through switching, and relatively small buffers

Basic Transport Mechanism

1. Source sends RTS packet to destination
2. Per packet transmission time, the destination considers the set of pending

RTSs and sends a ”token” to a corresponding host.
a. Hence the source transmits one data packet from that flow at a specific priority level
b. per-packet scheduling across active flows independent of other destinations

3. Tokens can expire if not used in a certain time by the source
a. Source has a few “free tokens” for each flow by default

4. Source chooses an unexpired token and sends corresponding data packet,
hence selecting across active flows independent of other sources

5. Destination sends ACK on receiving all packets for a flow

*Control packets have the highest priority
**Degree of freedom can be configured to achieve different optimizations

Why pHost works

● Using packet spraying technique
○ Eliminating core congestion & sophisticated path level scheduling (Fastpass) / detailed packet

scheduling in core switches (pFabric)

● Destination congestion:
○ Granting tokens in response to RTS requests
○ Instead of a centralized scheduler, we use a fully decentralized scheduler

● To avoid starvation at host: allow source to launch multiple RTSs in parallel
○ Small budget of free tokens for each flow
○ Send without waiting for the RTT from destination

● To avoid starvation at destination: back-off mechanism
○ Destination avoids sending tokens to the source if previously sent tokens were unused

Design Details
For token assignment and utilization - SOURCE

1. RTS includes other information: flow size,
deadline, tenant the flow belongs to, etc (used by
destination)

1. Active Tokens = per flow list of tokens maintained
by the source, with each token representing
permission to send one packet to the flow’s
destination. Initially configured w/ set free tokens

2. Only if unexpired token is available
3. If idle, sends a packet from the list of available

tokens

For token assignment and utilization - DESTINATION

1. PendingRTSlist = flows for which destination received
the RTS but not all the data packets, every new RTS
also goes into this list

2. Every MTU the destination selects an RTS from
PendingRTS & sends out a token to the source

3. Expired token > threshold, the flow is downgraded for
the near future

4. On receiving all packets for a flow, sends an ACK to the
source and removes the RTS from the pendingRTS list

*All control packets in pHost are sent at the highest priority

Maximizing Network Utilization

Sources sending multiple RTSs in parallel & destinations assigning one token per
packet transmission time may lead to network under utilization. Challenges that
pHost resolves are:

● Free tokens for new flow arrivals: to overcome waiting until the token for a flow is
received, and avoid the effect on short flow performance

● Source downgrading and token expiry: When the source
prefers token for Flow B, while the tokens from Flow A are getting
wasted, and another source could have interacted with A in the
meanwhile - Hence pHost maintains a number of unexpired
tokens for each source, and when that threshold value is
crossed, the source is downgraded for a timeout period

Local Scheduling Problem

Goal is to accommodate different performance optimization goals (Eg: optimize tail
latency across all flows, or to share n/w b/w fairly among tenants)

● When the source & destination exchange RTS/tokens they also share flow size,
deadlines, priority level etc

Performance objectives solved for using end host scheduling:

● Minimizing FCT
○ SRPT: flow with least no. of remaining packets is prioritized while assigning tokens
○ Short flows: second highest priority; Long flows: third highest priority
○ Source also prioritizes flows with fewest remaining packets while using tokens &

free tokens if any

● Deadline constrained traffic
○ EDF: source specifies the deadline in the RTS and the destination prioritizes token

assignment accordingly
○ Source also utilize tokens in similar fashion

● Fairness across multiple tenants
○ If A runs a web search workload with short flows & B runs a MapReduce workload

with long flows
■ pFabric would have prioritised A over B, hence starvation

○ End-host based scheduling: destinations maintain a counter for the no. of packets
received from each tenant, & in each unit time assign a token to a flow from the
tenant with smaller count

○ Hence fairness across tenants, and also tenant specific performance goals can be
met, with specific scheduling policies.

Handling Packet drops

In the rare case of packet drops

● Token is assigned to a specific Packet ID
● If the destination doesn’t receive one of the packets until the token has been

sent out for the last packet of the flow, the destination resends the token for
the lost packet ID

● The source retransmits the lost packet(s)

Test setup
● Network topology: two-tier multi-rooted tree with 9 racks and 144 end-hosts.

○ end-host: 10Gbps access link, core switch: nine 40Gbps links
○ Propagation delay: 200ns for each link
○ Queue buffer of each switch port: 6kB - 72kB (default to be 36kB)

● Flows are generated from three production traces
○ “Web Search”, “Data Mining”, and “IMC 10”

○ All three traces are heavy-tailed (most of the flows are short but most of the bytes are in the
long flows)

○ Generate flows from traces using a Poisson arrival process with loads ranging from 0.5 to 0.8
(default to be 0.6)

Figure 1. Network topology.
Source: http://web.stanford.edu/~skatti/pubs/sigcomm13-pfabric.pdf

Test setup
● Traffic matrices

○ all-to-all where each source host generates flows to each other host (default)

○ Permutation traffic matrix: each source sends flow to a single destination chosen uniformly at
random without replacement

○ Incast traffic matrix: each destination receives flows from a specified number of sources

● Performance metrics
○ Mean slowdown := FCT(i) / OPT(i), the smaller the better

■ FCT(i): observed flow completion time when competing with other flows
■ OPT(i): flow completion time of flow i when it is the only flow in the network

○ Normalized FCT := mean of FCT(i) / mean of OPT(i)

○ Throughput := number of bytes delivered to receivers through the network over unit time
normalized by the access link bandwidth

○ Fraction of flows that meet their target deadlines

● Evaluated protocols
○ pHost is evaluated against pFabric and Fastpass

Mean slowdown
● pFabric achieve near-optimal slowdown,

so pHost’s is equally effective at
optimizing slowdown

● pHost and pFabric achieve significantly
better performance than Fastpass for
short flow; all three protocols have
comparable performance for long flow.

● Fastpass schedules flows in epochs of 8
packets, so a short flow must wait for at
least an epoch, which is around 10us,
before it gets scheduled → pHost,
pFabric outperform Fastpass in short
flow slowdown

Other metrics
● NFCT

○ all three protocols see similar performance because NFCT is
dominated by the FCT of long flows by definition.

● Throughput
○ follow trend similar to NFCT results because overall throughput is

dominated by the performance of long flows.

● Deadlines
○ A deadline was assigned to each flow using exponential

distribution with mean 100 us (1.25 times its optimal FCT if
assigned deadline is less than 1.25 times the optimal FCT)

○ All three protocols offer comparable performance

● Advantages of pHost
○ it relies only on commodity network fabrics
○ Easy to scale because its decentralized controller

Other metrics
● 99 percentile slowdown

○ 33% higher than the mean slowdown for pHost and pFabric
○ 2 times the mean slowdown for Fastpass

● Drop rate
○ pFabric has higher drop rate because it sends packets more

aggressively

○ pHost and Fastpass have close-to-zero drop rate even as load
increases

○ Also investigated where packet drops occur by plotting the

absolute number of packet drops at each of the 4 hops in the
network

■ end-host NIC queue, aggregation switch upstream

queue, core switch queue, aggregation switch
downstream queue

■ First and last hop drops for pHost and Fastpass are
almost eliminated

Varying network load

● Evaluated protocol performance for network load varying from 0.5-0.8
● Discovered that relative performance of the different protocols across different

network loads remains consistent

Varying traffic matrices
● Permutation TM: overall, pHost performs better than both pFabric and

Fastpass
● Incast TM: all three protocols have similar performance for incast ™

○ Total amount of data requested is fixed at 100MB

Varying switch parameters
● Evaluated the impact of varying the per-port buffer size in switches
● Evaluated using “Data Mining” workload
● Conclusion: none of the three schemes is sensitive to the sizing of switch

buffers

Flexibility -- isolation and fairness between tenants
● pHost can implement arbitrary policies for how tokens are granted and

consumed
● Enforced SRPT to prioritize flows with the fewest remaining bytes
● Used two traces “IMC10” and “WebSearch” (mostly short flows)
● pHost provided better isolation and fairness than pFabric

Discussions / Q&A / Comments
● pHost’s advantage wasn’t clearly obvious while comparing against pFabric &

Fastpass with respect to additional metrics (NFCT, throughput, & fraction of
flows meeting deadlines)

● With respect to websearch, there’s not a significant variation on comparing
Fastpass & pHost as expected?

● Packet drops in the case of pHost are higher than pFabric (figure 5f)

